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Abstract - Cloud-Radio Access Networks are one of the main 
enablers for driving the 5G technology. They allow creation and 
utilization of core network components in a precise flexible 
manner that implies of the possibility for resource redistribution 
across different geographical regions, with reduced operator 
costs. With virtualization and frontend RF functionality 
splitting, the key processing migrates to the cloud, which opens 
a wide palette of facets for determining manifold layers of 
security and operability for the overall 5G access. Due to the 
familiarity with the specific concerns of IoT devices’ 
vulnerability and security apprehensions, we provide an initial 
testbed for mitigating the lower-layer problems, which entails 
establishment of a specific network function that communicates 
with the OpenStack Neutron and integrates with the Keystone 
service. Furthermore, we introduce an approach for federating 
the Keystone service with OpenID Connect, enabling access to 
different network slices at the backhaul 5G network.  

Keywords—5G, C-RAN, Kuryr, Docker, SR-IOV, IdP, IoT, 
OpenStack 

I. INTRODUCTION 

One of the main objectives of the 5G mobile network is to 
support efficiently diverse Internet of Things (IoT) 
applications also called IoT verticals and the focus has been 
to fulfil a wide range of quality of service requirements. 
However, the current most popular wireless technologies for 
IoT are Wireless LAN (WLAN) [1], ZigBee [2] or Bluetooth 
Low Energy (BLE) [3] and to become the wireless 
technology of choice for IoT, 5G will need to be capable to 
provide higher level of security. In a virtualized and 
cloudified 5G network, one of the weakness point is the 
connection between the remote radio unit (RRU) and the edge 
cloud. To address this critical security issues, it is essential to 
strengthen the communication link between the remote radio 
frontend and the edge/cloud location. For that purpose, it is 
important to focus on the underlying network setup and 

address issues related to the networking between containers 
deployed in the cloud and bare-metal servers. One popular 
technique that utilizes traffic encryption is tunneling, which 
can be useful for avoidance of complex network traversals 
such as through MPLS (Multi-Protocol Label Switching) that 
carries multiplexed variety of traffic and is exceptionally 
convoluted to administer. Tunneling can be expedient in 
cases of establishing end-to-end communication via 
encrypted tunnels, as in the case of VPN where the two sites 
need to explicitly share private connection. This procedure 
can be exorbitant to instigate and unnecessary in many 
unpretentious scenarios, especially in bandwidth-restricted 
networking scenarios as well as low-latency bound networks. 

To provide alternative manner of connection to the 
tunneling method, while preserving flatter network topology, 
the OpenStack cloud can be complemented with specific 
networking plugins that can allow containerized applications 
to connect via remote regions as part of the underlying 
physical network fabrics. Therefore, in this paper we 
exemplify the communication to the virtualized C-RAN 
network, namely the remote containerized cloud EPC 
(Evolved Packet Core), BBU (Baseband Unit) and a RRU 
(Remote Radio Unit) that are split functional parts of the eNB 
(evolved Node-B), communicating within the physical 
network underlay. A conclusion is thus provided, with the 
emphasis of the requirements for establishing an identity 
federation to enable integration of variety of IoT devices in 
such setup.  

II. RELATED WORK

In order to adopt a practicable approach for realizing the 
secure platform, the open-source paradigm is applied. The 
wide range of open-source assemblies allow establishment of 
a simplified solution that can be a further subject of 
automation and automated deployment, as well as to cloud-
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oriented services while retaining the best DevOps practices. 
This not only allows attainable fundamental configuration, 
but also paves the way for introducing 5G deployments in 
public and shared clouds.  

A. OpenAirInterface5G
The primary mobile networking platform used in the

experiment and has a wide range of possible establishments, 
is the OpenAirInterface (OAI) by Eurecom [1], an open-
source virtual mobile networking system based on 4G EPC 
and eNB base-station function as a radio frontend (RF). 

B. OpenStack
Providing a cloud environment for the deployed core

network is the essential part of establishing a basis for 5G 
network initialization. As an open-source solution, we use the 
OpenStack cloud environment [5] as a public cloud at the 
Oslo Metropolitan University (see Figure 2). The operating 
system on which the services run is Ubuntu 18.04 with low-
latency kernel. 

C. Docker container virtualization
Another principal tool used for container virtualization of

the OAI in OpenStack is Docker [6], a popular DevOps 
mechanism for packing applications into containers and 
running on a single host, whether it is a physical or a virtual 
machine on a bare metal server or cloud environment. One of 
the shortcomings of the Docker networking structure is the 
utilization of VXLAN, layer-2 virtual bridges and other 
network overlays. While the benefit of such methodology is 
simplicity and ease of deployment, the exclusive 
disadvantages are the cumulative network bottlenecking, 
overhead and latency that are undesirable for URLLC slice 
(Ultra Reliable Low Latency) deployments within the 5G 
networks.  

Consequently, Docker establishes an operational image of 
the CN, deployed in a single-frame container or a container 
cluster with an orchestrator such as Kubernetes [7]. As 
represented in Figure 1, The single CN container implements 
the complete EPC, with the MME, S/PGW and HSS database 
together linked with multiple virtual interfaces and bridges 
(depending on the network driver used by Docker).  

Figure 1. Docker Networking Drivers 
In a clustered deployment, each of the EPC constituents 

can be commenced as separate containers in a uniform 
namespace, scaled accordingly to the load requirements or 
dissected to provide isolation if such necessities transpire. For 
the sake of simplicity, we use the single-container EPC and 
with different Docker networking drivers, such as Calico or 

MACVLAN. The disadvantages of this approach are the 
image size, which can reach ~10GB and the inability to 
granularly manipulate with the HSS database locally. For 
clustering the database, one needs to commission an external 
container service cluster for that purpose. 

D. Docker Open vSwitch Integration
For the evasion of tunneling, the Docker daemon needs

to link directly with the underlying cloud networking service, 
which is Neutron in OpenStack [8]. As Neutron is a very 
complex system, reduction of the complexity in containerized 
environments can yield positive outcomes. One plugin that 
offers solution for that scenario, developed by the OpenStack 
community, is the Kuryr network plugin for Neutron [9] that 
merges the functionality of the Docker daemon with the 
Neutron. This way, a Docker container can become part of a 
self-initialized Kuryr network that runs under the Docker 
instance and under the virtual machine on which it performs, 
close to the Neutron service. By applying uWSGI [10] python 
libraries, Kuryr authenticates its service with the Neutron via 
the OpenStack Keystone, after which the container can 
perform networking administrative tasks, as much as the 
specific user is allowed to.  

The strongest characteristic of Kuryr is the possibility to 
configure the system to use SR-IOV (Single Root – 
Input/Output Virtualization) interfaces. The SR-IOV 
specification defines a standardized mechanism to virtualize 
PCIe devices. This mechanism can virtualize a single PCIe 
Ethernet controller to appear as multiple PCIe devices. Each 
device can be directly assigned to an instance, bypassing the 
virtual switch layer. As a result, users are able to achieve low 
latency and near-line wire speed [11].  

E. Identity Provision and Management
As it is foreseen that the inclusion of IoT devices will

achieve substantial magnitudes once the deployments of 5G 
networks are concluded, there are concerns regarding the lack 
of proper security measures for both the connection and the 
usage of the network. It is crucial to establish a security 
mechanism that uses the versatility and flexibility of Identity 
and Access Management (IAM) systems, which can be used 
in the upcoming fifth generation of the cellular network, thus 
an identity federation with provision and management 
resources is a solution that can facilitate all security 
operations needed for all devices [12]. This federation aims 
to achieve a common ground on how to identify connecting 
devices that are attempting to access a specific network slice, 
whether with the usage of SIM card and its attributes or with 
the device’s attributes when no SIM is available. With that, it 
is possible to provide an identity to each device so that it can 
be authenticated into the network and use its resources. 

In order to enable such authentication feature, the device 
should register in the network through its SIM card or by 
“piggybacking” through a gateway. This inclines on the 
necessity to reach the network’s HSS database to check 
whether a matching record with the one that is trying to 
authenticate exists. Nevertheless, this access to the 
component, or rather the access to the relevant data must be 
assembled in a way that no compromise nor data exposure 
can happen in any of the layers (Network and Application).  



 

 

III.  INFRASTRUCTURE DESIGN  
With reference to the infrastructure depicted in Figure 2, 

several modes for tunnel networking and arrangement of the 
underlying network fabrics can be hitherto utilized: GRE 
encapsulation [13], VPN tunneling [14], L2TP [15], IPsec 
[16], PPTP [17], or GRE with minimal encapsulation for 
mobile networks within IP (defined in the RFC2004 standard) 
[18]. However, all of these approaches perform in network 
overlay mode, introducing overhead either from Ethernet 
broadcast frames and/or the tunneling encapsulation itself. 
The tunneling method is required for the reason that the 
underlying networking segment in the OpenStack Mitaka 
[19] cloud version is Open vSwitch-based Neutron and the 
layer-3 routing methods can be challenging to achieve 
without accumulation of surplus overhead and perplexing the 
virtual network segment. To circumvent the stacking of layer-
2 network entities such as bridges, the deployed Virtual 
Machines (VMs) running the Evolved Packet Core (EPC) 
needs to be closely integrated with the Docker container 
environment in which the EPC is executed. Therein the Kuryr 
plugin for Docker integration with Open vSwitch [9]. 
Another reason why the VMs running in OpenStack require 
close integration with OvS is that there is no existent 
implementation for viable SCTP protocol communication in 
OpenStack Mitaka, which is essential for the communication 
between the EPC and the end User Equipment (UE), i.e. a 
smartphone. This viability exists after the introduction of the 
OpenStack “Pike” version [20]. Additionally, in the newer 
OpenStack versions, a different approach can be employed 
where a Calico Layer-3 BGP networking is supported and 
that can allow the Docker containers to become part of the 
underlying network fabrics, redistributing BGP routes 
between various Edges or POPs (Points of Presence) and 
MPLS networks. Accordingly, this enables interworking with 
third party SDN controllers such as OpenDaylight [21] [22].  

With that in mind, we introduce alternatives and 
interworking for different platform versions while enforcing 
SLAs (Service Level Agreements) on different layers, 
priming the way for network slicing and providing Quality of 
Service with abstracted security. The necessity for 

interworking of the virtualized environment with the 
underlying network structures, prunes further towards the 
requirements for setup splits according to the 5G 
specifications. Certainly, the deployment of the overall 5G 
network is performed according to the 5GPP specification for 
the 5G architecture, using the OpenAirInterface (OAI) 
software [4] [25].  

As previously stated, the OAI has the ability to establish 
a full 4G-based EPC, with virtualizing all the necessary 
objects for networking (MME, S/PGW, HSS) [26]. In 
addition to that, the functionality of the eNB (evolved Node-
B) can be split according to the diverse modes of operation, 
explicated within the 3GPP specifications and in dependence 
on the requirements and expected goals. For that purpose, the 
IEEE community has developed the Next Generation 
Fronthaul Interface (NFGI), known as IEEE 1914 standard 
[23]. The NGFI interface defines options from 1 to 8, which 
determines the way the C-RAN (Centralized Radio Access 
Network) are deployed (Figure 3).  

 
 

Figure 3. Functional C-RAN splits defined by the CPRI 
(courtesy of IEEE1914) [24] 

The reason for splitting the functions is that this model 
will allow the future 5G massive MIMO systems to exhibit 
cost-effective capabilities by splitting the radio functions 
between BBUs (Baseband Units) equivalent to Centralized 
Units (CU) and RRUs (Remote Radio Units) or Remote 
Radio-Heads (RRH), equivalent to Distributed Units (DU) 
[23].  

The unequivocal functional splits described in this paper 
are the OpenAirInterface IF4, IF4p5 and IF5 split interfaces, 
applying the special NFGI interface to connect to the BBU 
pool in the cloud edge datacenter, closer to the end user and 
directly communicating with RRU radio frontend. Explicitly, 

Figure 2. 5G4IoT Lab Infrastructure at the Oslo Metropolitan University 



 

 

the IF4 NGFI, also known as option 7, refers to the “resource 
mapping and IFFT (Inverse Fast-Fourier Transform)” 
functionalities, as well as “FFT and Resource de-mapping”.  
The IF4p5 manages the fronthaul RX/TX precoding (NGFI 
RCC), whereas the IF5 is the eNB BBU functionality [25].  

 This way, the model is formed as C-RAN (Centralized or 
Cloud Radio Access Network), which is the base form of the 
next-generation models of 5G architecture. By splitting the 
architecture, various scenarios and possibilities for network 
slicing, service determination, scaling and performance 
shaping are opened (as with bandwidth proliferation, so as 
with latency and jitter reduction). With this achievement, a 
way is paved towards forming a fully functional 5G network 
using proprietary 4G virtualized hardware without the 
requirement for the NR (New Radio) 5G interfaces, and as 
the technologies emerge, implement the 5G new radio entities 
subsequently. Furthermore, it is showed that the differences 
in the core networking between 4G and 5G are minimal, that 
can result also into consecutive interworking between the two 
technologies and therefore, as planned, reuse the existing 4G 
EPC network cores and implement them together with the 
new 5G cores [27][28].  

IV. IMPLEMENTATION 
The functional split is the essential aspect of the new gNB 

(next-generation Node-B) in 5G, as it should also interwork 
with the 4G eNB, as well as with various other access 
technologies (Wi-Fi, WiMAX etc.). An intriguing part of the 
RRU, is that there are various techniques and interfaces which 
allow different devices to access the 5G network in a same 
manner as a typical 4G LTE access device (with same PDCP 
message exchange etc.) by using Wi-Fi or any other wireless 
access technology. The issue with sending data from the 
Baseband Unit to the EPC through containerized 
environments can be fixed by allowing direct communication 
between the containers and the packaged applications.  

According to Figure 4, the communication between the 
RRU and the EPC is redirected through the BBU Docker 
container (green), residing in the network edge. The 
centralized unit utilizes the Calico BGP virtual agent [29] that 
can talk to the remote EPC deployed in the OpenStack cloud 
(red). The mechanism that allows inter-container direct link 
is the bypassing of layer-2 stacks created by the Open 
vSwitch in the OpenStack Neutron; namely, the plugin Kuryr 
integrates the Docker daemon with the OvS by authenticating 
the virtual machine with the Keystone service.  

It provides access to the Neutron networking with the 
specific user that is assigned to (in this case Admin, within 
the Admin network, the same project name and relevant 
password). Notably, in this version of OpenStack, the actual 
version of Keystone is v2.0, that has slightly different API 
than v3.0 and uses less authentication parameters, 
disregarding the need for the “project_domain_name”, 
“project_domain_id”, “user_domain_name” and 
“user_domain_id” fields. 

 

 
Figure 4. Established OpenStack network underlay with Kuryr 

plugin 
As Kuryr is integrated with the Docker daemon in the 

VM. At this point, it has relevant control for creating and 
editing Neutron networks in the specified user (Figure 5) by 
utilizing the IPAM driver of Kuryr. With this, Kuryr enables 
the EPC container to communicate without the SNAT 
restrictions in OpenStack, utilizing full layer-3 approach.  

 
Figure 5. OpenStack network, subnet and virtual router 

created by the Kuryr plugin 

A. Providing Identity Federation  
The Cloud Computing paradigm (for its services and 

infrastructures) is also suited when considering IoT devices 
as we also see a massive adoption of such solutions by several 
entities to have their management platforms for such devices. 
As our focus goes towards the ones that are open-source, we 
are considering (as it was mentioned before) OpenStack [5] 
and, for the purpose of IAM, Keystone [30] is the tool that 
allows to manage the access to all of the components of the 
solution. Recently Keystone has integrated functionalities 
that allow using identity federation protocols such as OpenID 
Connect [31] from a third-party perspective, which means 
that it allows adding to its authentication flow third-party 
IDPs. 



 

 

Gluu Server [32] offers identity management and 
provision services that allow establishing authentication 
mechanisms in network resources.  

This component will be responsible for issuing the 
identities for every device that tries/will be registered in the 
network and co-managing with Keystone [30] their usage. In 
order to have this link between the IDP server and the Cloud 
component, it means that it is necessary to achieve an 
agreement and a consensus so that the services can 
communicate with the platform. Thus, a third-party 
integration with Keystone [30] so that the identities issued 
and provided by the Gluu Server [12][32] can be used and 
recognized by the platform, allowing to achieve a federation 
regarding the type of identity being used by all the elements 
existing in the network. 

V. EVALUATION 
When adopting the method with Kuryr in OpenStack for 

containerized appilcations, it is essential to note that the 
uWSGI libraries encumber the procedure with Keystone 
service v2.0. The new OpenStack versions introduce 
Keystone v3.0, which allows Kuryr to map several additional 
authentication flags and allow the Kuryr libnetwork driver to 
successfully create a virtual network, subnetwork, and a 
virtual router in Neutron and embody the Docker daemon 
with IPAM driver. An alternative for setting up the Kuryr-
libnetwork driver is a Docker Kuryr image, that can be run 
alongside the infrastructure and automate the deployment of 
the Kuryr plugin.  

VI. CONCLUSION 
The Kuryr-libnetwork driver for Docker allows the daemon 
to translate networking procedures directly into the instance 
at which the containerized application is executed. With 
minimal regulation, it is feasible to attain substantially 
granular control over the Neutron networking service in 
OpenStack, for the user at which the Kuryr plugin is 
authenticated. Consequently, we showed that the explicit 
requirement for tunneling between the remote eNB location 
and the EPC running in the cloud is negated, setting a 
simplified method that can be utilized across different public 
and private clouds. 
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