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Cisplatin treatment of testicular cancer
patients introduces long-term changes in
the epigenome
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Abstract

Background: Cisplatin-based chemotherapy (CBCT) is part of standard treatment of several cancers. In testicular
cancer (TC) survivors, an increased risk of developing metabolic syndrome (MetS) is observed. In this epigenome-
wide association study, we investigated if CBCT relates to epigenetic changes (DNA methylation) and if epigenetic
changes render individuals susceptible for developing MetS later in life. We analyzed methylation profiles, using the
MethylationEPIC BeadChip, in samples collected ~ 16 years after treatment from 279 Norwegian TC survivors with
known MetS status. Among the CBCT treated (n = 176) and non-treated (n = 103), 61 and 34 developed MetS,
respectively. We used two linear regression models to identify if (i) CBCT results in epigenetic changes and (ii)
epigenetic changes play a role in development of MetS. Then we investigated if these changes in (i) and (ii) links to
genes, functional networks, and pathways related to MetS symptoms.

Results: We identified 35 sites that were differentially methylated when comparing CBCT treated and untreated TC
survivors. The PTK6–RAS–MAPk pathway was significantly enriched with these sites and infers a gene network of 13
genes with CACNA1D (involved in insulin release) as a network hub. We found nominal MetS-associations and a
functional gene network with ABCG1 and NCF2 as network hubs.

Conclusion: Our results suggest that CBCT has long-term effects on the epigenome. We could not directly link the
CBCT effects to the risk of developing MetS. Nevertheless, since we identified differential methylation occurring in
genes associated with conditions pertaining to MetS, we hypothesize that epigenomic changes may also play a
role in the development of MetS in TC survivors. Further studies are needed to validate this hypothesis.

Keywords: Cisplatin-based chemotherapy, Platinum, DNA methylation, Metabolic syndrome, Testicular cancer
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Background
After the introduction of cisplatin in the treatment of
testicular cancer (TC) in the late 1970s [1], this malig-
nancy has become a model for curative treatment even in
case of metastatic disease. Cisplatin-based chemotherapy
(CBCT) has been integrated into standard treatment of
several cancers in addition to TC, including gynecological,
lung, bladder, and head and neck cancer [2]. For men with
metastatic TC, three to four cycles of cisplatin in

combination with etoposide and bleomycin (BEP)
comprise the cornerstone in the treatment of meta-
static disease [3], yielding 5-year disease-specific sur-
vival rates > 90% [4].
Due to the excellent prognosis and young age at diag-

nosis, TC survivors can expect to live for 30–50 years
after successful treatment [5]. However, the very long-
term relative survival among TC survivors is lower than
among the age-matched population [6], primarily related
to increased risks of second cancers and cardiovascular
disease (CVD) [5]. Metabolic syndrome (MetS) is a well
described late effect after TC treatment and is a possible
mediator of both the increased risk of second cancers as
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well as CVD [7–9]. The prevalence of MetS in the gen-
eral population differs according to MetS definition and
increases by age, affecting about 20–25% of most
Western populations [10, 11]. MetS including hyperten-
sion, increased body mass index (BMI), pre-diabetic bio-
chemical serum changes, and/or hyperlipidemia is a
constellation of risk factors for CVD [12]. An increased
age-adjusted odds ratio (OR) for developing MetS after
CBCT has been found when compared with patients
treated with only surgery [9, 13, 14], although these re-
sults are not quite consistent [15].
Cisplatin exposure has been shown to result in drug-

induced DNA hypermethylation both in vitro and
in vivo [16–19]. In recent years, evidence for epigenetic
changes predisposing to MetS has also been documented
[20–22]; it is therefore plausible that these changes
caused by CBCT could be involved in the development
of MetS. Identification of differential DNA methylation
(DNAm) in TC survivors that develop MetS compared
to those who do not could provide a better understand-
ing for the underlying mechanisms behind this serious
late effect.
We hypothesize that epigenetic changes caused by

CBCT render TC survivors susceptible for developing
MetS later in life. The aim of this study was to (i) evalu-
ate the potential long-term effect of CBCT on the epige-
nome in a cohort of Norwegian TC survivors, and (ii)
identify possible associations between epigenetic changes
and development of MetS. We also investigated if these
changes in (i) and (ii) links to genes, functional net-
works, and pathways related to MetS symptoms.

Results
The basic characteristics of the TC survivors are out-
lined in Table 1. Median age at diagnosis ranged be-
tween 27 and 30 years, while median age at SII ranged
between 47 and 51 years. Mean β methylation was 0.62
in all four groups.

Study confounders
Principal component analyses of the DNAm did not
show differences between the four groups (Additional
file 1: Figure S1). Global methylation was not associated
with CBCT or MetS (p > 0.05) (Additional file 1: Figure
S2). However, we identified associations between CBCT
and relative proportions of CD4+ T cells (p = 0.0001),
and CD8+ T cells (p = 0.04). Testosterone was also sig-
nificantly associated with MetS (p = 1.6 E-07). We
found 3109 Bonferroni significant CpGs (cytosine nu-
cleotide followed by a guanine nucletide) (p value <
0.01) associated with age and 229 Bonferroni significant
CpGs (p value < 0.01) associated with smoking habits,
including two smoking related genes (Additional file 1:
Figure S3) (Fig. 1).

Long-term effects of cisplatin on DNA methylation
After adjusting for age, testosterone, smoking, and cell
count, 35 CpG sites were associated with CBCT after
False Discovery Rate (FDR) correction (Table 2). Of
these, 13 CpG sites were significantly associated with
CBCT after Bonferroni correction (Fig. 2a). Of the FDR-
associated CpGs, 21 were located in Open Sea, three in
a CpG island, and 11 in either CpG island shelf or shore.
The different multivariate models showed similar results
(Additional file 1: Figure S4B and Figure S5B). Nineteen
annotated CBCT genes were found in the GENIUS data-
base. One network-structure was identified for 13 genes,
of which six were related to MetS. Each node had an
average of 2.0 neighbors. CACNA1D, DIP2C, and
GRHL1 had the highest network degrees and were all as-
sociated with MetS (Fig. 3a).

DNA methylation and risk of developing MetS
We could not identify MetS differentially methylated
CpG sites after adjusting for age, smoking, CBCT, and
multiple testing (FDR or Bonferroni) (Fig. 2b). We
present the top 15 differentially methylated CpG sites
(unadjusted p values) (Table 3) of which 11 CpGs were
located on an open sea and four on the CpG island
shores. None of the multivariate models showed
epigenome-wide association study (EWAS) significant
results, and their top hits differed (Additional file 1:
Figure S5B). In addition, models for the individual MetS
components (hypertension, cholesterol, waist circumfer-
ence, fasting glucose, and triglycerides) did not give
EWAS significant associations. There was no overlap
between the top 2000 nominally significant CpGs for
these five MetS component models and the MetS model
(Additional file 1: Figure S6).
We identified one network-structure for the nine

MetS-associated genes found in the GENUS database
(Fig. 3b).

Overlap between CBCT and MetS associations
There were no FDR or Bonferroni significantly differen-
tially methylated CpG sites associated with both CBCT
and MetS. However, the comparison of the top 2000
CpG sites associated with CBCT and MetS with un-
adjusted p values < 0.05 for both analyses identified ten
common CpG sites (Table 4).

Pathway enrichment for CBCT-associated CpGs
Genes in approximation to 78 differentially methylated
CpG sites (FDR < 0.1) associated with CBCT were ana-
lyzed for gene enrichment to provide a functional inter-
pretation of our results. We identified the “PTK6
Regulates RHO GTPases, RAS GTPase, and MAP kinase”
Reactome pathway as significantly enriched (adjusted p
value = 0.03). For GO biological process, we found the
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“cellular response to growth hormone stimulus” pathway
significantly enriched (p value = 0.005). For GO cellular
component, the “L-type voltage-gated calcium channel
complex” pathway was significantly enriched (p value =
0.02). We did not find significant pathways for KEGG
and GO molecular function.

Differentially methylated regions associated with CBCT
and MetS
Using bumphunting, 419 regions (bumps) were identi-
fied; however, none were significantly associated with

CBCT based on adjusted p values (data not presented).
Neither did we identify significant hits when using
DMRcate for the two model (data not presented).
We checked if genomic coordinates of the CpGs of

interest were present as SNPs in GWAS Central data-
base. We did not find any of the CBCT, MetS, and over-
lapping CpG sites from Tables 2, 3, and 4, respectively.
In the EWAS Atlas database, we found one association
with post-obese (cg07677157), and one association with
high-saturated fatty acids diet (cg07677157) for CBCT-
associated CpGs. From our CpG sites related to MetS,

Table 1 Characteristics at diagnosis and follow-up for patients (N = 279), split by treatment group. Median values and range are
reported for the groups

CBCT+a MetS+b CBCT− MetS+ CBCT+ MetS− CBCT− MetS− CBCT model
p value

MetS model
p value

N 61 34 (32c) 115 69

Age at diagnosis (years) 30 (18–52) 30 (16–49) 27 (16–47) 28 (18–52) 0.09 < 0.001

Age at sample collection (years) 48 (29–64) 45 (28–74) 44 (23–61) 43 (26–62) 0.81 < 0.001

Age at survey II (years) 51 (36–69) 52 (36–68) 47 (31–66) 48 (33–68) 0.06 < 0.001

Time between surgery and
sample collection (years)

17 (5–27) 18 (6–35) 17 (6–28) 14 (5–28) 0.02 0.02

Time between sample collection
and MetS diagnosis (years)

0 (0–9) 8 (− 8–9) 0 (0–9) 8 (0–9) <0.001 0.09

Clinical characteristics at diagnosis

Initial disease stage < 0.001 0.58

I 18 32 35 66

IMK positived/II 36 0 58 3e

III 2 0 4 0

IV 5 0 18 0

Histology 0.16 0.15

Seminoma 8 1 6 2

Non-seminoma 53 31 109 67

Cumulative cisplatin dose (mg) 790 (570–920) 760 (495–1400) < 0.001

Selected characteristics at follow-up

Testosterone (nmol/L)f 11.1 (3–26) 12 (3–24) 15 (3–32) 16 (6–38) 0.30 < 0.001

Physical activity 0.40 0.002

Very active 26 12 72 36

Moderate 25 16 37 28

Sedentary 10 4 5 4

Smoking status 0.77 0.13

Never smoker (%) 43 33 51 49

Former smoker (%) 34 42 24 28

Current smoker (%) 23 24 24 23

Mean β methylation 0.62 0.62 0.62 0.62 0.21 0.71
aCBCT cisplatin-based chemotherapy
bMetS metabolic syndrome
cN passed array filter quality
dIMK marker positive
eRendered tumor free by surgery alone
fRegression analysis showed that testosterone level is (on average) 4.2 nmol/L lower in groups 1 and 2 (MetS+) compared with groups 3 and 4 (MetS−) when
adjusted for age (p = 1.6 E-07)
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there was one hit cg06500161 (ABCG1), associated with
MetS, BMI, and type 2 diabetes in this database. In the
overlapping CpGs, we found cg27087650 associated with
BMI.

Discussion
In this EWAS, we identified lasting CBCT-related effects
in 35 differentially methylated CpG sites across the gen-
ome, on average 16 years after treatment. These effects
may be attributed to the initial CBCT, and/or to the
small amount of platinum persistent in serum post-
treatment [5]. We found insulin- and body mass-related
genes in proximity to the CBCT-associated hits, sup-
porting our hypothesis that the CBCT-MetS relationship
is linked to epigenetics. Interestingly, we found CpG
sites in proximity to the gene ABCG1, which has been
associated to body mass, triglycerides, HDL-C, athero-
sclerosis, and type 2 diabetes in EWAS [23–25], among
our nominally significant MetS CpGs.
The gene closest to the CBCT− top hit, cg07677157, is

RPSAP52, a gene linked to type 2 diabetes in genome-
wide association studies (GWAS) [26]. The top annotated
CBCT gene, CACNA1D, encodes voltage-dependent
calcium channels, which regulate insulin release. Polymor-
phisms in CACNA1D are also associated with type 2 dia-
betes [27], linked to diastolic and systolic blood pressure

[28], and ototoxicity [29]. Other CBCT-associated genes
were ACOT7, implicated in the pathophysiology of type 2
diabetes [30] and atherosclerosis [31]; GRHL1, encoding a
transcription factor involved in epithelial development
and linked to several types of cancer, cardiovascular dis-
eases, and type 1 diabetes; and TOM1L2, linked to body
mass and type 2 diabetes in GWAS [32] (Table 2).
We found “PTK6 Regulates RHO GTPases, RAS

GTPase, and MAP kinases” which is part of the RAS
signal transduction pathway enriched with CBCT-
associated methylation. The pathway regulates cell dif-
ferentiation and plays a role in cell proliferation [33–35],
which might be a relevant mechanism in relation to the
increased risk of second cancer after CBCT in TC survi-
vors [36]. The pathway “cellular response to growth hor-
mone stimulus” is also enriched for CpGs associated to
CBCT. The involvement of these oncogenic pathways is
consistent with the cytotoxicity of CBCT, which is inter-
esting considering the rather long time window between
treatment and DNAm measurements.
Examples of MetS-associated genes include COLEC12,

encoding a scavenger receptor involved in several func-
tions associated with host defense; NCF2, for which in-
creased expression has been observed in patients with
insulin resistance [37]; and SMG7, playing a role in p53
function in response to DNA damage [38].

Fig. 1 CONSORT flow diagram of included samples that were analyzed with the MethylationEPIC BeadChip (n = 279). Samples were from testicular
cancer survivors divided into four groups according to CBCT and MetS status. a CBCT cisplatin-based chemotherapy. b MetS metabolic syndrome
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Table 2 Annotations for the 35 FDR significant CpGs (adjusted p values < 0.05) for cisplatin-based chemotherapy (CBCT) model

CpG name Gene namea FDRb Bonfc Function of the gene product Disease/Trait associationd

cg07677157 RP11-221N13.4 9.56E-15 9.56E-15

cg08057120 7.78E-12 1.56E-11

cg26408927 CACNA1D 2.26E-10 6.79E-10 Mediate the entry of calcium ions into
excitable cells. Involved in a variety of
calcium-dependent processes. Regulates
intracellular processes such as contraction,
secretion, neurotransmission and other
gene expression

Sinoatrial node dysfunction and deafness.
Hypertension. Body mass index. Insulin
resistance/response. Systolic blood pressure.
Diastolic blood pressure. Visceral adipose
tissue/subcutaneous adipose tissue ratio.
Type 2 diabetes

cg27487222 7.37E-07 2.95E-06

cg11031221 LINC00511 1.56E-06 7.78E-06 A long non-protein coding RNA, involved
in the regulation of gene expression during
tumor progression

cg22688137 6.01E-05 < 0.001

cg24833462 AC023672.2 < 0.001 < 0.001

cg20063141 ONECUT2/
AC090340.1

< 0.001 0.004 This gene encodes a member of the one cut
family of transcription factors, which are
characterized by a cut domain and an atypical
homeodomain

cg08889373 ACOT7/RP1-
202O8.3

0.001 0.009 Protein hydrolyzes the CoA thioester of
palmitoyl-CoA and other long-chain fatty acids

Type 2 diabetes. Atherosclerosis

cg14792781 GRHL1 0.002 0.016 Is a transcription factor necessary during
development

Cancer. Type 1 diabetes

cg14634473 0.002 0.021

cg21940081 IMP4 0.003 0.037 Part of the 60-80S U3 small nucleolar
ribonucleoprotein (U3 snoRNP) complex.
Responsible for early cleavage steps of pre-18S
ribosomal RNA processing

cg03877706 NCAM2 0.003 0.041 Belongs to the immunoglobulin superfamily.
May play important roles in selective fasciculation
and zone-to-zone projection of the primary
olfactory axons

Obesity. Visceral fat

cg00303773 TOM1L2 0.005 0.070 Participate in vesicular trafficking. Play a role
in endosomal sorting

Body mass. Type 2 diabetes

cg10113471 0.005 0.069

cg23304747 PITPNM2 0.008 0.123 Catalyzes the transfer of phosphatidylinositol and
phosphatidylcholine between membranes
(in vitro). Binds calcium ions

cg14972510 BAG4 0.010 0.167 Inhibits the chaperone activity of HSP70/HSC70.
Prevents constitutive TNFRSF1A signaling.
Negative regulator of PRKN translocation to
damaged mitochondria

cg26561082 DIP2C 0.011 0.197 The protein shares strong similarity with a
Drosophila protein which interacts with the
transcription factor disco and is expressed in
the nervous system

Blood metabolite levels

cg24869056 HPS1 0.012 0.235 Play a role in organelle biogenesis associated
with melanosomes, platelet dense granules and
lysosomes

Obesity-related traits

cg14629524 KDM3B 0.020 0.401 Histone demethylase that specifically demethylates
Lys-9 of histone H3, thereby playing a central
role in histone code

cg04156896 MFSD2A 0.021 0.459 Transmembrane protein and sodium-dependent
lysophosphatidylcholine transporter involved in
the establishment of the blood-brain barrier

cg27367992 ST6GAL1 0.021 0.451 Catalyzes the transfer of sialic acid from
CMP-sialic acid to galactose-containing substrates

Type 2 diabetes
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The possible relationship between CBCT-induced
DNAm and susceptibility for developing MetS was ana-
lyzed by exploring the sequence of events separately, as
there are no well-established tools for doing high-
dimension mediation analysis that fit with our design.
The overlap between the two models, including the top
2000 hits, was ten sites (Table 4). These might be spuri-
ous findings since associations were nominal. The small
overlap might suggest two unrelated mechanisms lead-
ing to MetS which was supported by publicly available
distinct EWAS (EWAS Atlas). Nonetheless, for both
models, the majority of top CpGs was linked to factors
pertaining to MetS. Additionally, among the genes that
clustered in the network analysis, those with the highest
network degree (CACNA1D, DIP2C, and GRHL1 for
CBCT, and ABCG1 and NCF2 for MetS) were all associ-
ated with MetS. The network analyses suggest that
CBCT and MetS-related effects may be mediated syner-
gistically. We speculate that changes in methylation in
these clustered genes might affect gene expression, thus

increasing the likelihood of developing MetS. These
findings support the notion that DNAm may mediate
the effect of CBCT on MetS risk later in life. Validation
and replication of the top results are needed in an inde-
pendent cohort. Inclusion of a non-oncological control
group, with and without MetS, will further elucidate if
the findings are independent of tumor intrinsic factors,
and if the MetS hits are related to CBCT.
The survivors in our study who developed MetS have

somewhat lower testosterone levels than those without
MetS, regardless of CBCT, thus low testosterone may
have confounded the results. Previous studies have
shown that lower total testosterone level is associated
with higher risk of developing MetS [39]. Independently
of the model used, testosterone did not markedly alter
the significant associations. This indicates that the MetS
DNAm association is not attributable to low testosterone
levels.
Strengths of the study include a reliable and broadly

characterized study population which has been followed

Table 2 Annotations for the 35 FDR significant CpGs (adjusted p values < 0.05) for cisplatin-based chemotherapy (CBCT) model
(Continued)

CpG name Gene namea FDRb Bonfc Function of the gene product Disease/Trait associationd

cg08343240 AC008703.1 0.024 0.573 RNA gene

cg27545041 0.024 0.567 An important paralog of this gene is INTS6 /
RNA Gene and is affiliated with the non-coding
RNA class

cg04046944 CACNA1S 0.025 0.614 This gene encodes one of the five subunits of
the slowly inactivating L-type voltage-dependent
calcium channel in skeletal muscle cells

cg06225648 0.025 0.651

cg12381697 CCM2 0.028 0.751

cg13207339 PARK2 0.030 0.849 A component of a multiprotein E3 ubiquitin
ligase complex that mediates the targeting of
substrate proteins for proteasomal degradation

Metabolite levels. Body mass index. Aging

cg22345432 PXN/
PXN-AS1

0.033 0.972 Involved in actin-membrane attachment at sites
of cell adhesion to the extracellular matrix
(focal adhesion)/RNA Gene and is affiliated with
the non-coding RNA class

cg17158941 C7orf50/
AC073957.15

0.040 1 Chromosome 7 Open Reading Frame 50 C-reactive protein levels or total cholesterol
levels

cg03289031 ZNF629 0.040 1

cg26540402 PRF1 0.040 1 Plays a key role in secretory granule-dependent
cell death and in defense against virus infected
or neoplastic cells

cg16657582 0.043 1

cg21902759 RAB40B 0.043 1 Substrate-recognition component of a SCF-like
ECS (Elongin-Cullin-SOCS-box protein) E3
ubiquitin ligase complex which mediates the
ubiquitination and subsequent proteasomal
degradation of target proteins

cg19377056 ARHGAP39 0.049 1
aUCSC gene name
bFDR - CBCT False Discovery Rate significance (p < 0.05)
cBonf - CBCT Bonferroni significance (p < 0.05)
dSelected from GeneToFunction database (human only) and Gene Cards disease associations
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Fig. 2 Q-Q plots for a cisplatin-based chemotherapy (CBCT) model, methylation β value as the dependent and CBCT as the independent variable,
adjusted for smoking, age, testosterone, and cell count. b Metabolic syndrome (MetS) model, MetS as the dependent and methylation β value as
the independent variable, adjusted for CBCT, smoking and age

Fig. 3 Functional gene networks of cisplatin-based chemotherapy (a) and metabolic syndrome (b) related genes reconstructed using the GENIUS
tool. Nodes represent genes and edges (arrows) show the directions of the interactions found. Size of nodes is proportional to a gene network
degree (number of neighbors of a given gene in the network). A node color intensity represents significance from the differential methylation
analysis (high intensity colors represent highly significant genes, adjusted p value for panel (a) and unadjusted p value for panel (b) shown).
Nodes marked with black circles represent genes associated with any of the metabolic syndrome trait
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for many years. In addition, we have considered the
most important confounding factors by matching the
groups. Furthermore, the epigenetic analyses have been
performed on EPIC BeadChip arrays, which provides
state-of-the art tool for epigenome-wide association ana-
lyses, covering over 850,000 CpG sites. The EPIC array
represents a significant improvement compared to its
predecessor, the HM450 array, with increased genome
coverage of regulatory regions [40]. Finally, we used cu-
rated annotation resources and updated GRCh38/hg38
genome [41].
Some limitations of the present study should also be

considered. Even though the total number of TC survi-
vors was large, the sample size of those treated with sur-
gery only and developed MetS was 34. Due to the
limited sample size, we chose the minimally adjusted
model for MetS. A power issue may thus contribute as
to why there were no differentially DNA methylated
CpG sites associated with MetS after adjusting for mul-
tiple testing. We were not able to distinguish between

the effect of the initial CBCT and the effect of platinum
residuals [5] as this would have needed a time-series
analysis. It is not possible to rule out that some of the
differential DNA methylation associated to CBCT could
be related to tumor-specific intrinsic factors. However,
TC stage markers of DNA methylation including
HOXA9, RASSF1A, and SCGB3A1 [42] were not ob-
served, indicating that potential confounding by such
factors was unlikely. The possible impact of second pri-
mary cancer is negligible due to long time span between
sampling and diagnosis.

Conclusions
Our results suggest that CBCT has long-term effects on
the epigenome. Although we could not directly link the
CBCT effects to the risk of developing MetS, it may still
play a role in the development of MetS in TC survivors.
This is supported by the observation that the differential
DNAm occurs in genes related to MetS. Furthermore,
our results contribute to a better understanding of the

Table 3 The 15 CpG sites with lowest unadjusted p values for associations between DNA methylation (DNAm) and metabolic
syndrome (MetS)

CpG name Genea Pb Gene function Disease/Trait associationc

cg01562302 SLC7A7 4.37E-06 Involved in the sodium-independent uptake of
dibasic amino acids and sodium-dependent
uptake of some neutral amino acids

cg06500161 ABCG1 6.50E-06 Involved in macrophage cholesterol and
phospholipids transport, and may regulate cellular
lipid homeostasis in other cell types

Type 1 diabetes

cg05489343 COLEC12 1.26E-05 Scavenger receptor associated with host defense,
C-lectin family, proteins that possess collagen-like
sequences and carbohydrate recognition domains

Obesity-related traits

cg07203167 NCF2/SMG7 1.57E-05 Required for activation of the latent NADPH oxidase Insulin resistance

cg23064281 2.44E-05

cg22084453 2.51E-05

cg09209794 TMEM63A 3.15E-05 Acts as an osmosensitive calcium-permeable cation
channel

cg23167087 TTC18/CFAP70 3.20E-05

cg16007266 NLRC5 3.31E-05 Plays a role in cytokine response and antiviral immunity
through its inhibition of NF-kappa-B activation and
negative regulation of type I interferon signaling pathways

HDL cholesterol

cg14810357 AC064875.2 3.49E-05

cg09120938 CHFR 3.67E-05 Regulates cell cycle entry into mitosis and, therefore,
may play a key role in cell cycle progression and
tumorigenesis, belongs to DNA damage pathway

cg02255098 BCAM 3.71E-05 A receptor for the extracellular matrix protein, laminin. Waist-to-hip circumference ratio

cg22926824 AGAP1 4.18E-05 Direct regulator of the adaptor-related protein complex
3 on endosomes

Cardiovascular disease in hypertension
(calcium channel blocker interaction)

cg22003124 4.21E-05

cg16307144 DPF1 4.55E-05 Gene Ontology (GO) annotations related to this gene
include nucleic acid binding

aGene UCSC gene name
bP value unadjusted p value
cSelected from GeneToFunction database (human only) and Gene Cards disease associations
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cellular mechanisms behind the development of MetS in
TC survivors treated with CBCT. Although the influence
of CBCT on the epigenome is plausible, validation of the
observed differential methylation of specific CpGs is ne-
cessary. Our findings also indicate that other adverse ef-
fects of CBCT, such as ototoxicity, may be mediated by
epigenetic changes. These topics could be subject to fu-
ture studies, also encompassing other cancer forms using
CBCT, and risk of second cancer. In terms of clinical
perspective, our results may provide early identification
of individuals with increased risk for development of
MetS.

Methods
Study population and patient assessments
Participants were long-term survivors of unilateral TC
diagnosed from 18 to 75 years of age, treated between
1980 and 1994. The original national cohort consisted of
1463 men (Caucasians) who participated in follow-up
survey I (SI) at five Norwegian university hospitals dur-
ing the period 1998–2002. In total, 990 males, younger
than 60 years old at SI, were subsequently evaluated with
regard to CVD and MetS in a second survey (SII) per-
formed 2007–2008 [15]. A third survey (SIII) was per-
formed in 2015–2016. Overall, 279 participants with
MetS data obtained in SII, and frozen whole blood sam-
ples from either SI (n = 137), SII (n = 132), or SIII (n =
8) available for DNA analyses, were included in the

present study. We included the samples that best fitted
the matching criteria (see below). For those who had
samples from more than one survey, we chose the DNA
obtained at the earliest time point after diagnosis to cap-
ture as much of the CBCT related effects as possible.
Data from questionnaires, clinical examinations (in-

cluding blood pressure and waist circumference mea-
surements), and laboratory tests (including fasting blood
glucose and blood lipid measurements) were retrieved
from SII. Smoking status was classified from question-
naire data into three groups: never, former, and current
smoker. Age was used as a continuous variable in all
statistical analyses. All routine blood samples were ana-
lyzed at the Oslo University Hospital. Plasma levels of
lipids and glucose were measured enzymatically. Serum
levels of testosterone were determined using immunoas-
says. MetS was defined according to the National Chol-
esterol Education Program expert panel, as the presence
of minimum three of the following five criteria: blood
pressure ≥ 130/85 mmHg, HDL-cholesterol < 1.0 mmol/
L, triglycerides ≥ 1.7 mmol/L, waist circumference > 102
cm, and fasting glucose ≥ 6.5 mmol/L [43, 44]. Epige-
nomic changes related to MetS were assumed to be
present at the sampling time point. Data regarding initial
tumor stage, histology, and treatment details were re-
trieved from medical records. Treatment details accord-
ing to stage and histology [45], CVD risk, and morbidity
data from SI and SII have been published previously [9,

Table 4 Annotations for the nine overlapping CpGs for the cisplatin-based chemotherapy (CBCT) model and metabolic syndrome
(MetS) model for the 2000 CpGs with the lowest unadjusted p values < 0.05

Cpg name Genea Pb CBCT model Pb MetS model Gene function Disease/Trait associationd

cg25165017 < 0.001 0.001

cg27087650 BCL3 < 0.001 0.012 Contributes to the regulation of cell proliferation

cg10785263 < 0.001 0.020

cg17986793 MX1 < 0.001 0.022 Gene product, Interferon-induced GTP-binding
protein Mx1 is a protein that in humans is encoded
by the MX1 gene

cg10587886 LMCD1-AS1 < 0.001 0.044 LMCD1 antisense RNA 1

cg18871648 ELMSAN1 < 0.001 0.050 ELM2 and Myb/SANT domain containing 1

cg07688244 < 0.001 0.098

cg14792781 GRHL1 < 0.001 0.127 This gene encodes a member of the grainyhead
family of transcription factors. The encoded protein
can exist as a homodimer or can form heterodimers
with sister-of-mammalian grainyhead or brother-of-
mammalian grainyhead. This protein functions as a
transcription factor during development

cg25273039 NXPH1 < 0.001 0.165 The product protein forms a very tight complex with
alpha neurexins, a group of proteins that promote
adhesion between dendrites and axons

Waist-to-hip ratio adjusted for
body mass index,
Obesity-related traits

cg19509829 ATP2A2 < 0.001 0.215 Product Belongs to a family of ATPase enzymes that
helps control the level of positively charged
calcium atoms (calcium ions) inside cells

Glucose homeostasis traits

aGene UCSC gene name
bP unadjusted p value
cSelected from GeneToFunction database (human only) and Gene Cards disease associations
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15, 46, 47]. Cancer Registry follow-up showed that 51
survivors acquired a second primary cancer within the
cohort follow-up time (SIII). These cancers were diag-
nosed on average 6 (SD = 3) years after sample
donation.
From the 279 TC survivors included, 103 had surgery

only (orchiectomy with or without retroperitoneal lymph
node dissection for selected cases) due to stage I disease,
whereas 176 had undergone both surgery and CBCT (all
with metastatic disease) (Fig. 1). From the surgery only
(CBCT−) and the treatment (CBCT+) groups, we se-
lected similar fractions of patients with MetS. These four
groups were frequency-matched on smoking habits and
age at blood sampling, allowing no more than two years
difference in mean age. However, complete matching
was not possible due to limited number of patients cate-
gorized as CBCT+ and MetS−. From this 2 × 2 design,
we analyzed the data using a CBCT model and a MetS
model, where all cases were included in both models
(Fig. 1). Comparing the top hits from the two models
enables the identification of CpG sites associated with
both CBCT and MetS. This study was approved by Re-
gional Ethical Committee (REC) south east D, reference
2015/1332.

DNA methylation profiling
Genomic DNA was isolated from whole blood using
standard chloroform–phenol extraction method. DNA
concentration and purity of the DNA samples were ana-
lyzed using a NanoDrop ND-1000 (Thermo Fisher
Scientific, Waltham, MA, USA). DNA from ten samples
was isolated using QIAamp DNA Blood Mini Kit (Qia-
gen) and the Qiacube (Qiagen) according to manufac-
turer’s protocol. Of the 279 samples, four samples had
only 300 ng (500 ng recommended); however, they
showed good array quality in all control steps. Bisulfite
conversion of the genomic DNA was done using the EZ
DNA Methylation Kit (Zymo) and whole-genome
DNAm were analyzed with the Infinium MethylationE-
PIC Kit (Illumina) according to manufacturer’s recom-
mendations. This array covers 850,000 individual CpGs
at CpG islands, RefSeq genes, ENCODE open chromatin,
ENCODE transcription factor binding sites, and FAN-
TOM5 enhancers sites. The 279 samples were random-
ized on three 96-well plates according to the four groups
described.
The resulting raw data were analyzed using minfi

v.1.20.2 in the R statistical environment v3.3.3 [48]. For
details, see Supplementary method information. Two
samples were excluded, one due to missing smoking in-
formation, and one being an outlier in the principal
component analyses (Additional file 1: Figure S1). This
resulted in a quality-controlled dataset of 277 samples
and 862,400 CpG sites. CpG sites were mapped to the

human genome (GRCh37/hg19) using the annotation
file provided by the manufacturer (Illumina) [49] and
further curated and translated to GRCh38/hg38 [41].
Additional information were retrieved from the UCSC
genome browser [50, 51] and GeneCards (www.gene
cards.org) [52] and Gene2Function (http://www.gene2
function.org) [53]. Relative proportion of cell types (B
cells, CD4+ T cells, CD8+ T cells, natural killer cells,
granulocytes, and monocytes) from the methylation pro-
files were estimated using the reference-based House-
man method [54, 55].
We deployed GENIUS (GEne Networks Inference

Using Signatures) tool to predict local gene networks
and key genes for biological functions [56]. The network
was constructed using supervised machine learning
method to find expression signatures. Input for the gene
network was the FDR significant genes from the CBCT
and MetS model. The network was visualized with Cyto-
scope 3.7.1 according to the nodes connectivity and de-
gree [57].

Statistics
The methylation values were transformed to β values
(between 0 and 1), representing the intensity of methyla-
tion [58]. We used a linear regression model to investi-
gate if cell type composition was associated with CBCT,
adjusting for age at blood sampling and smoking habits.
We also tested if MetS was associated with testosterone
levels, adjusting for age. The results indicated that tes-
tosterone and cell type (five out of six cell types, B cells
was dropped) composition might be confounders. The
robust linear CBCT model with DNA methylation status
as the dependent variable was therefore adjusted for age,
smoking, cell type, and testosterone. To investigate the
associations between DNAm and MetS with the latter as
the dependent variable, we used a generalized logistic re-
gression model. The MetS model was adjusted for age,
smoking, and CBCT. Models with the best fit were in-
cluded, and additional regression models tested are
available in the Supplementary information (Additional
file 1: Figure S4 and Figure S5). Additionally, separate
generalized logistic regression models with the five vari-
ables underlying the MetS diagnosis (hypertension, chol-
esterol, waist circumference, fasting glucose, and
triglycerides) as dependent variable and with the same
covariates were tested. To adjust for multiple testing,
Benjamini and Hochberg’s FDR [59] and Bonferroni cor-
rection [60] were applied to all models. Differentially
methylated CpG sites, identified in the CBCT model and
the MetS model, were defined as the intersection of the
top 2000 hits with the lowest unadjusted p values.
In order to identify differentially methylated regions

(DMR), we used two approaches, bumphunter [61] and
dmrcate [62–64]. Bumphunter (v.1.20.0) was run with
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1000 permutations and the cutoff was set to 0.05, corre-
sponding to 5% difference on the β values on the CBCT
model. We ran the DMRcate function (v.1.14.0) with de-
fault settings (max gap 1000 nucleotides between two
significant probes and DNAm as outcome) on the CBCT
model and by flipping the function around with the di-
chotomous variable as outcome on the CBCT and MetS
models.

Gene enrichment analysis and CpG characterization
CpG sites passing an FDR adjustment (p value < 0.1)
were used to assess pathways enriched for differential
DNAm. We employed Enrichr (http://amp.pharm.mssm.
edu/Enrichr) [65, 66] a platform for KEGG [67], Reac-
tome 2016 (v.62), and Gene Ontology (GO) 2018 (bio-
logical process, molecular function, and cellular
component) pathways analysis [68, 69]. We performed
an unweighted analysis, and reported p values are based
on Fisher’s exact test.
We employed GWAS Central database (www.gwascen-

tral.org) to evaluate if any of CpG sites of interest were
previously reported as known SNPs [70]. We further
scanned for associations between CpG sites of interest
and known epigenome-wide associations from literature
studies. We used the EWAS Atlas resource (https://bigd.
big.ac.cn/ewas/index) [71]. This database features a large
number of high-quality, manually curated, EWAS
associations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-019-0764-4.

Additional file 1: Figure S1. PCA plot of β-methylation for the four
sample groups, showing one outlier. The plot is coloured by different
groups. Blue group did not develop MetS, but received CBCT, green did
not develop MetS and did not receive CBCT, red developed MetS and
received CBCT, and black developed MetS and did not receive CBCT.
Figure S2. Barplot of the global average methylation per sample. Blue
and green indicate whether patients had received cisplatin or not, re-
spectively. Samples were sorted descending using their average methyla-
tion value. Figure S3. Boxplot of smoking associated CpGs for the genes
AHRR and F2RL3. Never, Former and Current, refer to the smoking status
as presented in Table 1. Figure S4. Q-Q plots for A) CBCT model, methy-
lation β-value as the dependent and CBCT as the independent variable,
adjusted for smoking, age, and cell count. B) MetS model, MetS as the
dependent and methylation β-value as the independent variable, ad-
justed for CBCT, smoking, age and cell count. Figure S5. Q-Q plots for A)
CBCT model, methylation β-value as the dependent and CBCT as the in-
dependent variable, adjusted for smoking, and age. B) MetS model, MetS
as the dependent and methylation β-value as the independent variable,
adjusted for CBCT, smoking, age, testosterone and cell count. Figure S6.
Venn-diagram illustrating the overlapping number of top 2000 nominally
significant CpGs between the original model, and the models with the 5
individual criteria of the MetS-diagnosis as dependent variable. Criteria is
according to the National Cholesterol Education Program expert panel:
Hypertension = blood pressure ≥130/85 mmHg, HDL = HDL-cholesterol
<1.0 mmol/L, Triglycerides = triglycerides ≥1.7 mmol/L, Waist Circ. =
waist circumference >102 cm, and Glucose = fasting glucose ≥6.5
mmol/L.
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