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Abstract: A healthy dietary pattern is associated with a lower risk of metabolic syndrome (MetS) 

and reduced inflammation. To explore this at the molecular level, we investigated the effect of a 

Nordic diet (ND) on changes in the gene expression profiles of inflammatory and lipid-related genes 

in peripheral blood mononuclear cells (PBMCs) of individuals with MetS. We hypothesized that the 

intake of an ND compared to a control diet (CD) would alter the expression of inflammatory genes 

and genes involved in lipid metabolism. The individuals with MetS underwent an 18/24-week 

randomized intervention to compare a ND with a CD. Eighty-eight participants (66% women) were 

included in this sub-study of the larger SYSDIET study. Fasting PBMCs were collected before and 

after the intervention and changes in gene expression levels were measured using TaqMan Array 

Micro Fluidic Cards. Forty-eight pre-determined inflammatory and lipid related gene transcripts 

were analyzed. The expression level of the gene tumor necrosis factor (TNF) receptor superfamily 

member 1A (TNFRSF1A) was down-regulated (p = 0.004), whereas the nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) subunit, RELA proto-oncogene, was up-regulated (p = 

0.016) in the ND group compared to the CD group. In conclusion, intake of an ND in individuals 

with the MetS may affect immune function. 

Keywords: metabolic syndrome; randomized controlled dietary intervention; gene expression; 

peripheral blood mononuclear cells; inflammation 

 

1. Introduction  

The metabolic syndrome (MetS) includes a cluster of related risk factors causing increased risk 

of cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM). Central obesity is one of the 

major factors causing MetS, and metabolic alterations caused by obesity are associated with low-

grade chronic inflammation [1–3]. The development of MetS is associated with a sedentary lifestyle, 

excessive energy intake, and an unhealthy diet [4]. It is well known that a Mediterranean-style dietary 

pattern reduces the risk of MetS [4,5]. The biological mechanisms causing the beneficial effects of a 

healthy diet are, however, largely unknown. 

Peripheral blood mononuclear cells (PBMCs) are immune cells consisting of lymphocytes and 

monocytes. It is well established that a number of dietary factors modulate gene expression profiles 

in PBMCs [6–15]. Since these cells play a key role in the process of inflammation and are exposed to 

many of the same circulating factors as organs and the arterial wall, they may provide information 

on how the diet influences systemic inflammation and metabolic changes in peripheral tissues [15]. 

We have previously shown that a Nordic diet (ND) improved the lipid profile, and the 

circulating inflammatory marker IL-1 receptor antagonist (IL-1Ra) in individuals with MetS 

compared to a control diet (CD) (The SYSDIET study) [16]. In addition, we have shown, using global 

transcriptome profiling, that an ND resulted in the differential expression of inflammatory gene 

pathways in subcutaneous adipose tissue and PBMCs compared with a CD [12,14]. The ND also 

resulted in the down-regulation of toll-like receptor 4 (TRL4), interleukin 18 (IL18), and 

thrombospondin (CD36), and the up-regulation of peroxisome proliferator-activated receptor delta 

(PPARD) after a 2 h oral glucose tolerance test in PBMCs [13]. 

In this sub-study of the SYSDIET study, our specific aim was to examine the effect of a ND 

compared to a CD on pre-determined inflammatory and lipid related gene transcripts in fasting 

PBMC samples. To further understand the mechanisms behind the improved lipid profile and the 

possible anti-inflammatory effect of ND, we hypothesized that the intake of an ND compared to a 

CD would alter the expression of inflammatory genes and genes involved in lipid metabolism. 
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2. Materials and Methods 

2.1 The SYSDIET Study 

The SYSDIET study was a randomized controlled multi-center study conducted in 2009–2010 in 

Kuopio and Oulu (Finland), Uppsala and Lund (Sweden), Aarhus (Denmark) and Reykjavik 

(Iceland), as previously described [16]. The primary outcome was glucose tolerance and insulin 

sensitivity. The secondary outcomes were related to MetS risk factors, i.e., blood pressure, serum 

lipids, inflammatory markers and gene expression. The detailed information on the study design and 

the main measurements have been described previously [16]. Briefly, after a one-month run-in 

period, the participants were randomized into a CD group or an ND group for 18 to 24 weeks. The 

main inclusion criteria were a body mass index (BMI) of 27–38 kg/m2, 30–65 years of age, and two 

other International Diabetes Federation (IDF) criteria for MetS [17]. A stable use of anti-hypertensive 

and lipid lowering medication during the intervention was allowed. The main exclusion criteria have 

been described previously [16]. 

The major visits were in the beginning (0 week), at 12 weeks, and at either 18 or 24 weeks (end 

of the study). The diets were isocaloric and the study participants were instructed to keep physical 

activity and body weight constant and their smoking and drinking habits or drug treatment during 

the study unchanged. All study participants provided written informed consent and local Ethical 

committees of all the centers included in the current analysis (Research Ethics Committee of the 

Hospital District of Northern Savo and Northern Ostrobothnia Hospital District, Oulu, Finland and 

Regional Ethical Review Board, Lund) approved the study protocol in accordance with the Helsinki 

Declaration. The study is registered at clinicaltrials.gov as NCT00992641. 

For this sub-study of SYSDIET, we included participants (n = 94) who had given PBMCs in 

Kuopio, Lund, and Oulu, and who fulfilled the inclusion criteria (Figure 1). In total, 54 participants 

in the ND group and 40 in the CD group were included, as previously reported by Leder et al. [13]. 

The maximum weight change during the study was +/−4 kg, none of the participants used statins, 

and the high-sensitivity C-reactive protein (hsCRP) was <10 mg/L at baseline and at the end of the 

intervention, and the BMI was <39 kg/m2, as previously reported [13]. Two of the centers had 24 

weeks of study length (Kuopio and Lund) and one center had 18 weeks of study length (Oulu) [16]. 

 

Figure 1. Flow chart of the participants. 

2.2 Diet 



Nutrients 2019, 11, x FOR PEER REVIEW 4 of 11 

The Nordic nutrition recommendations formed the basis for the ND [18], and the mean nutrient 

intake in the Nordic countries formed the basis for the CD. The main emphasis in the ND group was 

whole-grain products, abundant use of berries, fruits and vegetables, rapeseed oil, three meals of fish 

per week, low-fat dairy products and the avoidance of sugar-sweetened products. More details about 

the diet is described elsewhere [16]. To assess the dietary intake, the participants filled in a 4-day 

dietary record during the run-in period (baseline intake) and three times during the intervention 

period. 

2.3 Biochemical Measurements 

All standard laboratory measurements, and anthropometric measurements were performed 

locally according to the standard operational procedures [16]. The plasma interleukins, plasma tumor 

necrosis factor receptor II (TNF RII), and serum high molecular weight (HMW) adiponectin were 

measured using ELISA, as previously described [16]. 

2.4 Sampling of PBMCs and RNA Extraction 

The PBMCs were isolated from blood samples collected after overnight fasting (12 h) using cell 

preparation tubes (CPT) according to the manufacturer’s instructions (Becton, Dickinson and 

Company, Franklin Lakes, NJ, USA) within 30 to 45 min. All PBMC samples for the RNA analyses 

were prepared in the same laboratory (Karolinska Institute, Stockholm). The total RNA was extracted 

using the RNeasy Mini Kit according to the manufacturer’s instructions (Qiagen, Valencia, CA, USA). 

The RNA integrity was checked using a Bioanalyzer device (Agilent 2100 Bioanalyzer, Agilent 

Technologies, Santa Clara, CA, USA). 

2.5 Real-Time Polymerase Chain Reaction RT-qPCR 

The RNA from all samples was reverse transcribed by a high-capacity cDNA reverse 

transcription kit (Applied Biosystems, Foster City, CA, USA). The selection of genes was primarily 

based on previous dietary intervention studies where the PBMC gene expression of lipid and 

cholesterol metabolism genes was modulated. 

RT-qPCR was performed on an ABI PRISM 7900HT (Applied Biosystems). TaqMan Array Micro 

Fluidic Cards (Applied Biosystems) were used for RT-qPCR amplification of the gene transcripts. 

Three samples were excluded due to a low RNA quality, two samples were excluded due to technical 

problems, and one samples was excluded after quality control. In total, 88 samples were included in 

the final analyses. ΔCt was calculated as Ct(reference gene)–-Ct(target) and the log ratio (ΔΔCt) was calculated 

as ΔCt(end of study)-ΔCt(baseline). The TATA-binding protein (TBP) was selected as the reference gene for 

normalization. 

2.6 Statistical Analysis 

Gene expression (Ct-values) was normalized using TBP as a reference gene, and the change from 

the baseline to the end of study was calculated as a log ratio (delta Ct (end of study) - delta Ct 

(baseline)). The difference between the CD and the ND was tested with a linear regression model, 

adjusted for age, sex and study center. The differences between baseline and end-of-study gene 

expression within the groups were tested with a paired t-test. The correlations between gene 

expression changes and changes in various biochemical measures and inflammatory markers were 

analyzed with Spearman’s correlation using the rcorr function. p-values < 0.05 were considered 

significant. All statistical analyses were performed in R. 
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3. Results 

3.1 Baseline Characteristics  

Eighty-eight individuals (n = 48 ND group, n = 40 CD group) were included in the analyses of 

the present study (Figure 1). Their baseline characteristics are shown in Table 1. 

Table 1. Baseline characteristics of the participants. 

 CD (n = 40) ND (n = 48) 

Male (n,%) 15 (37.5%) 15 (31.3%) 

Age (years) 55.8 (7.8) 54.2 (8.3) 

BMI (kg/m2) 31.9 (2.7) 31.7 (3.1) 

Waist circumference (cm) 105.4 (9.3) 102.6 (9.0) 

BP systolic (mmHg) 131 (17) 127 (14) 

BP diastolic (mmHg) 82 (12) 83 (10) 

Glucose (mmol/L) 5.8 (0.6) 5.9 (0.6) 

Insulin (pmol/L) 59.5 (47–80.8) 56.0 (41.8–75.3) 

Triglycerides (mmol/L) 1.5 (0.5) 1.5 (0.7) 

Total cholesterol (mmol/L) 5.3 (1) 5.3 (1) 

HDL cholesterol (mmol/L) 1.3 (0.5) 1.4 (0.3) 

LDL cholesterol (mmol/L) 3.3 (0.9) 3.2 (0.9) 

hsCRP (mg/L) 1.5 (0.9–3.1) 1.5 (0.8–2.8) 

sTNFRII (ng/L) 1900 (415) 1953 (466) 

IL-6 (ng/L) 1.3 (1.1–1.7) 1.3 (1–1.8) 

IL-10 (ng/L) 0.9 (0.8–1.5) 0.8 (0.8–1.5) 

IL-1 (ng/L) 0.12 (0.12–0.17) 0.12 (0.12–0.13) 

IL1 Ra (ng/L) 309 (238–463) 301 (220–466) 

HMW adiponectin (µg/L) 3.6 (2.2–6.7) 3.9 (2.8–6) 

Values are presented either as mean (SD), median (25th–75th percentile) or n (%). 

The changes in nutrient intake were in agreement with the results obtained for the whole study 

population, as previously reported [13]. The polyunsaturated fatty acid (PUFA) intake increased, 

saturated fatty acid (SFA) intake decreased and the intakes of β-carotene and fiber increased in the 

ND group compared to the CD group. 

3.2 Gene Expression Profiling in PBMCs 

Compared to the CD group, the expression level of TNFRSF1A was significantly down-regulated 

in the ND group after intervention (p = 0.004), whereas the expression level of RELA was significantly 

increased (p = 0.016) after the intervention (Figure 2). No other differences in gene expression among 

inflammatory genes were observed between the groups after the intervention (Figure 3, 

Supplementary Table S1). No altered expression levels of the lipid metabolism-related genes were 

observed in the ND group compared to the CD group (Figure 4, Supplementary Table S1).  

A within-group analysis showed that the between-group differences were mediated by down-

regulation of the TNFRSF1A gene in the ND group (p = 0.037) (Supplementary Figure S1), whereas 

the expression level of the RELA gene was significantly down-regulated in the CD group (p = 0.007) 

(Supplementary Figure S2). In addition, there were several within-group changes in both the ND and 

the CD groups (Supplementary Figures S1 and S2). 
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Figure 2. Gene expression changes (log ratio) of RELA and TNFRSF1A in the Nordic diet (ND) and 

control diet (CD) groups, adjusted for age, sex and study center. ΔCt was calculated as Ct(reference gene)-

Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of study)-ΔCt(baseline). Differences between the 

groups were tested with a linear regression model. p-values < 0.05 were considered significant. 

 

Figure 3. Gene expression changes (log ratio) in the ND relative to the CD of inflammation related 

genes. ΔCt was calculated as Ct(reference gene)-Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of 

study)-ΔCt(baseline). Differences between the groups were tested with a linear regression model, adjusted 

for age, sex and study center. p-values < 0.05 were considered significant. 
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Figure 4. Gene expression changes (log ratio) in the ND relative to the CD of lipid metabolism-related 

genes. ΔCt was calculated as Ct(reference gene)-Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of 

study)-ΔCt(baseline). Differences between the groups were tested with a linear regression model, adjusted 

for age, sex and study center. p-values < 0.05 were considered significant. 

3.3 Correlation Analysis 

We correlated the changes in gene expression of TNFRSF1A and RELA with changes in several 

plasma markers related to health, irrespective of group. Whereas the change in the mRNA level of 

TNFRSF1A did not significantly correlate with any of the circulating metabolites, the change in the 

mRNA level of RELA positively correlated with the change in hsCRP concentration and negatively 

with the change in low-density lipoprotein (LDL)-cholesterol (LDL-C) concentration, respectively 

(data not shown). 

4. Discussion 

In the present study, we investigated the impact of a ND compared to a CD on inflammation 

and lipid metabolism-related genes of PBMCs in individuals with MetS participating in a multi-

center intervention study for 18/24 weeks. The ND group had an increased expression level of RELA 

and a decreased expression level of TNFRSF1A in their isolated PBMCs compared to the CD group. 

Our data are in line with previous findings [19] where the expression level of several inflammatory 

genes such as TNFRSF1A and TNFRSF1B were down-regulated in PBMCs in a diet-induced weight 

loss study including 34 overweight individuals with abnormal glucose metabolism and MetS. In the 

present study, the individuals kept a stable body weight, but despite this, the ND down-regulated 

the gene expression level of TNFRSF1A, which supports the key role of diet in the treatment of the 

MetS. Our data also agree with, and extend our previous findings using a transcriptome-wide 

approach, demonstrating that pathways regulating the mitochondrial electron transport chain, 

immune response, and cell cycle in addition to gene transcripts with common motifs for the 

transcription factors Nuclear respiratory factor 1 (NRF1), NRF2, and nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB ) were down-regulated in the ND group compared  to 

CD [14]. 
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The increased intake of SFA in contrast to PUFA has been shown to increase liver fat and liver 

enzyme levels [20–22]. While the individuals included in the present study were characterized by 

having MetS, studies have suggested that both MetS and non-alcoholic fatty liver disease (NAFLD) 

very early in the progression share several common stimulatory mechanisms [23]. Interestingly, the 

pro-inflammatory TNF superfamily has been suggested to play a key role in the development of 

NAFLD and subsequently non-alcoholic steatohepatitis (NASH) [24]. Increased gene expression 

levels of both TNF and TNFR1 have been shown in humans with NASH, thus supporting a role for 

the TNFR1 pathway in the progression of NASH. Our finding of a reduced gene expression level of 

TNFRSF1A could thus be associated with attenuation of both inflammation and liver fat 

accumulation. The inflammatory gene expression profile in PBMCs has previously been shown to 

reflect the immune component of white adipose tissue [25] and liver lipid metabolism [26], further 

supporting the notion that PBMC gene expression may be useful in providing information about 

metabolic health in general. 

In addition, the gene transcript RELA encoding for the p65 NF-B subunit was significantly up-

regulated in the ND group compared to the CD group. This between-group difference was primarily 

caused by a down-regulation of this gene within the CD group and therefore, this finding may 

suggest that the ND plays a role in maintaining homeostasis in the immune response. The activation 

of the NF-kB system seems to be important in promoting liver inflammation [27]; however, the role 

of RELA (p65) in the development of atherosclerosis is less clear. Nonetheless, RELA has been shown 

to be a key regulator of the inflammatory response in macrophages [28], where overexpression of 

RELA in apolipoprotein E knock-out mice led to reduced atherosclerotic lesion size and higher 

energy expenditure. Thus, the effects of the activation of RELA and the NFkB pathway may vary in 

different tissues (liver/macrophages) and depend on the inflammatory state of the individuals 

(chronic/acute). The observed increase in RELA gene expression in PBMCs (precursor for 

macrophages) in the present study in the ND group compared with the CD group in the present 

study may, thus, be associated with an atheroprotective effect. However, future studies are 

warranted to further understand the role of an ND in the regulation of RELA, and the consequences 

of this regulation in immune cells. 

None of the gene transcripts encoding proteins related to lipid metabolism were changed by the 

ND compared to the CD. We have previously shown that exchanging SFA with PUFA reduced total 

cholesterol and LDL-C by 9% and 11%, respectively, among subjects with slightly elevated cholesterol 

[29], and changed the PBMC expression levels of several lipid metabolism-related genes [30]. The 

reason why we did not observe any changes in lipid metabolism-related genes in the present study, 

may be due to the smaller effect of the ND on the lipid profile as previously shown [16]. 

Interestingly, when only comparing changes in gene expression levels within the groups, we 

observed that there are many more genes regulated within the CD group compared to within the ND 

group. We can speculate that the reason for the larger effect in the CD group may be that volunteers 

in this kind of study are usually a health-conscious population. If the subjects in the CD group 

changed to a not-so-healthy diet, a more pronounced effect on the gene expression profiles might be 

seen. An unhealthy diet may stress the system more than eating a healthier diet (ND group). These 

findings are also in line with the results from the white adipose tissue whole genome expression 

profiles in the SYSDIET study [12]. 

A major strength of the present study is that we were able to use data from a well-designed 

randomized controlled dietary intervention study, where the changes in gene expression in the ND 

group were compared to the changes in a CD group. A problem with longitudinal studies using 

PBMCs is the short (2–3 weeks) life span of the mononuclear cells. Thus, some cells were exposed to 

the diet longer than other cells, which might influence the results. 

5. Conclusions 

We found an increased expression of RELA and a reduced expression level of TNFRSF1A in 

individuals with MetS after the intervention. These data provide further evidence that the 

consumption of a ND compared to a CD may affect the immune response at the molecular level in 
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PBMCs. Within the preselected genes that were examined, no gene expression changes in lipid 

metabolism-related genes were observed between the ND and CD, and further studies are needed to 

confirm if PBMC gene expression profiles may explain the improvement of the lipid profile in 

circulation observed after intake of a ND. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. Gene 

expression changes (deltaCt) in the ND group at baseline and end of study. ΔCt was calculated as Ct(reference gene)-

Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of study)-ΔCt(baseline). Differences between the time points 

are tested with a paired t-test. p-values < 0.05 were considered significant. Figure S2. Gene expression changes 

(deltaCt) in the CD group at baseline and end of study. ΔCt was calculated as Ct(reference gene)-Ct(target), and the log 

ratio (ΔΔCt) was calculated as ΔCt(end of study)-ΔCt(baseline). Differences between the time points are tested with a 

paired t-test. p-values < 0.05 were considered significant. Table S1. Gene expression change from baseline to end 

of study in SYSDIET relative to control group,  
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