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We introduce a procedure for separating periodic oscillations superposed on a stochastic signal. The 
procedure combines empirical mode decomposition (EMD) of a signal with tools of data analysis based on 
stochastic differential equations, namely nonlinear Langevin equations. Taking the set of modes retrieved 
from the EMD of the signal, our procedure is able to separate them into two groups, one composing the 
periodic signal and another composing the stochastic signal. The framework is robust for a broad family 
of localized oscillations, in the range of large frequencies. In particular, we show that, in this context, the 
EMD method outperforms a low-pass filter and is robust for a wide interval of different frequency ranges 
and amplitudes of the periodic oscillation, as well as for a broad family of different non-linear Langevin 
processes.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

When studying natural phenomena one often needs to handle 
signals that result from the superposition of two or more pro-
cesses, which should be properly resolved to enable assessing each 
process separately. A fundamental example is the superposition 
of measurement noise (also known as observation noise) when 
measuring a stochastic variable [19]. The measurement noise re-
sults from the measurement process and measurement devices and 
therefore should be distinguished from the noisy contributions be-
longing to the natural stochastic process. To this end, stochastic 
methods have been developed for resolving the superposition of 
natural stochastic processes and different measurement (additive) 
noise sources, namely uncorrelated [2] and correlated [9] with an 
extension for an arbitrary number of measurement noise sources 
[10,17]. In parallel, these methods have been extended to non-
Markov processes, namely Langevin-type processes whose stochas-
tic force is governed by a colored noise, e.g. an Orstein-Uhlenbeck 
noise [11].

Complementary to these situations, there are cases where the 
stochastic process under study is superposed on oscillatory signals. 
On one hand, extracting the periodic contributions of one process 
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provides information e.g. the seasonality where one often regards 
the stochastic contributions as noise that should be filtered out. 
Typical tools in this scope are the Fourier filters [8] or the Discrete 
Wavelet Transform [1]. On the other hand, stochastic contributions 
are important when the property being analyzed reflects intrinsic 
features of stochastic dynamics. This is the case of several turbu-
lence experiments, where periodic contributions in the measured 
signal often results from periodic signals that act as perturbations 
to the stochastic signal characterizing the turbulent behavior. For 
example, when addressing measurements of loads on airfoils, one 
usually considers their lift and drag component. Due to the inflow 
conditions, lift and drag forces may show a considerable amount 
of periodic oscillations that are taken as perturbations of the un-
derlying signal and must be filtered out [12].

If the periodic perturbations are typically high-frequency oscil-
lations, a low-pass filter would be a good tool for filtering them 
out. If they would be located at the low-frequency range of the 
signal’s spectrum a high-pass filter would properly filter them out. 
However, many perturbations occur in the middle frequency range 
and often one needs to filter out the spectrally localized oscilla-
tions without affecting the original spectrum of the signal. An il-
lustration of a such superposed signal with a stochastic and an os-
cillatory contribution is shown in Fig. 1. One often deals with such 
a superposed signal, Fig. 1(a), and to gain access to the stochastic 
contribution, Fig. 1(b) one needs to filter out the oscillatory contri-
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Fig. 1. Illustration of (a) a stochastic signal superposed with a periodic oscillation,
(b) the stochastic signal alone and (c) the periodic oscillation resulting from the 
superposition of single-frequency signals with amplitudes Ai parameterized by a 
maximal value α and a bandwidth σ (see equations (5) and (6) and Fig. 2).

Fig. 2. Power spectrum of the stochastic signal superposed with periodic oscillations 
(black solid line) as illustrated in Fig. 1 and defined in equations (1), together with 
equations (2), (5) and (6). The effect of a low pass filter is on this signal is shown 
as red dashed line. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

bution, Fig. 1(c), or vice-versa. Fig. 2 shows the effect of a standard 
filtering procedure, namely a lowpass filter, using the power spec-
tra of the superposed signal introduced in Fig. 1(a). As one sees, a 
standard filter such as a low-pass filter removes the full range of 
high frequencies, affecting also the stochastic process that cannot 
in this way be separated from the periodic oscillation. The contri-
bution of the periodic oscillations is strongly attenuated but not 
removed from the signal.

In this study we introduce a method that is able to resolve 
the superposition of short localized oscillations from an under-
lying stochastic signal, retaining the power-law spectrum of the 
stochastic signal in the correct range of frequencies. The method 
combines the Empirical Mode Decomposition (EMD), introduced 
by Huang [7], and tools for deriving stochastic differential equa-
tions from series of data that were introduced by Siefert et al. [18]
and developed till recently [3].

We start in section 2 by presenting the models considered for 
describing both the stochastic and the periodic components of a 
signal. In section 3 we introduce our framework that combines 
EMD and stochastic differential equations. The full framework is 
then applied to a specific case in section 4 and in section 5 we ad-
dress the robustness of our framework by assessing its accuracy in 
resolving the superposition for other more general cases. Conclu-
sions and outlook are given in section 6.

2. Model and assumptions

We consider the family of signals of the form

Y (t) = X(t) + γ (t), (1)

where X(t) and γ (t) are two superposed components, yielding 
a measurable signal Y (t). In the case both the components are 
stochastic, one falls into the case of additive measurement noise 
that was addressed in Refs. [19,2,9,10,17]. Here, we consider com-
ponent X(t) as a stochastic process and γ (t) as a periodic compo-
nent. The stochastic process is governed by a non-linear Langevin 
equation [4], namely

dX

dt
= D(1)(X) +

√
D(2)(X)�(t), (2)

with D(1)(X) and D(2)(X) being the drift and diffusion coefficients, 
typically low-order polynomials of X , and �t being a Gaussian 
δ-correlated white noise fulfilling 〈�t〉 = 0 and 〈�t�t′ 〉 = 2δ(t − t′). 
Equation (2) is easily integrated using the Itô interpretation of 
the stochastic term [4]. Inversely, the Langevin equation can be 
directly extracted from a series of a Langevin process, by com-
puting both the drift and diffusion coefficients [3]. Recently, an 
R-package was developed [15] that enables to extract drift and 
diffusion coefficients from series of measurements of a stochas-
tic variable fulfilling equation (2)1 Therefore we can consider the 
following parameterizations

D(1)(X) = aX + b X3 , (3)

D(2)(X) = c + dX2 , (4)

where a < 0 if b = 0, a > 0 if b < 0, and c, d > 0. All these cases 
will be considered for testing our framework.

Notice that, since D(1)(X) has units of [X/t] and D(2)(X) has 
units of [X2/t], a and d have units of inverse time, [t−1], b has 
units of [(t X2)−1] and c has units of [X2/t].

The oscillatory component is defined as the superposition of n
single-frequency periodic modes

γ (t) =
n∑

i=1

Ai sin (2π f it + �i) , (5)

with amplitudes Ai , frequencies f i and phases �i . The amplitudes 
Ai are defined to follow a Gaussian function of the respective fre-
quency, namely

Ai = α√
2πσ

exp

(
− ( f i − μ)2

2σ 2

)
, (6)

with the parameter σ scaling the amplitude distribution in fre-
quency space. To relate the maximum amplitude γmax of the os-
cillation to the standard deviation σX of X(t),2 we define the 
normalization parameter α = γmax/σX . This parameter scales the 

1 The drift coefficient is typically a polynomial of odd order, whose coefficient of 
the highest power is negative. In this way, the outermost fixed points are stable. 
As for the diffusion coefficient, since it has to be positive semi-definite, one typi-
cally takes a constant (additive noise) or a quadratic polynomial in X (multiplicative 
noise).

2 The value of σX can be derived from the stationary solution of the stochastic 
process for a given D(1)(X) and D(2)(X) as defined in equations (3) and (4).
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amplitudes of the periodic oscillations with respect to the ampli-
tude of the stochastic process and is addressed at a later point 
in the paper to evaluate the robustness of the proposed frame-
work.

Taking both contributions together, X(t) and γ (t), one has six 
parameters, four for X(t) (a, b, c and d in equations (3) and (4)
and two for the periodic component (α and σ ). Fig. 1(a) illustrates 
one superposed signal Y (t) as defined in equation (1), where the 
stochastic part (Fig. 1(b)) is given by equation (2) together with (3)
and (4) with a = −1, b = 0, c = 1 and d = 0 in proper units (see 
above), and the periodic component (Fig. 1(c)) is given by equa-
tions (5) and (6) with α = 2 and σ = 0.5. We chose n = 200 and 
varied the frequencies f i uniformly between 2 Hz and 8 Hz, having 
therefore a mean of μ = 5 Hz. The phases �i are randomly cho-
sen following a normal distribution with a standard deviation of 
0.1. These parameters result in a periodically occurring sweep in 
time and a broadband frequency peak in the spectrum. The signal 
is composed by 106 samples with a sampling frequency of 100 Hz. 
In Fig. 2 we show the power spectrum of the superposed signal 
plotted in Fig. 1(a) (solid line). The stochastic process is character-
ized by a power-law decay in the spectrum, whereas the periodic 
contribution γ (t) is responsible for the peaked band around 5 Hz.

3. Method: the Huang-Langevin decomposition

The oscillatory disturbance is clearly visible in the superim-
posed time series illustrated in Fig. 1(a). In this section, we de-
scribe the method for resolving this superposition, which is com-
posed of two steps. In step one, we apply a filter, based on EMD, 
to separate the signal into its stochastic and periodic components. 
After the filtering we extract the drift and diffusion coefficients for 
the stochastic contribution and compare the results to the known 
reference stochastic process X(t) and the oscillatory component 
γ (t).

3.1. The Huang-Langevin filter

The filter we introduce below is based on the fact that a 
stochastic process governed by equation (2) is typically Markovian, 
whereas periodic oscillations are not.

Therefore, the sum of the “non-markovian modes” shall recon-
struct the periodic oscillation γ (t), while the sum of all other 
modes shall retrieve the stochastic signal X(t). It was recently 
shown [5] that EMD is helpful for reconstructing non-stationary 
contribution in stochastic signals. Therefore it is also appealing to 
use it for our purposes exposed above. For the mode decomposi-
tion of Y (t) we use a variant of EMD. EMD is a model-free proce-
dure that is able to decompose a process into its different intrinsic 
oscillation modes, so-called intrinsic mode functions (IMF), form-
ing a complete and nearly orthogonal basis for the original signal 
[7]. Differently from the Fourier filter and the discrete wavelet 
transform, the EMD has no analytic definition. EMD expands one 
given process in its “natural” constitutive scales following a sifting 
algorithm. One starts by identifying of local extrema of the origi-
nal data, and derive a cubic spline for the envelope connecting all 
maxima and the envelope connecting all minima. The upper and 
lower envelopes cover the full data set. The difference between 
the data set Y (t) and the mean m(1)

1 (t) of the maxima and minima 
envelopes yields a new signal h(1)

1 (t) on which the same proce-
dure can be applied to. By repeating iteratively this procedure one 
obtains a succession of signals h(1)

i for i = 1, . . . , k. This sifting pro-
cedure is stopped by the S-number criterion proposed in [6], such 
that the number of zero crossings and extrema of h(1)

i differ at 
most by one for S consecutive iterations. We choose a value of k
Fig. 3. Empirical mode decomposition (using variant CEEMDAN) of the stochastic 
signal superposed with a periodic oscillation Y (t) shown in Fig. 1(a). Here only 
IMFs C1 − C6 are shown.

not larger than 50. The first IMF component of the data is then 
C1(t) = h(1)

k−1 − m(1)

k−1. The second IMF, C2(t), is then obtained by 
applying the same procedure to the signal Y (1)(t) = Y (t) − C1(t). 
An improved version of this standard implementation, that we 
use in the following, is called Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN) [20]. CEEMDAN 
applies the mode decomposition to an ensemble of white noise 
perturbed initial signals, for each IMF separately, yielding more 
meaningful IMFs while maintaining the completeness of the de-
composition. Our CEEMDAN uses an R-package recently available at 
CRAN [13]. The stopping criterion is set to S-number = 4 and the 
noise strength is 0.1 standard deviations relative to Y (t). Note that 
each IMF is more general than simple harmonic functions, since, 
instead of constant amplitude and frequency, an IMF can have vari-
able amplitude and frequency along the time axis. Fig. 3 shows the 
first six IMFs of signal Y (t) illustrated in Fig. 1(a). From the EMD 
of Y (t), one obtains a set of IMFs, Ci(t) with i = 1, . . . , m and a 
residual R(t), such that

Y (t) = R(t) +
m∑

i=1

Ci(t) . (7)

To determine how many periodic “modes” are reasonable to 
consider for a certain given process, the modes to be filtered out 
have been selected by direct inspection [5]. Below, we extend the 
methodology to automatically select the modes to be removed. To 
that end, we sort the IMFs Ci(t) into two groups, one that adds up 
to recover the stochastic signal X(t), and another that reconstructs 
γ (t). The extraction of a full hierarchy of IMFs is done iteratively. 
Stochastic fluctuations are in a certain sense also oscillations, and 
can be easily confused with short-time periodic oscillations. Fig. 4
compares the spectra of signal Y (t), with the signal after removing 
two illustrative IMFs, namely C4(t) and C6(t) (see Fig. 3). The ef-
fect of the removal of the IMF combination C3(t) and C4(t) is also 
shown and is discussed below. While removing C4(t) decreases 
significantly the peaked band, removing C6(t) has no effect on the 
peaked band. In this way, the EMD-based decomposition of a signal 
can be used as a band-pass filter. If the oscillations are typically in 
the range of large frequencies, one would expect a combination of 
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Fig. 4. Spectra of the signal after removing IMF C4(t) (dashed blue line), after re-
moving IMF C6(t) (dotted red line) and after removing IMF C3(t) + C4(t) (solid 
green line) compared with the spectrum of original signal Y (t) (solid black line) 
illustrated in Fig. 1. The IMFs are plotted in Fig. 3.

IMF of low order to represent the oscillatory contribution and vice 
versa. We evaluate the best combination of IMF that represent the 
stochastic contribution, by analyzing the Markov property of the 
signal Y (i)(t) = Y (t) − Ci(t) for each function Ci(t). The Markov 
property of Y (i)(t) on a time-scale τ is given by the equality of 
two conditional probability density functions (PDF), namely

ρ
(i)
τ

(
y0

∣∣y1, τ
) = η

(i)
τ

(
y0

∣∣y1, τ ; y2,2τ ; . . . ; yn,nτ
)

, (8)

where yn are specific values of the time shifted signal Y (i)(t −nτ ). 
Equation (8) is the mathematical definition of a Markov process. 
In practice such definition is not implementable, since it implies 
a comparison with all possible combination of previous values. 
Assuming that the dependency on previous values decays mono-
tonically with the time-lag nτ , one uses instead the simpler form

ρ
(i)
τ

(
y0

∣∣y1, τ
) = η

(i)
τ

(
y0

∣∣y1, τ ; y2,2τ
)

, (9)

with y0 being a value in the range of observed values of the series 
Y (i)(t). Monotonic decrease of the dependency on previous steps 
ensures that if equation (9) is fulfilled, equation (8) also holds. The 
fulfillment of equation (8) is quantified by the so-called weighted 
mean square error in logarithmic space [14]:

ε
(i)
τ (y1, y2) =

∫
ζ

(i)
τ

(
ln(ρ

(i)
τ ) − ln(η

(i)
τ )

)2
dy0∫

ζ
(i)
τ

(
ln2(ρ

(i)
τ ) + ln2(η

(i)
τ )

)
dy0

, (10)
where ζ (i)
τ = ρ

(i)
τ + η

(i)
τ . The metric ε(i)

τ is then averaged over y1

and y2

ετ =
∞∫

−∞

∞∫
−∞

ε
(i)
τ (y1, y2)w(y1, y2)dy1dy2 , (11)

where

w(y1, y2) =
√

n(y1, y2)∫ ∫ √
n(y1, y2)dy1dy2

, (12)

where n(y1, y2) denotes the number of counts in each conditional 
PDF η(i)

τ . The metric ετ is evaluated for l different time-scales of 
interest, and therefore we use the average

ε = 1

l

l∑
τ=1

ετ (13)

as the final measure to test for the Markov property.
Fig. 5 illustrates the comparison of conditional and double con-

ditional PDFs for one time-scale τ = 0.1 s, related to equation (8). 
The comparison is shown for (a) the superposed signal Y (t) and 
(b) the superposed signal with C4 removed Y (4)(t). For the su-
perposed signal the PDFs clearly not match, as expected by the 
presence of the oscillatory component. The removal of C4 only 
slightly improves the equality, as it contains a part of the oscil-
latory contribution (cf. Figs. 3 and 4). The visible improvement on 
this time-scale is only marginal in this representation, also implied 
by the values of ετ given in the figure. As other IMFs also might 
contain oscillatory contributions, we remove all possible combina-
tions of IMFs and evaluate the value of ε by averaging ετ over 
different time-scales. The combination removal that minimizes ε in 
equation (13) is the selected combination that resolves the periodic 
oscillation and, simultaneously, all other modes sum up composing 
the stochastic signal.

3.2. Resolving the stochastic contribution when superposed with 
periodic oscillations

From the filtering procedure described previously, one obtains 
estimations of both X(t) and γ (t) components of signal Y (t) (see 
equation (1)).

The periodic component γ (t) is defined through the estima-
tion of parameters α and σ (see equations (5) and (6)). Parameter 
σ can be estimated from the inspection of the power spectrum, 
since it scales with the width of the peaked band of frequencies 
Fig. 5. (Color online) Contour plots of the conditional PDF (black) and double conditional PDF (blue) according to equation (8). (a) Y (t), (b) Y (4)(t) = Y (t)) − C4(t). The 
time-scale is τ = 0.1 s. For clarity of presentation, only the plane at y2 = σ(y2) is shown here.
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(cf. Fig. 2). Parameter α = γmax/σX is given by the maximum am-
plitude of the periodic component γmax and the standard deviation 
σX of the stationary solution of the stochastic component X(t), 
whose PDF is given by

ρstat(x) = 1

D(2)(x)
exp

⎛
⎝∫

x

D(1)(x′)
D(2)(x′)

dx′
⎞
⎠ . (14)

This stationary solution is obtained from the Fokker-Planck equa-
tion [16]

∂ρ(x, t)

∂t
= − ∂

∂x

(
D(1)(x)ρ(x, t)

)
+ ∂2

∂x2

(
D(2)(x)ρ(x, t)

)
. (15)

For the stationary solution one substitutes in equation (15)
one has ρ(x, t) ≡ ρstat(x) and therefore ∂ρstat(x)

∂t ≡ 0, yielding 
D(1)(x)ρ(x, t) − ∂

∂x

(
D(2)(x)ρ(x, t)

) = K being K = 0 since distri-
bution ρ(x, t) needs to be zero for x → ∞. Dividing both terms 
by D(2)(x)ρ(x, t), integration leads straightforwardly to equation 
(14).

The stochastic component X(t) is modeled by equation (2) and 
can be derived directly from the series of measurements following 
what has been called Langevin approach [15]: using the definition 
of the drift and diffusion coefficients as time derivatives of the first 
and second conditional moments, namely

D̃(n) (x) = 1

n! lim
τ→0

1

τ
M̃(n)(x, τ ) , (16)

with M̃(n) representing the estimated nth conditional moment de-
fined as

M̃(n)(x, τ ) = 〈
(X(t + τ ) − X(t))n〉

X(t)=x . (17)

If the process is sufficiently sampled, obeys the Markov condition 
and is not spoiled by external sources of noise [9,10], one typi-
cally observes a linear dependence of the condition moments for 
the lowest range of τ values [15]. In practice one computes both 
conditional moments for the full range of observed values of X
and for a few values of τ (typically between three and five times 
the inverse of the sampling frequency) and then solves the set of 
equations

M(1)(X, τ ) = D(1)(X)τ , (18)

M(2)(X, τ ) = 2D(2)(X)τ + (D(1)(X)τ )2 , (19)

in an autoregressive sense.
Details on the derivation of equation (2) from a stochastic pro-

cess are described in [15] and a routine in R that implements this 
part of the procedure is available at https://cran .r-project .org /web /
packages /Langevin/. Typically one finds drift and diffusion coeffi-
cients that are well fitted by polynomials as given in equations (3)
and (4).

4. Application of the method to sample data

To test the method described in the previous sections, we start 
by considering the illustrative process introduced in section 2. 
Fig. 6 shows the measure ετ , defined in equation (10), for eval-
uating the Markovianity of a process. Each row corresponds to a 
time-scale τ , see equation (8), and each column to a combination 
of IMFs excluded in the EMD reconstruction. It is apparent, that 
the lowest values of ετ are achieved with different combinations 
of excluded modes for different τ . As the derivation of drift and 
diffusion coefficients following equations (16) and (17) involves a 
Fig. 6. Metric ετ , equation (10), for evaluating the Markovianity of a process after 
excluding specific IMFs. The horizontal line indicates the combination of IMFs that 
are filtered out, while the vertical line shows the value of τ used for computing the 
respective conditional PDFs, ρτ and ητ , see equation (8). Here, τ was varied from 
0.02 s to 0.2 s in steps of 0.02 s.

Fig. 7. Average distance ε of the metric ετ plotted in Fig. 6, see equation (13). The 
values are normalized by εref of the unperturbed stochastic process X(t).

range of τ , the combinations of excluded modes are sorted by in-
creasing average values ε over the values of τ , as shown in Fig. 7, 
cf. equation (13). Here we normalized by εref ≈ 0.24, referred 
to the unperturbed stochastic process X(t). For the perturbed 
and lowpass filtered signal (cf. Fig. 2), this measure amounts to 
εL/εref ≈ 2.46.

This representation clearly shows that the minimal value of ε is 
achieved by removing the third and the fourth IMFs from the sig-
nal. These modes spoil the Markov properties of our sample data 
Y (t) the most and therefore are likely to contain most of the os-
cillatory part of the signal. Consequently, we separate our sample 
data into the extracted oscillatory contribution

γ̃ (t) = C3(t) + C4(t)

and the stochastic contribution includes all other IMFs:

X̃(t) = C1(t) + C2(t) + C5(t) + . . . + Cm(t) + R(t).

Here we choose m = 11. Beyond the fifth mode, no significant 
oscillatory contribution is observed [cf. figure (3)], and therefore 
we can assume that all oscillatory contributions are included in 
modes three and four. This assumption is supported by the av-
erage peak height α̃ = 2.043 of the sweeps in γ̃ (t), which is in 
good agreement with the maximum amplitude α = 2 of the peri-

https://cran.r-project.org/web/packages/Langevin/
https://cran.r-project.org/web/packages/Langevin/
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Fig. 8. (Color online) Comparison between segments of (a) the stochastic signal and 
(b) the periodic oscillations of the original superposition and the corresponding es-
timations after the decomposition.

odic oscillation γ (t). Theoretically, one can take as much modes as 
needed. In our case, larger m lead to the same results.

Fig. 8 shows a sample of (a) the estimated stochastic contribu-
tion X̃(t) and (b) the estimated periodic contribution γ̃ (t), result-
ing from the decomposition of the superposed process Y (t). The 
stochastic signal X(t) and the periodic oscillation γ (t) (as shown 
in Fig. 1) are plotted as reference, clearly showing a very good 
match. The periodic contribution is almost completely removed 
from the estimated stochastic contribution, which is also apparent 
from the spectra (cf. Fig. 4).

Next we evaluate if this decomposition is also able to retain 
in the stochastic contribution the same statistical features of the 
original stochastic signal. After decomposing the original process 
into its estimated periodic and stochastic contributions, we per-
form the Langevin approach introduced in section 3.2 for modeling 
the stochastic contribution. For the quantitative comparison of the 
drift and diffusion coefficient estimates D̃(n) between the original 
stochastic signal and estimated stochastic contributions of the per-
turbed process, we use the weighted error

R =

√√√√√√
〈 (

D̃(n)(X) − D̃(n)( X̃)
)2

(
1
2 D̃(n)

err(X) + 1
2 D̃(n)

err( X̃)
)2

〉
, (20)

where D(n)
err denotes the numerical errors of the coefficients, given 

by the previously mentioned R routine. If (in few bins) the numer-
ical error becomes NaN, we cancel the denominator of the fraction 
for those bins, resulting in a standard RMS error. Fig. 9 shows the 
drift and diffusion coefficients of the stochastic contribution X(t)
of the original process (black lines), its estimate X̃(t) (blue dia-
monds), the perturbed and lowpass filtered signal (red stars), as 
well as the original perturbed process Y (t) (grey triangles). The 
estimated drift coefficient collapses very well with the original co-
efficients, showing that the deterministic term in the stochastic 
contribution is preserved under the decomposition of the original 
signal. As for the diffusion coefficients, one observes a small off-
set between the original stochastic contribution and its estimate, 
though agreeing in their functional shape. This offset in the esti-
mated D(2) is consistent with the power spectra, since if one takes 
some modes out the integral of it get smaller than the one for 
the original time series (cf. equation (17)). The lowpass filter fails 
to recover the stochastic contribution from the superposed sig-
nal, which is supported by the significantly higher RMS errors. As 
expected, the estimated coefficients for the unfiltered superposed 
process Y (t) (gray triangles) show a large deviation from the refer-
ence in both amplitude and functional shape, since the stochastic 
model is not suited to signals with oscillatory contributions.

Having both estimated coefficients, drift and diffusion, one is 
able to generate realizations of the estimated process X̃(t), which 
can be taken as statistical reconstructions Xrec(t) of the stochas-
tic contribution of the original process X(t). Fig. 10(a) shows the 
PDF of the original stochastic contribution (solid black lines) and 
the respective estimate X̃(t). Both PDFs overlap well. The same 
is observed for the power spectrum, as shown in Fig. 10(b), as 
well as for the two-point statistics, as illustrated in Fig. 10(c), 
where we further compare the distributions of the increments 
�τ X(t) = X(t + τ ) − X(t) and �τ X̃(t) = X̃(t + τ ) − X̃(t) for dif-
ferent time-lags, namely τ = 0.05 s, 0.1 s, 0.5 s, 1 s and 10 s. All 
in all, the stochastic reconstruction shows a good quantitative and 
qualitative agreement with the original process, in terms of both 
one- and two-point statistics. The spectral agreement, previously 
shown in Fig. 2, further corroborates the accuracy of the method 
here proposed.

5. Robustness tests

In this section we address the robustness of the framework in-
troduced in this paper, considering two separate cases: one where 
the oscillation parameters, α and σ are varied, and a second case 
where stochastic contributions with different dynamical features 
are considered.
Fig. 9. Testing the efficiency of the Huang-Langevin decomposition for stochastic dynamics having a monostable drift and additive noise: D(1) = −X and D(2) = 1. Comparison 
between the stochastic process X(t) (black full line), the extracted stochastic contribution X̃(t) (blue diamonds), the lowpass filtered signal (red stars) and the superposed 
signal Y (t), with no filtering (gray triangles). (a) Estimated drift coefficient D̃(1) and (b) diffusion coefficient D̃(2) . R H L and RL P denote the RMS errors for the Huang-Langevin 
and lowpass filters, respectively.
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Fig. 10. Comparison of X(t) (black solid lines) and the stochastic reconstruction Xrec(t) (blue stars), using the Langevin approach: (a) PDF, (b) spectra and (c) PDF of respective 
increments, �Xτ (t) = X(t + τ ) − X(t) for τ = 0.05 s, 0.1 s, 0.5 s, 1 s and 10 s.
Fig. 11. Weighted error R (cf. equation (20) between the estimated drift coefficients 
D̃(1) of the stochastic process X(t) and the stochastic contribution of the perturbed 
and filtered process. The perturbation is varied by different oscillation parameters, 
σ and α (cf. equations (6) and (13)).

5.1. Varying the oscillation parameters

To check the robustness of our framework against the variation 
of the periodic contribution, we vary the amplitude α and standard 
deviation σ in the range α ∈ [1, 10] and σ ∈ [0.1, 1.5] respectively, 
which corresponds to a wide range of different perturbations. The 
mean frequency μ = 5 Hz is kept constant. For each parameter 
combination, the stochastic process X(t), addressed above, (lin-
ear monostable drift and additive noise) is superimposed with the 
respective periodic contribution. The perturbed signals are then fil-
tered following the procedure described previously, in section 4.

Here we take into account the series of IMFs C1, . . . , C6 solely, 
from which we choose the combination of modes to represent 
the oscillatory contribution of the perturbed process. The per-
turbed processes are then separated into an oscillatory contribu-
tion (equation (5) and (6)) and the stochastic contribution (equa-
tion (2)). Time-scales τi are chosen as in section 4. The values 
of the error R (cf. equation (20)) between the estimated drift 
coefficients of the original and perturbed and filtered stochastic 
processes are shown in Fig. 11. For most combinations of the pa-
rameters σ and α, one observes small errors R , in the range of the 
previously shown case in Fig. 9 and lower, showing good agree-
ment for the separated stochastic contribution. For combinations of 
small σ and large α, the estimated drift of the separated stochas-
tic contribution tends to deviate more from the original (error bars 
do not overlap). For σ = 1.5 and α > 6 the filtering method fails 
to recover the true stochastic contribution. Especially problematic 
are therefor cases where large values of the normalized amplitude, 
namely α > 4, are combined with a wide frequency bandwidth. 
For small values of the normalized parameter α ≤ 2, the proposed 
filter allows for a good estimation of the deterministic dynamics of 
the perturbed stochastic process.

5.2. Variation of the stochastic dynamics of the stochastic signal

To evaluate the robustness of our framework against different 
stochastic dynamics, we use the periodic component introduced in 
section 2 (μ = 5 Hz, α = 2 and σ = 0.5) in two different cases: in 
one we superpose the periodic component on stochastic dynam-
ics composed by a linear monostable drift (D(1)(X) = aX) and in 
the other we consider a bistable drift (D(1)(X) = −X3 + aX). We 
vary a in [−1, −10] for the monostable case, increasing the drift, 
and for the bistable case in [1, 10], increasing the bistability of the 
drift. For both cases, the noise D(2)(X) = 1 + dX2 is varied with 
d in [0, 1], covering additive and multiplicative noise with differ-
ent noise levels. All superposed stochastic processes are filtered, 
following the procedure described in section 4 and the errors R
(equation (16)) between the estimated drift coefficients of the orig-
inal and perturbed and filtered stochastic processes are calculated 
for each filtered process, analogue to section 5.1. The results are 
plotted in Fig. 12 for the monostable cases (a) and the bistable 
cases (b). In the monostable case, the proposed filter succeeds to 
recover the stochastic contribution of the perturbed processes well, 
within overlapping error bars, for processes with additive or low 
multiplicative noise levels (d ≤ 0.1) and weak drift (a ≤ 4). For 
stronger drift and multiplicative noise levels, the recovery of the 
underlaying stochastic dynamics becomes poorer, as the periodic 
perturbation becomes hidden in stochastic noise.

In the bistable case, our framework succeeds to recover the 
stochastic contribution well for low to intermediate bistability 
(a ≤ 4) for all tested noise levels. At higher levels of bistability, 
our method becomes less reliable and eventually fails to recover 
the stochastic contribution of some of the perturbed processes.

It should be noted, that the robustness tests covered in this 
section are solely related to the data intrinsic selection of IMFs 
covering the periodic component of the perturbed processes. Most 
of the perturbed processes for which our framework was found to 
be less reliable can still be treated with empirical mode decompo-
sition. In these cases, the measure ε/εref often is very similar for 
several IMF combinations. One can consider different combinations 
of IMFs with low ε/εref values, paying attention also to spectra of 
the particular IMFs. This can yield plausible results, at the cost of 
requiring human interaction to the method.

6. Conclusions and outlook

In this paper we introduce a purely data driven framework for 
resolving the superposition of periodic oscillations in stochastic 
dynamics. The method is based on the estimate of the param-
eters describing each one of the components, the periodic per-
turbation and the stochastic process. To that end we apply the 
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Fig. 12. Weighted error R (cf. equation (20) between the estimated drift coefficients D̃(1) of different stochastic processes given by the parameters a, b, c = 1 and d
(cf. equations (3) and (4)) and the related perturbed and filtered processes. (a) Monostable stochastic processes (b = 0) and (b) Bistable stochastic processes (b = −1). The 
perturbation is kept constant with σ = 0.5 and α = 2 (cf. equations (6)).
empirical mode decomposition of the observed process and in-
troduce a metric to automatically evaluate which of the intrinsic 
mode functions are more likely to be decoupled from the stochas-
tic process. While the EMD can straightforwardly be applied to 
decompose a signal into a set of intrinsic modes, it does not pro-
vide a procedure to distinguish between its periodic and stochastic 
contributions. Our approach combines the Huang (EMD) decompo-
sition with the Langevin modeling of the Markovian components, 
extending the applicability of typical procedures, namely EMD. The 
proposed framework retrieves good results for a wide range of fre-
quency and amplitude in the periodic oscillation as well as for 
different stochastic processes (bistable/monostable dynamics, ad-
ditive/multiplicative noise). A point for discussion at this stage 
concerns the apparent mismatch between the order of the mode 
and its relevance. In the cases considered above, the first mode of 
the empirical mode decomposition seems to be strongly coupled 
with the stochastic contribution in the measured signal. While at 
first this may seem counter-intuitive, one should notice that the 
intrinsic mode functions are not ranked by importance, e.g. ac-
cording to their energy, as it would be the case in proper orthog-
onal decomposition. Empirical mode decomposition is data-driven: 
one calculates the modes by subtraction of average envelopes of 
the fluctuations, from high frequency to low frequency. Conse-
quently, empirical mode decomposition behaves like a bandpass 
filter, i.e. each mode corresponds to a specific frequency band. In 
particular, if one removes something around 3-8 Hz in a 100 Hz 
signal, the first mode includes mostly higher frequency informa-
tion and is not relevant to the perturbation contribution in the 
signal.

Concerning possible extensions of the present framework, we 
stress that the stochastic analysis used in this paper was already 
extended to series of values that, being non-Markovian in time, are 
Markovian in scale, i.e. have a corresponding series of increments 
for a given time-lag, that are Markovian through a hierarchy of 
different time-lags. See e.g. Ref. [3] and references therein.

Furthermore we have tested the presented framework on two 
stochastic processes with shot-noise, based on stochastic differen-
tial equations similar to the Langevin equation, namely dv/dt =
−av + h + �, with a = 0.5, � being the Gaussian white noise, and 
the shot noise h having unitary rate and intensity. In one case, 
� was chosen to be 0 and in the second case to have a variance 
0.01. Both processes were superposed with the periodic oscillations 
used in the main example in section 4. After filtering, the drift and 
diffusion coefficients D(1) and D(2) could be extracted from the 
data within overlapping error bars, in similar quality to the results 
shown in Fig. 9, with D(4) ≈ 0.

All in all, the present framework now enables to approach 
measurement data, spoiled with local oscillations at the middle 
frequency-range. Possible situations range from aerodynamical ex-
periments with airfoils, e.g. when fluctuating lift and drag forces 
superposed with localized oscillation due to vibrations in the wind 
tunnel setup, to bacteria mobility in suspensions, when stochastic 
trajectories are suddenly perturbed by localized vibrations of the 
fluid.
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