
Connecting Remote eNB with Containerized 5G C-
RANs in OpenStack Cloud

Bruno Dzogovic
Oslo Metropolitan University

Oslo, Norway
bruno@oslomet.no

Bernardo Santos
Oslo Metropolitan University

Oslo, Norway
bersan@oslomet.no

Van Thuan Do
Wolffia AS

Oslo, Norway
vt.do@wolffia.net

Boning Feng
Oslo Metropolitan University

Oslo, Norway
boningf@oslomet.no

Niels Jacot
Wolffia AS

Helsinki, Finland
n.jacot@wolffia.net

Thanh van Do
Telenor & Oslo Metropolitan

University
Fornebu, Norway

thanh-van.do@telenor.com

Abstract - Cloud-Radio Access Networks are one of the main
enablers for driving the 5G technology. They allow creation and
utilization of core network components in a precise flexible
manner that implies of the possibility for resource redistribution
across different geographical regions, with reduced operator
costs. With virtualization and frontend RF functionality
splitting, the key processing migrates to the cloud, which opens
a wide palette of facets for determining manifold layers of
security and operability for the overall 5G access. Due to the
familiarity with the specific concerns of IoT devices’
vulnerability and security apprehensions, we provide an initial
testbed for mitigating the lower-layer problems, which entails
establishment of a specific network function that communicates
with the OpenStack Neutron and integrates with the Keystone
service. Furthermore, we introduce an approach for federating
the Keystone service with OpenID Connect, enabling access to
different network slices at the backhaul 5G network.

Keywords—5G, C-RAN, Kuryr, Docker, SR-IOV, IdP, IoT,
OpenStack

I. INTRODUCTION

One of the main objectives of the 5G mobile network is to
support efficiently diverse Internet of Things (IoT)
applications also called IoT verticals and the focus has been
to fulfil a wide range of quality of service requirements.
However, the current most popular wireless technologies for
IoT are Wireless LAN (WLAN) [1], ZigBee [2] or Bluetooth
Low Energy (BLE) [3] and to become the wireless
technology of choice for IoT, 5G will need to be capable to
provide higher level of security. In a virtualized and
cloudified 5G network, one of the weakness point is the
connection between the remote radio unit (RRU) and the edge
cloud. To address this critical security issues, it is essential to
strengthen the communication link between the remote radio
frontend and the edge/cloud location. For that purpose, it is
important to focus on the underlying network setup and

address issues related to the networking between containers
deployed in the cloud and bare-metal servers. One popular
technique that utilizes traffic encryption is tunneling, which
can be useful for avoidance of complex network traversals
such as through MPLS (Multi-Protocol Label Switching) that
carries multiplexed variety of traffic and is exceptionally
convoluted to administer. Tunneling can be expedient in
cases of establishing end-to-end communication via
encrypted tunnels, as in the case of VPN where the two sites
need to explicitly share private connection. This procedure
can be exorbitant to instigate and unnecessary in many
unpretentious scenarios, especially in bandwidth-restricted
networking scenarios as well as low-latency bound networks.

To provide alternative manner of connection to the
tunneling method, while preserving flatter network topology,
the OpenStack cloud can be complemented with specific
networking plugins that can allow containerized applications
to connect via remote regions as part of the underlying
physical network fabrics. Therefore, in this paper we
exemplify the communication to the virtualized C-RAN
network, namely the remote containerized cloud EPC
(Evolved Packet Core), BBU (Baseband Unit) and a RRU
(Remote Radio Unit) that are split functional parts of the eNB
(evolved Node-B), communicating within the physical
network underlay. A conclusion is thus provided, with the
emphasis of the requirements for establishing an identity
federation to enable integration of variety of IoT devices in
such setup.

II. RELATED WORK

In order to adopt a practicable approach for realizing the
secure platform, the open-source paradigm is applied. The
wide range of open-source assemblies allow establishment of
a simplified solution that can be a further subject of
automation and automated deployment, as well as to cloud-

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works. DOI: http://dx.doi.org/10.1109/CSCloud/EdgeCom.2019.00013

oriented services while retaining the best DevOps practices.
This not only allows attainable fundamental configuration,
but also paves the way for introducing 5G deployments in
public and shared clouds.

A. OpenAirInterface5G
The primary mobile networking platform used in the

experiment and has a wide range of possible establishments,
is the OpenAirInterface (OAI) by Eurecom [1], an open-
source virtual mobile networking system based on 4G EPC
and eNB base-station function as a radio frontend (RF).

B. OpenStack
Providing a cloud environment for the deployed core

network is the essential part of establishing a basis for 5G
network initialization. As an open-source solution, we use the
OpenStack cloud environment [5] as a public cloud at the
Oslo Metropolitan University (see Figure 2). The operating
system on which the services run is Ubuntu 18.04 with low-
latency kernel.

C. Docker container virtualization
Another principal tool used for container virtualization of

the OAI in OpenStack is Docker [6], a popular DevOps
mechanism for packing applications into containers and
running on a single host, whether it is a physical or a virtual
machine on a bare metal server or cloud environment. One of
the shortcomings of the Docker networking structure is the
utilization of VXLAN, layer-2 virtual bridges and other
network overlays. While the benefit of such methodology is
simplicity and ease of deployment, the exclusive
disadvantages are the cumulative network bottlenecking,
overhead and latency that are undesirable for URLLC slice
(Ultra Reliable Low Latency) deployments within the 5G
networks.

Consequently, Docker establishes an operational image of
the CN, deployed in a single-frame container or a container
cluster with an orchestrator such as Kubernetes [7]. As
represented in Figure 1, The single CN container implements
the complete EPC, with the MME, S/PGW and HSS database
together linked with multiple virtual interfaces and bridges
(depending on the network driver used by Docker).

Figure 1. Docker Networking Drivers
In a clustered deployment, each of the EPC constituents

can be commenced as separate containers in a uniform
namespace, scaled accordingly to the load requirements or
dissected to provide isolation if such necessities transpire. For
the sake of simplicity, we use the single-container EPC and
with different Docker networking drivers, such as Calico or

MACVLAN. The disadvantages of this approach are the
image size, which can reach ~10GB and the inability to
granularly manipulate with the HSS database locally. For
clustering the database, one needs to commission an external
container service cluster for that purpose.

D. Docker Open vSwitch Integration
For the evasion of tunneling, the Docker daemon needs

to link directly with the underlying cloud networking service,
which is Neutron in OpenStack [8]. As Neutron is a very
complex system, reduction of the complexity in containerized
environments can yield positive outcomes. One plugin that
offers solution for that scenario, developed by the OpenStack
community, is the Kuryr network plugin for Neutron [9] that
merges the functionality of the Docker daemon with the
Neutron. This way, a Docker container can become part of a
self-initialized Kuryr network that runs under the Docker
instance and under the virtual machine on which it performs,
close to the Neutron service. By applying uWSGI [10] python
libraries, Kuryr authenticates its service with the Neutron via
the OpenStack Keystone, after which the container can
perform networking administrative tasks, as much as the
specific user is allowed to.

The strongest characteristic of Kuryr is the possibility to
configure the system to use SR-IOV (Single Root –
Input/Output Virtualization) interfaces. The SR-IOV
specification defines a standardized mechanism to virtualize
PCIe devices. This mechanism can virtualize a single PCIe
Ethernet controller to appear as multiple PCIe devices. Each
device can be directly assigned to an instance, bypassing the
virtual switch layer. As a result, users are able to achieve low
latency and near-line wire speed [11].

E. Identity Provision and Management
As it is foreseen that the inclusion of IoT devices will

achieve substantial magnitudes once the deployments of 5G
networks are concluded, there are concerns regarding the lack
of proper security measures for both the connection and the
usage of the network. It is crucial to establish a security
mechanism that uses the versatility and flexibility of Identity
and Access Management (IAM) systems, which can be used
in the upcoming fifth generation of the cellular network, thus
an identity federation with provision and management
resources is a solution that can facilitate all security
operations needed for all devices [12]. This federation aims
to achieve a common ground on how to identify connecting
devices that are attempting to access a specific network slice,
whether with the usage of SIM card and its attributes or with
the device’s attributes when no SIM is available. With that, it
is possible to provide an identity to each device so that it can
be authenticated into the network and use its resources.

In order to enable such authentication feature, the device
should register in the network through its SIM card or by
“piggybacking” through a gateway. This inclines on the
necessity to reach the network’s HSS database to check
whether a matching record with the one that is trying to
authenticate exists. Nevertheless, this access to the
component, or rather the access to the relevant data must be
assembled in a way that no compromise nor data exposure
can happen in any of the layers (Network and Application).

III. INFRASTRUCTURE DESIGN
With reference to the infrastructure depicted in Figure 2,

several modes for tunnel networking and arrangement of the
underlying network fabrics can be hitherto utilized: GRE
encapsulation [13], VPN tunneling [14], L2TP [15], IPsec
[16], PPTP [17], or GRE with minimal encapsulation for
mobile networks within IP (defined in the RFC2004 standard)
[18]. However, all of these approaches perform in network
overlay mode, introducing overhead either from Ethernet
broadcast frames and/or the tunneling encapsulation itself.
The tunneling method is required for the reason that the
underlying networking segment in the OpenStack Mitaka
[19] cloud version is Open vSwitch-based Neutron and the
layer-3 routing methods can be challenging to achieve
without accumulation of surplus overhead and perplexing the
virtual network segment. To circumvent the stacking of layer-
2 network entities such as bridges, the deployed Virtual
Machines (VMs) running the Evolved Packet Core (EPC)
needs to be closely integrated with the Docker container
environment in which the EPC is executed. Therein the Kuryr
plugin for Docker integration with Open vSwitch [9].
Another reason why the VMs running in OpenStack require
close integration with OvS is that there is no existent
implementation for viable SCTP protocol communication in
OpenStack Mitaka, which is essential for the communication
between the EPC and the end User Equipment (UE), i.e. a
smartphone. This viability exists after the introduction of the
OpenStack “Pike” version [20]. Additionally, in the newer
OpenStack versions, a different approach can be employed
where a Calico Layer-3 BGP networking is supported and
that can allow the Docker containers to become part of the
underlying network fabrics, redistributing BGP routes
between various Edges or POPs (Points of Presence) and
MPLS networks. Accordingly, this enables interworking with
third party SDN controllers such as OpenDaylight [21] [22].

With that in mind, we introduce alternatives and
interworking for different platform versions while enforcing
SLAs (Service Level Agreements) on different layers,
priming the way for network slicing and providing Quality of
Service with abstracted security. The necessity for

interworking of the virtualized environment with the
underlying network structures, prunes further towards the
requirements for setup splits according to the 5G
specifications. Certainly, the deployment of the overall 5G
network is performed according to the 5GPP specification for
the 5G architecture, using the OpenAirInterface (OAI)
software [4] [25].

As previously stated, the OAI has the ability to establish
a full 4G-based EPC, with virtualizing all the necessary
objects for networking (MME, S/PGW, HSS) [26]. In
addition to that, the functionality of the eNB (evolved Node-
B) can be split according to the diverse modes of operation,
explicated within the 3GPP specifications and in dependence
on the requirements and expected goals. For that purpose, the
IEEE community has developed the Next Generation
Fronthaul Interface (NFGI), known as IEEE 1914 standard
[23]. The NGFI interface defines options from 1 to 8, which
determines the way the C-RAN (Centralized Radio Access
Network) are deployed (Figure 3).

Figure 3. Functional C-RAN splits defined by the CPRI
(courtesy of IEEE1914) [24]

The reason for splitting the functions is that this model
will allow the future 5G massive MIMO systems to exhibit
cost-effective capabilities by splitting the radio functions
between BBUs (Baseband Units) equivalent to Centralized
Units (CU) and RRUs (Remote Radio Units) or Remote
Radio-Heads (RRH), equivalent to Distributed Units (DU)
[23].

The unequivocal functional splits described in this paper
are the OpenAirInterface IF4, IF4p5 and IF5 split interfaces,
applying the special NFGI interface to connect to the BBU
pool in the cloud edge datacenter, closer to the end user and
directly communicating with RRU radio frontend. Explicitly,

Figure 2. 5G4IoT Lab Infrastructure at the Oslo Metropolitan University

the IF4 NGFI, also known as option 7, refers to the “resource
mapping and IFFT (Inverse Fast-Fourier Transform)”
functionalities, as well as “FFT and Resource de-mapping”.
The IF4p5 manages the fronthaul RX/TX precoding (NGFI
RCC), whereas the IF5 is the eNB BBU functionality [25].

 This way, the model is formed as C-RAN (Centralized or
Cloud Radio Access Network), which is the base form of the
next-generation models of 5G architecture. By splitting the
architecture, various scenarios and possibilities for network
slicing, service determination, scaling and performance
shaping are opened (as with bandwidth proliferation, so as
with latency and jitter reduction). With this achievement, a
way is paved towards forming a fully functional 5G network
using proprietary 4G virtualized hardware without the
requirement for the NR (New Radio) 5G interfaces, and as
the technologies emerge, implement the 5G new radio entities
subsequently. Furthermore, it is showed that the differences
in the core networking between 4G and 5G are minimal, that
can result also into consecutive interworking between the two
technologies and therefore, as planned, reuse the existing 4G
EPC network cores and implement them together with the
new 5G cores [27][28].

IV. IMPLEMENTATION
The functional split is the essential aspect of the new gNB

(next-generation Node-B) in 5G, as it should also interwork
with the 4G eNB, as well as with various other access
technologies (Wi-Fi, WiMAX etc.). An intriguing part of the
RRU, is that there are various techniques and interfaces which
allow different devices to access the 5G network in a same
manner as a typical 4G LTE access device (with same PDCP
message exchange etc.) by using Wi-Fi or any other wireless
access technology. The issue with sending data from the
Baseband Unit to the EPC through containerized
environments can be fixed by allowing direct communication
between the containers and the packaged applications.

According to Figure 4, the communication between the
RRU and the EPC is redirected through the BBU Docker
container (green), residing in the network edge. The
centralized unit utilizes the Calico BGP virtual agent [29] that
can talk to the remote EPC deployed in the OpenStack cloud
(red). The mechanism that allows inter-container direct link
is the bypassing of layer-2 stacks created by the Open
vSwitch in the OpenStack Neutron; namely, the plugin Kuryr
integrates the Docker daemon with the OvS by authenticating
the virtual machine with the Keystone service.

It provides access to the Neutron networking with the
specific user that is assigned to (in this case Admin, within
the Admin network, the same project name and relevant
password). Notably, in this version of OpenStack, the actual
version of Keystone is v2.0, that has slightly different API
than v3.0 and uses less authentication parameters,
disregarding the need for the “project_domain_name”,
“project_domain_id”, “user_domain_name” and
“user_domain_id” fields.

Figure 4. Established OpenStack network underlay with Kuryr

plugin
As Kuryr is integrated with the Docker daemon in the

VM. At this point, it has relevant control for creating and
editing Neutron networks in the specified user (Figure 5) by
utilizing the IPAM driver of Kuryr. With this, Kuryr enables
the EPC container to communicate without the SNAT
restrictions in OpenStack, utilizing full layer-3 approach.

Figure 5. OpenStack network, subnet and virtual router

created by the Kuryr plugin

A. Providing Identity Federation
The Cloud Computing paradigm (for its services and

infrastructures) is also suited when considering IoT devices
as we also see a massive adoption of such solutions by several
entities to have their management platforms for such devices.
As our focus goes towards the ones that are open-source, we
are considering (as it was mentioned before) OpenStack [5]
and, for the purpose of IAM, Keystone [30] is the tool that
allows to manage the access to all of the components of the
solution. Recently Keystone has integrated functionalities
that allow using identity federation protocols such as OpenID
Connect [31] from a third-party perspective, which means
that it allows adding to its authentication flow third-party
IDPs.

Gluu Server [32] offers identity management and
provision services that allow establishing authentication
mechanisms in network resources.

This component will be responsible for issuing the
identities for every device that tries/will be registered in the
network and co-managing with Keystone [30] their usage. In
order to have this link between the IDP server and the Cloud
component, it means that it is necessary to achieve an
agreement and a consensus so that the services can
communicate with the platform. Thus, a third-party
integration with Keystone [30] so that the identities issued
and provided by the Gluu Server [12][32] can be used and
recognized by the platform, allowing to achieve a federation
regarding the type of identity being used by all the elements
existing in the network.

V. EVALUATION
When adopting the method with Kuryr in OpenStack for

containerized appilcations, it is essential to note that the
uWSGI libraries encumber the procedure with Keystone
service v2.0. The new OpenStack versions introduce
Keystone v3.0, which allows Kuryr to map several additional
authentication flags and allow the Kuryr libnetwork driver to
successfully create a virtual network, subnetwork, and a
virtual router in Neutron and embody the Docker daemon
with IPAM driver. An alternative for setting up the Kuryr-
libnetwork driver is a Docker Kuryr image, that can be run
alongside the infrastructure and automate the deployment of
the Kuryr plugin.

VI. CONCLUSION
The Kuryr-libnetwork driver for Docker allows the daemon
to translate networking procedures directly into the instance
at which the containerized application is executed. With
minimal regulation, it is feasible to attain substantially
granular control over the Neutron networking service in
OpenStack, for the user at which the Kuryr plugin is
authenticated. Consequently, we showed that the explicit
requirement for tunneling between the remote eNB location
and the EPC running in the cloud is negated, setting a
simplified method that can be utilized across different public
and private clouds.

ACKNOWLEDGMENT
This paper is a result of the SCOTT project (www.scott-

project.eu) which has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422. This Joint
undertaking receives support from the European Union’s
Horizon 2020 research and innovation program and several
countries such as Austria, Spain, Finland, Ireland, Sweden,
Germany, Poland, Portugal, Netherlands, Belgium and
Norway.

REFERENCES
[1] IEEE 802.11 Working Group, 2018, http://www.ieee802.org/11/
[2] ZigBee Standard 802.15.4 Specification, 2014,

https://www.zigbee.org/download/standards-zigbee-specification/
[3] Bluetooth Low Energy (BLE) Core Specification, 2017,

https://www.bluetooth.com/specifications/bluetooth-core-specification
[4] OpenAirInterface Working Group, https://www.openairinterface.org/
[5] OpenStack Cloud Software, https://www.openstack.org

[6] Docker, 2018, https://www.docker.com/
[7] Kubernetes, 2018, https://kubernetes.io/
[8] Neutron Networking Service for OpenStack cloud, 2018

https://docs.openstack.org/neutron/latest/
[9] OpenStack Kuryr Plugin, https://wiki.openstack.org/wiki/Kuryr
[10] RedHat – uWSGI (Web Server Gateway Interface), https://uwsgi-

docs.readthedocs.io/en/latest/
[11] SR-IOV (Single Root – Input/Output Virtualization) Support in Kuryr,

https://docs.openstack.org/kuryr-libnetwork/latest/config-sriov.html
[12] B. Santos, V. T. Do, B. Feng, and T. van Do, “Identity Federation for

Cellular Internet of Things,” in Proceedings of the 2018 7th
International Conference on Software and Computer Applications -
ICSCA 2018, 2018, pp. 223–228

[13] RFC1701: GRE encapsulation, https://tools.ietf.org/html/rfc1701
[14] RFC2547: BGP/MPLS IP Virtual Private Networks (VPNs),

https://tools.ietf.org/html/rfc4364
[15] RFC3931: Layer Two Tunneling Protocol Version 3 (L2TPv3),

https://tools.ietf.org/html/rfc3931
[16] RFC6071: IP Security (IPSec) and Internet Key Exchange (IKE)

Document Roadmap, https://tools.ietf.org/html/rfc6071
[17] RFC2637: Point-to-Point Tunneilng Protocol (PPTP),

https://tools.ietf.org/html/rfc2637
[18] Minimal Encapsulation within IP, https://tools.ietf.org/html/rfc2004
[19] OpenStack “Mitaka”, https://www.openstack.org/software/mitaka/
[20] OpenStack “Pike” Security Rules, https://docs.openstack.org/python-

openstackclient/pike/cli/command-objects/security-group-rule.html
[21] Tungsten Fabric: Mirantis Cloud Platform Software Defined

Networking, https://www.mirantis.com/software/mcp/sdn/
[22] OpenDaylight SDN controller, https://www.opendaylight.org/
[23] IEEE 1914 NGFI Working Group, http://sites.ieee.org/sagroups-1914/
[24] T. Mustala and O. Klein, “Common Public Radio Interface

(CPRI/eCPRI Overview)”, IEEE LAN/MAN Standards Committee,
2017, http://www.ieee802.org/1/files/public/docs2017/cm-mustala-
eCPRI-Overview-0917.pdf

[25] R. Knopp, N. Nikaein, C. Bonnet, F. Kaltenberger, A. Ksentini and R.
Gupta, “Prototyping of Next Generation Fronthaul Interfaces (NGFI)
Using OpenAirInterface”, EEURECOM, France, 2018,
https://www.openairinterface.org/?page_id=1695

[26] B. Dzogovic, V. T. Do, B. Feng and T. van Do, "Building virtualized
5G networks using open source software," 2018 IEEE Symposium on
Computer Applications & Industrial Electronics (ISCAIE), Penang,
2018, pp. 360-366.
doi: 10.1109/ISCAIE.2018.8405499, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8405499&
isnumber=8405426

[27] N. Makris, C. Zarafetas, P. Basaras, T. Korakis, N. Nikaein and L.
Tassiulas, "Cloud-Based Convergence of Heterogeneous RANs in 5G
Disaggregated Architectures," 2018 IEEE International Conference on
Communications (ICC), Kansas City, MO, 2018, pp. 1-6.
doi: 10.1109/ICC.2018.8422227, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8422227
&isnumber=8422068

[28] N. Makris, P. Basaras, T. Korakis, N. Nikaein and L. Tassiulas,
"Experimental evaluation of functional splits for 5G cloud-RANs,"
2017 IEEE International Conference on Communications (ICC), Paris,
2017, pp. 1-6, doi: 10.1109/ICC.2017.7996493,
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=799
6493&isnumber=7996317

[29] Calico SDN controller, 2018, https://www.projectcalico.org
[30] OpenStack KeyStone, https://docs.openstack.org/keystone/
[31] OpenID Connect, https://openid.net/connect/
[32] Gluu Server, https://www.gluu.org

http://www.scott-project.eu/
http://www.scott-project.eu/
http://www.ieee802.org/11/
https://www.zigbee.org/download/standards-zigbee-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.openairinterface.org/
https://www.openstack.org/
https://www.docker.com/
https://kubernetes.io/
https://docs.openstack.org/neutron/latest/
https://wiki.openstack.org/wiki/Kuryr
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://docs.openstack.org/kuryr-libnetwork/latest/config-sriov.html
https://tools.ietf.org/html/rfc1701
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc3931
https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc2637
https://tools.ietf.org/html/rfc2004
https://www.openstack.org/software/mitaka/
https://docs.openstack.org/python-openstackclient/pike/cli/command-objects/security-group-rule.html
https://docs.openstack.org/python-openstackclient/pike/cli/command-objects/security-group-rule.html
https://www.mirantis.com/software/mcp/sdn/
https://www.opendaylight.org/
http://sites.ieee.org/sagroups-1914/
http://www.ieee802.org/1/files/public/docs2017/cm-mustala-eCPRI-Overview-0917.pdf
http://www.ieee802.org/1/files/public/docs2017/cm-mustala-eCPRI-Overview-0917.pdf
https://www.openairinterface.org/?page_id=1695
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8405499&isnumber=8405426
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8405499&isnumber=8405426
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8422227&isnumber=8422068
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8422227&isnumber=8422068
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7996493&isnumber=7996317
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7996493&isnumber=7996317
https://www.projectcalico.org/
https://docs.openstack.org/keystone/
https://openid.net/connect/
https://www.gluu.org/

	I. Introduction
	II. Related Work
	A. OpenAirInterface5G
	B. OpenStack
	C. Docker container virtualization
	D. Docker Open vSwitch Integration
	E. Identity Provision and Management

	 Infrastructure design
	IV. Implementation
	A. Providing Identity Federation

	V. Evaluation
	VI. Conclusion
	Acknowledgment
	References

