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Abstract—Accurate computer-aided polyp detection and seg-
mentation during colonoscopy examinations can help endo-
scopists resect abnormal tissue and thereby decrease chances
of polyps growing into cancer. Towards developing a fully
automated model for pixel-wise polyp segmentation, we propose
ResUNet++, which is an improved ResUNet architecture for
colonoscopic image segmentation. Our experimental evaluations
show that the suggested architecture produces good segmentation
results on publicly available datasets. Furthermore, ResUNet++
significantly outperforms U-Net and ResUNet, two key state-of-
the-art deep learning architectures, by achieving high evaluation
scores with a dice coefficient of 81.33%, and a mean Intersection
over Union (mIoU) of 79.27% for the Kvasir-SEG dataset and a
dice coefficient of 79.55%, and a mIoU of 79.62% with CVC-612
dataset.

Index Terms—Medical image analysis, semantic segmentation,
colonoscopy, polyp segmentation, deep learning, health informat-
ics.

I. INTRODUCTION

Colorectal Cancer (CRC) is one of the leading causes of

cancer related deaths worldwide. Polyps are predecessors to

this type of cancers and therefore important to discover early

by clinicians through colonoscopy examinations. To reduce

the occurrence of CRC, it is routine to resect the neoplastic

lesions (for example, adenomatous polyps) [1]. Unfortunately,

many adenomatous polyps are missed during the endoscopic

examinations [2]. A Computer-Aided Detection (CAD) system

that, in real-time, can highlight the locations of polyps in the

video stream from the endoscope, can act as a second observer,

potentially drawing the endoscopist’s attention to the polyps

displayed on the monitor. This can reduce the chance that

some polyps are overlooked [3]. For this purpose, an important

improvement of pure anomaly detection approaches, which

only identify whether or not there is something abnormal in

an image, we also want our CAD system to have pixel-wise

segmentation capability so that the specific regions of interest

within each abnormal image can be identified.

A key challenge for designing a precise CAD system for

polyps is the high costs of collecting and labeling proper

medical datasets for training and testing. Polyps come in a

wide variety of shapes, sizes, colors, and appearances as shown

in Figure 1. For the four main classes of polyps: adenoma,

Fig. 1. Examples of polyp images and their corresponding masks from Kvasir-
SEG dataset. The first and third column represents the original images, and
the second column and fourth column represents their corresponding ground
truth.

serrated, hyperplastic, and mixed (rare), there are high inter-

class similarity and intra-class variation. There can also be

high background object similarity, for instance, where parts of

a polyp is covered with stool or when they blend into the

background mucosa. Although these factors make our task

challenging, we conjecture that there is still a high potential for

designing a system with a performance acceptable for clinical

use.

Motivated by the recent success of semantic segmentation-

based approaches for medical image analysis [4]–[6], we

explore how these methods can be used to improve the

performance for automatic polyp segmentation and detection.

A popular deep learning architecture in the field of semantic

segmentation for biomedical application is U-Net [5], which

have shown state-of-the-art performance at the 2015 ISBI

cell tracking challenge 1. The ResUNet [6] architecture, is a

variant of U-Net architecture that has provided state-of-the-art

results for the road image extraction. We therefore adapt this

architecture as a basis for our work.

In this paper, we propose the ResUNet++ architecture for

medical image segmentation. We have evaluated our model

on two publicly available datasets. Our experimental results

reveal that the improved model is efficient and achieved a

performance boost compared to the popular U-Net [5] and

ResUNet [6] architectures.

1http://brainiac2.mit.edu/isbi challenge/.
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In summary, the contributions of the paper are as follows:

1) We propose the novel ResUNet++ architecture, which

is a semantic segmentation neural network that takes

advantage of residual blocks, squeeze and excitation

blocks, Atrous Spatial Pyramidal Pooling (ASPP), and

attention blocks. ResUNet++ improved the segmentation

results significantly for the colorectal polyps compared to

other state-of-the-art methods. The proposed architecture

works well with a smaller number of images.

2) We annotated the polyp class from the Kvasir dataset [7]

with the help of an expert gastroenterologist to create

the new Kvasir-SEG dataset [8]. We make this polyp

segmentation dataset available to the research community

to foster development of new methods and reproducible

research.

II. RELATED WORK

Automatic gastrointestinal (GI) tract disease detection and

classification in colonoscopic videos has been an active area

of research for the past two decades. Polyp detection has

in particular been given attention. The performance of the

machine learning software has come close to the level of expert

endoscopists [9]–[12].

Apart from work on algorithm development, researchers

have also investigated complete CAD systems, from data

annotation, analysis, and evaluation to visualization for the

medical experts [13]–[15]. Thambawita et al. [16] explored

various methods, ranging from Machine Learning (ML) to

deep Convolutional Neural Network (CNN), and suggested

five novel models as a potential solution for classifying GI

tract findings into sixteen classes. Guo et al. [17] presented two

variants of fully convolutional neural networks, which secured

the first position at the 2017 Gastrointestinal Image ANAlysis

(GIANA) challenge and second position at the 2018 GIANA

challenge.

Long et al. [18] proposed a state-of-the-art semantic seg-

mentation approach for image segmentation known as a Fully

Convolutional Network (FCN). FCN are trained end-to-end,

pixels-to-pixels, and outputs segmentation result without any

additional post-processing steps. Ronneberger et al. [5] modi-

fied and extended the FCN architecture to U-Net architecture.

There are various modification and extension based on U-Net

architecture [4], [6], [17], [19]–[22] to achieve better segmen-

tation results on both natural images and biomedical images.

Most of the published work in the field of polyp detection

perform well on the specific datasets, and test scenarios often

used small training and validation datasets [11], [23]. The

model evaluated on the smaller dataset is neither generalizable

nor robust. Moreover, some of the research work only focus

on a specific type of polyps. Some of the current work

also use non-publicly datasets, which makes it difficult to

compare and reproduce results. Therefore, the goal of the

ML models to reach a performance level similar to, or better

than colonoscopists has not been achieved yet. There exists a

potential for improvement in boosting the performance of the

system.
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Fig. 2. Block diagram of the proposed ResUNet++ architecture.

III. RESUNET++

The ResUNet++ architecture is based on the Deep Residual

U-Net (ResUNet) [6], which is an architecture that uses

the strength of deep residual learning [24] and U-Net [5].

The proposed ResUNet++ architecture takes advantage of the

residual blocks, the squeeze and excitation block, ASPP, and

the attention block.

The residual block propagates information over layers,

allowing to build a deeper neural network that could solve

the degradation problem in each of the encoders. This im-

proves the channel inter-dependencies, while at the same time

reducing the computational cost. The proposed ResUNet++

architecture contains one stem block followed by three encoder

blocks, ASPP, and three decoder blocks. The block diagram

of the proposed ResUNet++ architecture is shown in Figure 2.

In the block diagram, we can see that the residual unit is

a combination of batch normalization, Rectified Linear Unit

(ReLU) activation, and convolutional layers.

Each encoder block consists of two successive 3 × 3 con-

volutional block and an identity mapping. Each convolution

block includes a batch normalization layer, a ReLU activation

layer, and a convolutional layer. The identity mapping con-

nects the input and output of the encoder block. A strided

convolution layer is applied to reduce the spatial dimension
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of the feature maps by half at the first convolutional layer

of the encoder block. The output of encoder block is passed

through the squeeze-and-excitation block. The ASPP acts as

a bridge, enlarging the field-of-view of the filters to include a

broader context. Correspondingly, the decoding path consists

of residual units, too. Before each unit, the attention block

increases the effectiveness of feature maps. This is followed

by a nearest-neighbor up-sampling of feature maps from the

lower level and the concatenation with feature maps from their

corresponding encoding path.

The output of the decoder block is passed through ASPP,

and finally, we apply a 1 × 1 convolution with sigmoid

activation, that provides the segmentation map. The extension

of the ResUNet++ is the squeeze-and-excitation blocks marked

in light blue, the ASPP block marked in dark red, and attention

block marked in light green. A brief explanation of each of

the parts is given in the following subsections.

A. Residual Units

Deeper Neural Networks are comparatively challenging to

train. Training a deep neural network with an increasing

network depth can improve accuracy. However, it can hamper

the training process and cause a degradation problem [6], [24].

He et al. [24] proposed a deep residual learning framework

to facilitate the training process and address the problem

of degradation. ResUNet [6] uses full pre-activation residual

units. The deep residual unit makes the deep network easy

to train and the skip connection within the networks helps

to propagate information without degradation, improving the

design of the neural network by decreasing the parameters

along with comparable performance or boost in performance

on semantic segmentation task [6], [24]. Because of these

advantages, we use ResUNet as the backbone architecture.

B. Squeeze and Excitation Units

The squeeze-and-excitation network [25] boosts the repre-

sentative power of the network by re-calibrating the features

responses employing precise modeling inter-dependencies be-

tween the channels. The goal of the squeeze and excite block

is to ensure that the network can increase its sensitivity to the

relevant features and suppress the unnecessary features. This

goal is achieved in two steps. The first one is squeeze (global

information embedding), where each channel is squeezed

by using global average pooling for generating channel-wise

statistics. The second step is excitation (active calibration) that

aims to capture the channel-wise dependencies fully [25]. In

the proposed architecture, the squeeze and excitation block is

stacked together with the residual block to increase effective

generalization over different datasets and improve the perfor-

mance of the network.

C. Atrous Spatial Pyramidal Pooling

The idea of ASPP comes from spatial pyramidal pool-

ing [26] that was successful for re-sampling features at mul-

tiple scales. In ASPP, the contextual information are captured

at various scales [27], [28] and many parallel atrous convo-

lutions [29] with different rates in the input feature map are

fused. Atrous convolution allows controlling the field-of-view

for capturing multi-scale information precisely. In the pro-

posed architecture, ASPP acts as a bridge between encoder and

decoder in our architecture, as shown in Figure 2. The ASPP

model has shown promising results on various segmentation

tasks by providing multi-scale information. Therefore, we

use ASPP to capture the useful multi-scale information for

the semantic segmentation task.

D. Attention Units

The attention mechanism is mostly popular in Natural

Language Processing (NLP) [30]. It gives attention to the

subset of its input. Moreover, it has been employed in se-

mantic segmentation tasks, for example, [31], for pixel-wise

prediction. The attention mechanism determines which parts of

the network require more attention in the neural network. The

attention mechanism also burdens off the encoder to encode

all the information of the polyp image into a vector of a fixed

dimension. The main advantage of the attention mechanism is

that they are simple, can be applied to any input size, enhance

the quality of features that boosts the results.

In the previous two approaches, U-Net [5] and ResUNet [6],

there exists a direct concatenation of the encoder feature maps

with the decoder feature maps. Inspired by the success of

attention mechanism, both in NLP and computer vision tasks,

we implemented the attention block in the decoder part of our

architecture to be able to focus on the essential areas of the

feature maps.

IV. EXPERIMENTS

To evaluate the ResUNet++ architecture, we train, validate,

and test models using two publicly available datasets. We

compare the performance of our ResUNet++ models with ones

trained using U-Net and ResUNet.

A. Datasets

For the task of polyp image segmentation, each pixel in

the training images must be labeled as belonging to either the

polyp class or the non-polyp class. For the evaluation of Re-

sUNet++, we use the Kvasir-SEG dataset [8], which consists

of 1,000 polyp images and their corresponding ground truth

masks annotated by expert endoscopists from Oslo University

Hospital (Norway). Example images and their corresponding

masks from the Kvasir-SEG dataset are shown in Figure 1.

The second dataset we have used is the CVC-ClinicDB

database [32], which is an open-access dataset of 612 images

with a resolution of 384×288 from 31 colonoscopy sequences.

B. Implementation details

All architectures were implemented using the Keras frame-

work [33] with TensorFlow [34] as backend. We performed

our experiment on a single Volta 100 GPU on a powerful

Nvidia DGX-2 AI system capable of 2-petaFLOPS tensor per-

formance. The system is part of Simula Research Laboratories
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heterogeneous cluster and has dual Intel(R) Xeon(R) Platinum

8168 CPU@2.70GHz, 1.5TB of DDR4-2667MHz DRAM,

32TB of NVMe scratch space, and 16 of NVIDIAs latest Volta

100 GPGPUs interconnected using Nvidia’s NVlink fully non-

blocking crossbars switch capable of 2.4 TB/s of bisectional

bandwidth. The system was running Ubuntu 18.04.3LTS OS

and had the latest Cuda 10.1.243 installed. We start the

training with a batch size of 16, and the proposed architecture

is optimized by Adam optimizer. The learning rate of the

algorithm is set to 1e−4. A lower learning rate is preferred,

although a lower learning rate slowed down convergence, and

a larger learning rate often causes convergence failures.

The size of the image within the same dataset varies. Both

the dataset used in the study consists of different resolution

images. For efficient GPU utilization and to reduce the training

time, we crop the images by putting a crop margin of 320×320
to increase the training dataset. Then, the images are resized to

256× 256 pixels before feeding the images to the model. We

have used the data augmentation technique such as center crop,

random crop, horizontal flip, vertical flip, scale augmentation,

random rotation, cutout, and brightness augmentation, etc., to

increase the number of training samples. The rotation angle

is randomly chosen from 0 to 90°. We have utilized 80% of

the dataset for training, 10% for validation, and 10% for the

testing. We trained all the models for 120 epochs with a lower

learning rate so that a more generalized model can be built.

The batch size, epoch, and learning rate were reset depending

upon the need. There was an accuracy trade-off if we decrease

the batch size; however, we preferred a larger batch size over

accuracy because smaller batch size can lead to over-fitting.

We also used the Stochastic Gradient Descent with Restart

(SGDR) to improve the performance of the model.

V. RESULTS

To show the effectiveness of ResUNet++, we conducted two

sets of experiments on Kvasir-SEG and CVC-612 datasets.

For the model comparison, we compared the results of the

proposed ResUNet++ with the original U-Net and original

ResUNet architecture, as both of them are the common

preference for the semantic segmentation task. The original

implementation of ResUNet, which uses Mean Square Error

(MSE) as the loss function, did not produce satisfactory results

with Kvasir-SEG and CVC-612 datasets. Therefore, we re-

placed the MSE loss function with dice coefficient loss and did

hyperparameter optimization to improve the results and named

the architecture as ResUNet-mod. With this modification, we

achieved a performance boost in ResUNet-mod architecture

for both the datasets.

A. Results on the Kvasir-SEG dataset

We have tried different sets of hyperparameters (i.e., learn-

ing rate, number of epochs, optimizer, batch size, and filter

size) for the optimization of ResUNet++ architecture. Hyper-

parameter tuning is done manually by training the models with

different sets of hyperparameters and evaluating their results.

The results of ResUNet++, ResUNet-mod, ResUNet [6], and

TABLE I
THE TABLE SHOWS THE EVALUATION RESULTS OF ALL THE MODELS ON

KVASIR-SEG DATASET.

Method Dice mIoU Recall Precision

ResUNet++ 0.8133 0.7927 0.7064 0.8774

ResUNet-mod 0.7909 0.4287 0.6909 0.8713

ResUNet 0.5144 0.4364 0.5041 0.7292

U-Net 0.7147 0.4334 0.6306 0.9222

U-Net [5] are presented in Table I. Table I shows that the

proposed model achieved the highest dice coefficient, mIoU,

recall, and competitive precision for the Kvasir-SEG dataset.

U-Net achieved the highest precision. However, the dice

coefficient and mIoU scores are not competitive, which is an

important metric for semantic segmentation task. The proposed

architecture has outperformed the baseline architectures by a

significant margin in terms of mIoU.

B. Results on the CVC-612 dataset

We have performed additional experiments for in-depth

performance analysis for automatic polyp segmentation.

Therefore, we attempted for the generalization of the model

to check the generalizability capability of the proposed

architecture on a different dataset. Generalizability would

be a further step toward building clinical acceptable model.

Table II shows the results for all the architectures on CVC-

612 datasets. The proposed model obtained highest dice

coefficient, mIoU, and recall and competitive precision.

Figure 3 shows the qualitative results for all the models.

From Table I, Table II, and Figure 3 we demonstrate the

superiority of ResUNet++ over the baseline architectures. The

quantitative and qualitative result shows that the ResUNet++

model trained on Kvasir-SEG and CVC-612 dataset performs

well and outperforms all other models in terms of dice

coefficient, mIoU, and recall. Therefore, the ResUNet++ archi-

tecture should be considered over these baselines architecture

in the medical image segmentation task.

VI. DISCUSSION

The proposed ResUNet++ architecture produces satisfactory

results on both Kvasir-SEG and CVC-612 datasets. From

Figure 3, it is evident that the segmentation map produced

TABLE II
THE TABLE SHOWS THE EVALUATION RESULTS OF ALL THE MODELS ON

CVC-612 DATASET.

Method Dice mIoU Recall Precision

ResUNet++ 0.7955 0.7962 0.7022 0.8785

ResUNet-mod 0.7788 0.4545 0.6683 0.8877
ResUNet 0.4510 0.4570 0.5775 0.5614

U-Net 0.6419 0.4711 0.6756 0.6868
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Fig. 3. Qualitative results comparison on the Kvasir-SEG dataset. From the left: image (1), (2) Ground truth, (3) U-Net, (4) ResUNet, (5) ResUNet-mod,
and (6) ResUNet++. From the experimental results, we can say that ResUNet++ produces better segmentation masks than other competitors.

by ResUNet++ outperforms other architectures in capturing

shape information, in the Kvasir-SEG dataset. It means the

generated segmentation mask in ResUNet++ has more sim-

ilar ground truth then the presented state-of-the-art models.

However, ResUNet-mod and U-Net also produced competitive

segmentation masks.

We trained the model using different available loss func-

tions, for example, binary cross-entropy, the combination of

binary cross-entropy and dice loss, and mean square loss.

We observed that the model achieved a higher dice coeffi-

cient value with all the loss function. However, mIoU were

significantly lower with all other except dice coefficient loss

function. We selected the dice coefficient loss function based

on our empirical evaluation. Moreover, we also observed that

the number of filters, batch size, optimizer, and loss function

can influence the result.

We believe that the performance of the model can be

further improved by increasing the dataset size, applying

more augmentation techniques, and by applying some post-

processing steps. Despite increased numbers of parameters

with the proposed architecture, we trained the model to

achieve higher performance. We conclude that the application

of ResUNet++ should not only limited to biomedical image

segmentation but could also be expanded to the natural image

segmentation and other pixel-wise classification tasks, which

need further detailed validations. We have optimized the code

as much as possible based on our knowledge and experience.

However, there may exist further optimization, which may

also influence the results of the architectures. We have run

the code only on a Nvidia-DGX-2 machine, and the images

were resized, which may have lead to the loss of some useful

information. Additionally, ResUNet++ uses more parameters,

which increases training time.

VII. CONCLUSION

In this paper, we presented ResUNet++, which is an ar-

chitecture to address the need for more accurate segmen-

tation of colorectal polyps found in colonoscopy examina-

tions. The suggested architecture takes advantage of residual

units, squeeze and excitation units, ASPP, and attention units.

Comprehensive evaluation using different available datasets

demonstrates that the proposed ResUNet++ architecture out-

performs the state-of-the-art U-Net and ResUNet architec-

tures in terms of producing semantically accurate predictions.

Towards achieving the generalizability goal, the proposed

architecture can be a strong baseline for further investigation

in the direction of developing a clinically useful method. Post-

processing techniques can potentially be applied to our model

to achieve even better segmentation results.

229



ACKNOWLEDGEMENT

This work is funded in part by Research Council of Norway

project number 263248. The computations in this paper were

performed on equipment provided by the Experimental Infras-

tructure for Exploration of Exascale Computing (eX3), which

is financially supported by the Research Council of Norway

under contract 270053.

REFERENCES

[1] A. G. Zauber, S. J. Winawer, M. J. O’Brien, I. Lansdorp-Vogelaar,
M. van Ballegooijen, B. F. Hankey, W. Shi, J. H. Bond, M. Schapiro, J. F.
Panish et al., “Colonoscopic polypectomy and long-term prevention of
colorectal-cancer deaths,” New England Journal of Medicine, vol. 366,
no. 8, pp. 687–696, 2012.

[2] J. C. Van Rijn, J. B. Reitsma, J. Stoker, P. M. Bossuyt, S. J. Van Deven-
ter, and E. Dekker, “Polyp miss rate determined by tandem colonoscopy:
a systematic review,” The American journal of gastroenterology, vol.
101, no. 2, p. 343, 2006.

[3] Y. Mori and S.-e. Kudo, “Detecting colorectal polyps via machine
learning,” Nature biomedical engineering, vol. 2, no. 10, p. 713, 2018.

[4] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Pro-
ceeding of International Conference on 3D Vision (3DV). IEEE, 2016,
pp. 565–571.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proceedings of International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[6] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-
net,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 5, pp.
749–753, 2018.

[7] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange,
D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt,
M. Riegler, and P. Halvorsen, “Kvasir: A multi-class image dataset for
computer aided gastrointestinal disease detection,” in Proc. of MMSYS,
june 2017, pp. 164–169.

[8] D. Jha, P. H. Smedsrud, M. Riegler, P. Halvorsen, T. de Lange,
D. Johansen, and H. Johansen, “Kvasir-seg: A segmented polyp dataset,”
in International Conference on Multimedia Modeling. Springer, 2020.
[Online]. Available: https://datasets.simula.no/kvasir-seg/

[9] Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C. De Groen, “Part-
based multiderivative edge cross-sectional profiles for polyp detection
in colonoscopy,” IEEE Journal of Biomedical and Health Informatics,
vol. 18, no. 4, pp. 1379–1389, 2014.

[10] Y. Mori, S.-e. Kudo, T. M. Berzin, M. Misawa, and K. Takeda,
“Computer-aided diagnosis for colonoscopy,” Endoscopy, vol. 49, no. 8,
pp. 813–819, 2017.

[11] P. Brandao, O. Zisimopoulos, E. Mazomenos, G. Ciuti, J. Bernal,
M. Visentini-Scarzanella, A. Menciassi, P. Dario, A. Koulaouzidis,
A. Arezzo et al., “Towards a computed-aided diagnosis system in
colonoscopy: automatic polyp segmentation using convolution neural
networks,” Journal of Medical Robotics Research, vol. 3, no. 2, p.
1840002, 2018.

[12] P. Wang, X. Xiao, J. R. G. Brown, T. M. Berzin, M. Tu, F. Xiong,
X. Hu, P. Liu, Y. Song, D. Zhang et al., “Development and validation of a
deep-learning algorithm for the detection of polyps during colonoscopy,”
Nature biomedical engineering, vol. 2, no. 10, pp. 741–748, 2018.

[13] Y. Wang, W. Tavanapong, J. Wong, J. H. Oh, and P. C. De Groen,
“Polyp-alert: Near real-time feedback during colonoscopy,” International
Journal of Computer methods and programs in biomedicine, vol. 120,
no. 3, pp. 164–179, 2015.

[14] M. Riegler, K. Pogorelov, S. L. Eskeland, P. T. Schmidt, Z. Albisser,
D. Johansen, C. Griwodz, P. Halvorsen, and T. D. Lange, “From
annotation to computer-aided diagnosis: Detailed evaluation of a medical
multimedia system,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 13, no. 3, p. 26, 2017.

[15] S. A. Hicks, S. Eskeland, M. Lux, T. de Lange, K. R. Randel,
M. Jeppsson, K. Pogorelov, P. Halvorsen, and M. Riegler, “Mimir:
an automatic reporting and reasoning system for deep learning based
analysis in the medical domain,” in Proceedings of the ACM Multimedia
Systems Conference. ACM, 2018, pp. 369–374.

[16] V. Thambawita, D. Jha, M. Riegler, P. Halvorsen, H. L. Hammer, H. D.
Johansen, and D. Johansen, “The medico-task 2018: Disease detection
in the gastrointestinal tract using global features and deep learning,”
in Working Notes Proceedings of the MediaEval Workshop. CEUR
Workshop Proceedings, 2018.

[17] Y. B. Guo and B. Matuszewski, “Giana polyp segmentation with fully
convolutional dilation neural networks,” in Proceedings of International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications. SCITEPRESS-Science and Technology
Publications, 2019, pp. 632–641.

[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of IEEE conference on computer
vision and pattern recognition (CVPR), 2015, pp. 3431–3440.
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