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ABSTRACT
The turbulent structures and long-time flow dynamics of shock diffraction over 90○ convex corner associated with an incident shock Mach
number Ms = 1.5 are investigated by large eddy simulation (LES). The average evolution of the core of the primary vortex is in agreement with
the previous two dimensional studies. The Type-N wall shock structure is found to be in excellent agreement with the previous experimental
data. The turbulent structures are well resolved and resemble those observed in the experimental findings. Subgrid scale dissipation and
subgrid scale activity parameter are quantified to demonstrate the effectiveness of the LES. An analysis based on turbulent-nonturbulent
interface reveals that locally incompressible regions exhibit the universal teardrop shape of the joint probability density function of the second
and third invariants of the velocity gradient tensor. Stable focus stretching (SFS) structures dominate throughout the evolution in these
regions. Stable node/saddle/saddle structures are found to be predominant at the early stage in locally compressed regions, and the flow
structures evolve to more SFS structures at later stages. On the other hand, the locally expanded regions show a mostly unstable nature. From
the turbulent kinetic energy, we found that the pressure dilatation remains important at the early stage, while turbulent diffusion becomes
important at the later stage. Furthermore, the analysis of the resolved vorticity transport equation reveals that the stretching of vorticity due to
compressibility and stretching of vorticity due to velocity gradients plays an important role compared to diffusion of vorticity due to viscosity
as well as the baroclinic term.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5113976., s

NOMENCLATURE
General description and validation
I incident shock wave
DS diffraction shock wave
EW expansion shock wave
CS contact surface
SL shear layer
KHI Kelvin-Helmholtz instabilities
V vortex core
VV viscous vortex
VS vortex shock
LS lambda shock

Local flow topology
P first invariant of the velocity gradient tensor
Q second invariant of the velocity gradient tensor

R third invariant of the velocity gradient tensor
Qw second invariant of the rotation-rate tensor
UFC unstable focus compressing
UN/S/S unstable node/saddle/saddle
SN/S/S stable node/saddle/saddle
SFS stable focus stretching
SFC stable focus compressing
UFS unstable focus stretching

Vorticity transport equation (VTE)
VSC (Vc) stretching of vorticity due to compressibility
VSG (Vg) stretching/tilting of vorticity due to velocity gradi-

ents
B Baroclinic torque
DFV (Dv) diffusion of vorticity due to viscosity
E enstrophy
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I. INTRODUCTION

Study of shock diffraction over various geometries has been
an active research field for several decades. For example, Grif-
fith and Bleakney1 addressed the complexity involved in unsteady
shock dynamics related to such shock-wave diffraction phenomenon
in early 50’s. Understanding shock diffraction is important for
internal/external compressible flows involving the propagation of
shock waves over solid surfaces, e.g., applications like mitigating
shock/blast wave with designing effective shock resistant struc-
tures. The flow dynamics of these applications involves complex
coupled interactions such as shock-shock, shock-vortex, vortex-
vortex, and shock-turbulence interactions. Along with experimen-
tal approaches, with the advent of numerical techniques, numerical
studies gained popularity for addressing intricate issues associated
with such complex flow dynamics. Two-dimensional (2D) inviscid
simulations2–5 are capable of resolving the general features asso-
ciated with shock-wave diffraction. Most of the studies in the lit-
erature relied upon the inviscid predictions to establish the basic
wave characteristics. Among these, Baum et al.4 presented a 2D
numerical study of complex geometry canisters using an adaptive
finite element based shock capturing scheme. Subsequently, several
qualitative studies addressed the shock wave interaction with the
compressible vortex associated with shock diffraction6–10 problems.
Viscous effects are important to resolve the long-time evolution of
shock-vortex dynamics and shock-boundary layer/shock-shear layer
interactions. High-order scheme based numerical solvers equipped
with robust shock capturing capabilities are essential to resolve the
shock dynamics as well as the wide range of length/time scales of
the turbulence. In this regard, several studies utilized high-order
Weighed Essentially Non Oscillatory (WENO) based schemes11–17

or Discontinuous spectral element method (DSEM) with artifi-
cial viscosity18–20 to address complex flow features associated with
shock diffraction, shock propagation, shock focusing, shock obstacle
interaction, etc. Unsteady three-dimensional (3D) studies of shock
diffraction are not abundant in the literature. Reeves and Skews21

studied the evolution of spiral vortex for 3D edges (“V,” “inverted-
V,” “parabolic,” and “inverted parabolic” types). A general and
preliminary three-dimensional study of the merging of vortices
resulting from shock diffraction and vortex shedding off a discon-
tinuous edge is presented by Cooppan and Skews.22 Also, Skews and
Bentley23 addressed a 3D analysis of the merging of two diffracting
shocks.

In a recent study,19 the authors revisited the shock diffraction
over 90○ convex corner and addressed some intricate features of
resolving the viscous and turbulent flow features. The main issues
related to the 2D numerical predictions of this flow dynamics are
to address the experimentally observed (i) secondary viscous vor-
tex associated with the wall shock interaction with the boundary
layer and (ii) the shear layer behavior (see, e.g., Refs. 24 and 6 for
detail of this canonical benchmark case). These are addressed with a
high-order numerical scheme based predictions by Chaudhuri and
Jacobs.19 It can be realized from the relatively recent experiments
(e.g., Refs. 25 and 26) that the shear layer structures associated with
the long-time evolution exhibit fine turbulent flow structures.

It is evident that 3D simulations and analysis are required to
shed light into the turbulent structures and shear layer instabili-
ties observed in these experiments. To the best of our knowledge,

analysis of 3D flow features associated with shock diffraction over
sharp corners has never been reported before. The objective of this
work is to perform large eddy simulation (LES) to explore the 3D
turbulent flow structures and analyze the long-time behavior of the
shock diffraction over 90○ convex corner with incident shock Mach
number Ms = 1.5. The paper is organized as follows. In Sec. III, a
brief description of the methodology is described. The numerical
setup is presented in Sec. II followed by the results and discussions
in Sec. IV. Finally, conclusions are drawn in Sec. V.

II. PROBLEM SETUP
Moving shock wave of shock Mach number Ms = 1.5 is allowed

to pass through a 90○ convex corner having a rectangular cross sec-
tion of 35 mm × 25 mm. The step height h is taken as 140 mm, and
the step length is set to 25 mm. The problem setup of the simula-
tion is shown in Fig. 1. The mesh resolution of the computational
domain of 200 mm × 175 mm × 35 mm (length-height-width) is
summarized in Table I. The initial location of the moving shock is
positioned at 75% of the step length. Rankine-Hugoniot relations are
used to set the initial conditions for left (shocked state) and right
(stagnant state) states associated with the chosen Ms. Air is con-
sidered as working fluid, and the initial stagnant state is assigned
with temperature T = 288 K and pressure p = 101 325 Pa. The
spanwise (z-direction) direction is considered as the homogeneous
direction, and periodic boundary conditions are applied at these
boundaries. The left and right boundaries (x-direction) are kept as
the initial conditions, and simulations are executed avoiding any
reflections from these boundaries. We apply the symmetry condi-
tion at the top boundary, and adiabatic no-slip boundary conditions
are set for the remaining solid walls. To assign realistic velocity
fluctuations, homogeneous isotropic turbulent velocity fluctuations
are superimposed with the initial velocity field in the shocked gas
region.

III. METHODOLOGY
We solve the filtered compressible Navier Stokes system of

equations to simulate the diffraction of the moving shock, over a
convex corner. The definition of any filtered quantity with a fil-
tered function GΔ and filter width Δ = (Δx × Δy × Δz)1/3 is
given by ϕ̄(x⃗, t) = ∫R3 ϕ(η⃗, t)GΔ(x⃗ − η⃗)dη⃗. Favre averaged quantities
ϕ̃ = ρϕ/ρ̄ are used to reduce subgrid scale (SGS) terms. The in-
house parallel compressible flow solver equipped with the immersed
boundary method is used for this purpose. The fifth-order WENO
scheme is used for inviscid fluxes, and the sixth-order central dif-
ference scheme is used for viscous fluxes. A third-order explicit
Runge-Kutta method is used to advance in time. The SGS stress
and SGS heat flux terms are closed by the wall adapting the local
eddy viscosity (WALE) model. For brevity, the filtered governing
equations, LES model, and the immersed boundary methodology
are not presented here, and the details are available in our previ-
ous works.12,27–29 The immersed boundary method (we use trilinear
interpolation; see Ref. 29) in 3D simulations and LES model con-
stants are essentially similar to those mentioned in these references.
The flow solver is validated with relevant standard benchmark prob-
lems and is reported in our previous works. It is to be noted that
only resolved quantities are used for the analysis and discussions
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FIG. 1. Schematic diagram of the prob-
lem setup.

below. The resolved fluctuating component of any parameter is
obtained by subtracting the spatially averaged (along the homoge-
neous z-direction) resolved quantity from the corresponding instan-
taneous resolved parameter as defined as ϕ′′ = ϕ̃ − ⟨ϕ̃(x, y, t)⟩, where
⟨ϕ̃(x, y, t)⟩ = 1

Lz ∫Lz ϕ̃dz.
To reduce the complexity of the notation, the resolved quanti-

ties are expressed without overbar (⋅) or tilde (̃⋅) notation in most
of the discussions below. This means ϕ̃i ≡ ϕi. To have better clarity,

TABLE I. Simulation parameters.

Total no. of meshes Δx (μm) Δy (μm) Δz (μm) Final time t (μs)

3.3 × 109 52.6 51.4 136.7 757.75

only the notations for the turbulent kinetic energy budget equation
are presented with actual notations.

IV. RESULTS AND DISCUSSIONS
A. General description and validation

The shock diffraction over 90○ diffraction corner is associ-
ated with complex coupled interactions like shock-vortex, shock-
boundary layer, vortex-vortex, and shock-shock interactions. Stud-
ies in the literature show that, 2D Euler predictions sufficiently
agree with the early stage of the general shock dynamics but
suffers from inability to resolve secondary vortex formation due
to boundary layer interactions with the wall shock. Nevertheless,
high-resolution 2D Navier-Stokes simulations with consideration of
viscous/turbulent effects can predict these behaviors well.19,29 This
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canonical benchmark problem of diffraction is being studied in
the literature by several authors, but no 3D numerical studies are
available to account for the long-time behavior of turbulent flow
structures. Experimental observations show existence of these 3D
structures (see Refs. 25 and 26). The LES performed in this study
demonstrates these structures. The early and later stages shock
dynamics and the complex interactions are presented in Fig. 2 and
compared favorably with the experimental results. Especially, the
present LES resolved the intricate turbulent structures illustrated
by the numerical schlieren pictures. A detailed analysis of turbulent
flow features is presented in Secs. IV B–IV E.

The convective Mach number (Mc = U1−Uc
a1
= Uc−U2

a2
) at vari-

ous locations at t = 757.75 μs is found to be 0.53 at A∗, 0.43 at
B∗, 0.29 at C∗, and 0.16 at D∗ (see Fig. 3 for the locations of
the measurements of Mc). Here, Uc = a1U2+a2U1

a1+a2
. Also, U1 and U2

are the free stream velocities across the shear layer, and a1 and a2
are the respective speeds of the sound. The shear layer behavior
shows prominent compressibility effects near the diffraction cor-
ner (A∗) and progressively shifts toward near incompressible regime
around D∗.

We analyze the sufficiency of the domain length in the homo-
geneous direction via two-point autocorrelation function given by

FIG. 2. Comparison of the flow features of the shock wave diffraction: top row: at
early stage and bottom row: at later stage. See nomenclature. Figure (a) exper-
iment, Takayama and Inoue.24 [Reproduced with permission from K. Takayama
and O. Inoue, “Shock wave diffraction over a 90 degree sharp corner–posters
presented at 18th ISSW,” Shock Waves 1, 301–312 (1991). Copyright 1991
Springer-Verlag.] (b) Schlieren: present LES. Figure (c) experiment, Skews et al.25

[Reproduced with permission from Skews et al., “Shear layer behavior resulting
from shock wave diffraction,” Exp. Fluids 52, 417–424 (2012). Copyright 2012
Springer-Verlag.] (d) Schlieren: present LES.

FIG. 3. Locations of probes/segments over a turbulent-nonturbulent interface
(TNTI) contour for the computation of convective Mach number, two-point correla-
tion, and normalized energy spectra.

Rϕϕ(rz) =
Nz

∑
n=1

ϕ′′n ϕ
′′

n+nr, nr = 0, . . . ,Nz − 1; rz = nrΔz. (1)

Figure 4 shows the autocorrelation distributions for velocity fluctu-
ations at different probe locations A to D (see Fig. 3). The curves
degenerate to near zero values within the half of the domain length
in the homogeneous direction. The domain size is thus sufficient
enough so that the periodic boundary condition does not inhibit the
turbulence in the spanwise z-direction.

The accuracy of the LES is further checked by computing the
normalized energy spectra of the fluctuating velocity components.
These are shown in Fig. 5 together with the −5/3 law. These spec-
tra show similar behavior of the peak values and exhibit drop off
of about two decades. The large turbulent scales of the flow fea-
tures are well resolved by the current LES, and SGS dissipation
takes into account the dissipation effects of very fine scales. The
effectiveness of the WALE model and SGS activity are illustrated in
Subsection IV B.

Figure 6 shows the locus of the vortex centroid and the compar-
ison with the previous 2D numerical results of Sun and Takayama.6

The wall shock for the present case is of Type-N as classified in
the work of Matsuo et al.3 Note that an excellent agreement of the
shape of the wall shock with the experimental results of Skews30 is
predicted by the present simulation. The circulation, Γ = ∫sω ds, is
computed over the 3D interaction region and is illustrated in Fig. 7.
The circulation rate is nondimensionalized with the property of the
air at the stagnant state, RT = 287 × 288 m2/s2. The nondimensional
circulation is found to be attaining a saturation value of ≈1.2. How-
ever, Sun and Takayama7 reported a circulation rate of 1.36 based
on their 2D study.
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FIG. 4. Two-point correlation evaluation at t = 757.75 μs: (a) location A, (b) location
B, (c) location C, and (d) location D. Violet solid curve: u, dark green solid curve:
v, and light green solid curve: w.

FIG. 5. Normalized energy spectra with wavenumber κ, at t = 757.75 μs in the
homogeneous direction: (a) location A, (b) location B, (c) location C, and (d) loca-
tion D. Violet solid curve: u, dark green solid curve: v, light green solid curve: w,
and red short-dashed curve: −5/3 law.

FIG. 6. (a) Location of the vortex centroid. Black plus sign: centroid path (sim-
ulation), gray solid curve: mean path, and red open circle: numerical data.6 (b)
Diffracted shock wave location (here, α = a0t, where a0 is the speed of sound
at the stagnant state). Black solid curve: simulation data and green open circle:
experimental data.30

The turbulent and nonturbulent regions for different turbulent
flows are separated by a distinct boundary having several interesting
characteristics like entrainment, abrupt changes in turbulence prop-
erties and intermittency. The shape of this interface is influenced
by all scales of turbulence, in general. Vorticity norm or passive
scalar concentration or concentration field can be used to define this
turbulent-nonturbulent interface (TNTI).31–36 To do this, we use the
mean magnitude of the vorticity at each x-y plane. The 30% of it
is then set as the threshold value to define a TNTI parameter as
TNTIz = 0.3∣ω∣z , z = 1, . . . ,Nz . A location is considered inside the
turbulent region if the magnitude of its local vorticity is higher than
the TNTIz in that x-y plane. Figure 3 depicts the inner turbulent
region covered by the TNTI surface at t = 757.75 μs. The choice of
the threshold value is intuitive, and these contours effectively iden-
tify the vortex dominated turbulent regions for further analysis. The
irrotational engulfed pockets are also visible in this figure. Rota-
tional dominated regions of the flow field can be illustrated from the
normalized Q-criteria,37,38 Λ = WijWij−SijSij

WijWij+SijSij
, where Sij = 1/2(∂ui/∂xj +

∂uj/∂xi) is the strain-rate tensor and W ij = 1/2(∂ui/∂xj − ∂uj/∂xi)
is the rotation-rate tensor. The positive isosurfaces of Λ shown in
Fig. 8 illustrate the vortex tubes and 3D turbulent flow features.

FIG. 7. Time evolution of (a) circulation (Γ) and (b) circulation rate (Γ/t).
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FIG. 8. Isosurfaces of Λ = 0.5 at t = 757.75 μs colored with
the enstrophy.

B. SGS model assessment
In this section, we present the relative contribution of SGS dis-

sipation and assess the effectiveness of the WALE model. The ratio
of μsgs/μ is the measure of effectiveness of the LES model. Figure 9
shows the time evolution of the spatially averaged contours of μsgs/μ
(averaged in the homogeneous z-direction) in the interaction zone.
The ratio, μsgs/μ ≤ 5, indicates that the grid resolution and the contri-
bution of SGS viscosity are in the acceptable range for well resolved
LES. The SGS modeled dissipation εsgs can be defined as28 the sum-
mation of contribution of fluctuating flow-field to SGS dissipation
and the contribution of mean flow-field to SGS dissipation as

εsgs = ε′′sgs + ε⟨sgs⟩. (2)

The contribution of fluctuating flow-field to SGS dissipation approx-
imated as

ε′′sgs ≈ −2⟨μsgsS′′∗ij S′′ij ⟩, (3)

where S′′ij = 1
2(

∂u′′i
∂xj

+
∂u′′j
∂xi
) and S′′∗ij = S′′ij − 1

3S
′′

kkδij.
The contribution of mean flow-field to SGS dissipation can be

expressed as

ε⟨sgs⟩ ≈ −2⟨μsgs⟩⟨S∗ij ⟩⟨Sij⟩, (4)

where ⟨Sij⟩ = 1
2(

∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi
) and ⟨S∗ij ⟩ = ⟨Sij⟩ − 1

3 ⟨Skk⟩δij.
The details of these approximations can be found in the work

of Ben-Nasr et al.28 and Davidson.39

Figure 10 shows the different SGS dissipation parameters (aver-
aged in the homogeneous z-direction) in the interaction zone at
different time instants. It can be seen from this figure that ε′′sgs con-
tributes more toward εsgs compared to ε⟨sgs⟩. The contours of εsgs

ε
show a similar range of values of μsgs/μ as mentioned before. This
corroborates the fact that the mesh resolution in the shear layer
region is sufficient for this LES study. The modeling effectivity of a
LES can also be quantified with the SGS activity parameter as defined
by

ζ = εsgs
εsgs + ε

, (5)

where the resolved molecular dissipation ε = ⟨τ′′ij
∂u′′i
∂xj
⟩. Evidently, 0

≤ ζ < 1, and the lower the value of ζ the more resolved is the LES.
It could be noted that the vortex core region is very well resolved
by the current LES. These are in accordance with the 3D flow

FIG. 9. μsgs/μ of a slice at t = 339.75,
537.75, and 757.75 μs column-wise,
respectively.
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FIG. 10. Different subgrid-scale dissipa-
tion terms at t = 339.75, 537.75, and
757.75 μs column-wise, respectively.

visualization of resolved flow structures illustrated with the isosur-
faces of Λ = 0.5 in Fig. 8.

C. Analysis on the local flow topology
The flow topology analysis based on the turbulent/nonturbulent

interface (TNTI) which separates the inner core of the turbulent
region from the neighborhood of the irrotational regions is much
revealing and enriching to characterize the zonal turbulent flow
structures. The literature shows that the locally compressed regions
in a turbulent flow field are dominated by stable topological struc-
tures, while the locally expanded regions are mainly unstable in
nature and more dissipative. In this section, we present the flow
topology associated with the dynamics of the shear layer at the 90○

diffraction corner. The invariants of the velocity (resolved) gradient
tensor (P, Q, and R) are given by

P = −Sii, (6)

Q = 1
2
(P2 − SijSji −WijWji), (7)

R = 1
3
(−P3 + 3PQ − SijSjkSki − 3WijWjkSki), (8)

where Sij and W ij are strain-rate tensor and rotation-rate tensor as
defined before.

It is well known that the P − Q − R space is divided into several
regions.40–45 The discriminant surface L1, of the characteristic equa-
tion of the eigenvalues of the velocity gradient tensor, separates the

region of real and complex eigenvalues. This can be further split into
L1a and L1b. All eigenvalues are real and equal at a location where
these surfaces form a cusp. On the other hand, purely imaginary
eigenvalues lie on the surface L2 [see Eq. (13)].

The second invariant of W ij is given by

FIG. 11. PDF plot of the normalized first invariant of velocity gradient tensor in the
entire turbulent region at t = 251.75 (violet solid curve), 449.75 (pink solid curve),
and 757.75 (yellow solid curve) μs.
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TABLE II. Quantification of the flow topology enclosed by TNTI as a percentage of their sample size.

Quantity
Dilatation Time (μs) (% of TNTI) Sample (×106) UFC UN/S/S SN/S/S SFS SFC UFS

P = 0 ± 0.05
251.75 10.4 2.7 5.0 6.3 7.8 80.7 . . . . . .
449.75 9.8 8.5 3.2 3.7 2.2 90.9 . . . . . .
757.75 14 33.4 1.1 1.6 1.6 95.6 . . . . . .

P = 3 ± 0.25
251.75 0.2 0.05 11.6 7.1 48.1 21.8 9.8 . . .
449.75 0.3 0.2 12.3 10.4 24.8 44.5 6.9 . . .
757.75 0.2 0.4 10.8 10.2 17.2 55.9 5.8 . . .

P = −3 ± 0.25
251.75 0.1 0.03 18.7 25.1 4.7 24.8 . . . 23.9
449.75 0.2 0.2 17.7 30.8 2.6 30.7 . . . 16.9
757.75 0.1 0.3 16.9 34.1 3.3 31.1 . . . 12.9

Qw = −
1
2
WijWji. (9)

The surfaces dividing the P − Q − R space are

L1 = 27R2 + (4P3 − 18PQ)R + (4Q3 − P2Q2) = 0, (10)

L1a =
1
3
P(Q − 2

9
P2) − 2

27
(−3Q + P2)3/2 − R = 0, (11)

L1b =
1
3
P(Q − 2

9
P2) +

2
27
(−3Q + P2)3/2 − R = 0, (12)

L2 = PQ − R = 0. (13)

We summarize the nomenclature of the invariants and various
3D critical points in the nomenclature section.

The evolution of the probability density function (PDF) of the
first invariant of the velocity gradient tensor is shown in Fig. 11. A

self-similar behavior with highly peaked distribution has been
found. A large positive skewness of the distributions clearly depicts
the similar behavior observed in the compressible isotropic turbu-
lence and compressible mixing layer turbulence of the literature.42

The JPDFs of the Q − R are shown for constant P planes. Three
representative values of P are chosen to distinguish the features of
locally incompressible, compressed, and expanded regions in the
flow-field. Here, Q and R are normalized with Qw and Q3/2

w in these
figures. Table II summarizes all the quantities of the local flow topol-
ogy for different dilatation levels at different time instants. Evidently,
the sample size is large at a later time instant. Note that the percent-
age of TNTI is large for P = 0 compared to locally compressed and
expansion regions. This corroborates with highly peaked distribu-
tion of PDF of P mentioned before. For incompressible turbulent
flows (P = 0), the JPDF of second and third invariants (Q and R) of

FIG. 12. JPDF plot of the normalized second and third
invariants of velocity gradient tensor in the entire turbu-
lent (TNTI) region at t = 251.75, 449.75, and 757.75 μs for
P = 0 ± 0.05.
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FIG. 13. JPDF plot of the normalized second and third
invariants of velocity gradient tensor in the entire turbu-
lent (TNTI) region at t = 251.75, 449.75, and 757.75 μs for
P = 3 ± 0.25.

the velocity gradient tensor exhibits a typical tear drop shape (see
Fig. 12). This signifies the universal small-scale structures of turbu-
lence. The similar universal tear drop shape is also being found for
compressible flows when the JPDF of second and third invariants

of the anisotropic part of the deformation rate tensor is analyzed.
This is similar to the characteristics of incompressible turbulence,
compressible isotropic turbulence, compressible turbulent bound-
ary layer, and compressible mixing layer turbulence. Clearly, the SFS

FIG. 14. JPDF plot of the normalized second and third
invariants of velocity gradient tensor in the entire turbu-
lent (TNTI) region at t = 251.75, 449.75, and 757.75 μs for
P = −3 ± 0.05.
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FIG. 15. TKE budget. Row-wise (top-
to-bottom): production and dissipa-
tion terms. Column-wise (left-to-right):
t = 339.75, 537.75, and 757.75 μs.

structure dominates throughout the evolution with an increasing
trend of the SFS structure with time (95.5% at 757.75 μs).

Figure 13 depicts JPDFs of Q − R for locally compressed
regions. The shape of these distributions evolves to nearly tear drop
shape. However, it can be seen from Table II, that a dramatic distri-
bution of the topologies is existent. Initially, we observe dominant

nonfocal stable structures (48.1% of SN/S/S). Most of the structures
remain stable for compressed regions. Nevertheless, the unstable
structures are also found to be present. The initial SN/S/S structures
shifts toward SFS structures. Although, there exist some more unsta-
ble structures compared to locally incompressible regions, the stable
structures are predominant in locally compressed regions.

FIG. 16. TKE budget. Row-wise (top-
to-bottom): diffusion, pressure-dilatation,
and pressure-work terms. Column-wise
(left-to-right): t = 339.75, 537.75, and
757.75 μs.
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FIG. 17. TKE budget—advection term.
Column-wise (left-to-right): t = 339.75,
537.75, and 757.75 μs.

Figure 14 shows the JPDFs for locally expanded regions. The
distributions are found to be skewed toward the surface L2, and
most of the flow structures show unstable nature. The present anal-
ysis reveals the absence of UFS for the locally compressed region
and the absence of SFC for locally expanded regions. UN/S/S struc-
tures eventually become predominant in these regions. The unstable
structures indeed become significant for locally expanded regions. It
can be realized that the local streamlines in stable topologies are con-
vergent toward critical points, and for unstable topologies, the local
streamlines are divergent from the critical points.

D. Analysis of the turbulent kinetic energy
The Favre averaged transport equation of turbulent kinetic

energy (TKE) is given by

∂ρ̄k
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∂ρ̄ũjk
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FIG. 18. Norm of TKE budget terms as a function of time (a) linear-scale and
(b) logarithmic-scale. Blue solid curve: pressure-dilatation, orange solid curve:
pressure-work, green solid curve: production, red solid curve: dissipation, and
violet solid curve: diffusion.

where P is the production term, D is the dissipation term, Df is the
diffusion term, Pw is the pressure-work term, Pd is the pressure-
dilatation term, and A is the advection term. Note that we kept the
overbar (⋅) or tilde (̃⋅) notation here for better clarity.

FIG. 19. Spatial cross-correlation of (a) pressure-dilatation (Pd), (b) pressure-
work (Pw), (c) production (P), (d) diffusion (Df ), (e) dissipation (D), and (f)
advection (A) terms of TKE budget with each other in time. Blue solid curve:
pressure-dilatation, orange solid curve: pressure-work, green solid curve: produc-
tion, red solid curve: dissipation, violet solid curve: diffusion, and brown solid curve:
advection.
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The spatially averaged contours of these resolved terms are
shown in Figs. 15–17. The behavior of the TKE budget terms of
the shear layer region is found to be typically similar to the com-
pressible mixing layers (see Ref. 38). These contours also show the
out of equilibrium behavior of the turbulent flow linked with the
transient flow evolution. The pressure dilatation and pressure work
terms are associated with the regions of the shear layer near the
diffraction corners (having high convective Mach numbers) as well
as regions where the interactions of the shocklets and the core of the
vortex are significant. It can be seen that sporadic patches of negative
production of turbulent kinetic energy are also predicted. These are
associated with the regions with shear layer/vortex interactions with
local compressions/expansions.27,46,47 We analyze the time evolution
of the magnitude of these terms and their cross-correlations within
the spatially averaged two dimensional turbulent region bounded by

the TNTI. These are shown in Figs. 18 and 19. At the early stage, the
pressure dilatation term remains important, and the diffusion term
plays a major role in the later stage. Diffusion, production, and pres-
sure dilatation terms are found to be nearly one order of magnitude
higher than pressure work and dissipation. Note that the pressure
dilatation is more correlated with dissipation term at the beginning
and evolves to a state with more correlated with pressure work at the
later stage. The overall anticorrelation is evident between production
and dissipation terms. Pressure dilatation and pressure work remain
linked with dissipation. Noticeably, the diffusion term is found to
be anticorrelated with the pressure dilatation term throughout the
evolution. It can be realized that the diffusion terms interact with
the outer regions of the shear layer through the edges of the shear
layer. The advection term is found to be predominantly linked with
pressure work apart from the other terms.

FIG. 20. VTE budget. Row-wise (top-
to-bottom): VSC, VSG, baroclinic, and
DFV terms. Column-wise (left-to-right):
t = 339.75, 537.75, and 757.75 μs.
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FIG. 21. Enstrophy contour. Column-
wise (left-to-right): t = 339.75, 537.75,
and 757.75 μs.

E. Analysis of the vorticity transport equation
We further analyze the budget terms of the mean vorticity

transport equation [Eq. (15)] to shed light into the large scale struc-
tures and the mechanism of the complex flow evolution associated
with the shock diffraction phenomena. The contribution of SGS
terms can be assumed to be negligible for the mutual interactions
among the relatively large vortical structures. The nomenclature of
the different terms of the transport equation is summarized in the
nomenclature section,

∂ω
∂t

+ (u ⋅ ∇)ω = (ω ⋅ ∇)u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
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−ω(∇ ⋅ u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
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+
1
ρ2∇ρ ×∇p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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+∇× (∇ ⋅ τ
ρ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dv

.

(15)

The evolution of the contours of these terms is shown in Fig. 20.
VSC, VSG, DFV, and baroclinic terms interplay during the evolu-
tion process. From the VSC contour, it is clear that there are locally
stretched structures in the core region of the vortex due to compress-
ibility effect arising from local regions of compression/expansion.
The evolution of enstrophy is illustrated in Fig. 21. This corroborates
to saturation of the magnitude of the enstrophy. The time evolution
of the magnitude of these terms and their cross-correlations within
the 3D turbulent region bounded by the TNTI are analyzed further.
Note that the magnitude of the VSG term and VSC term is nearly
one order of magnitude higher compared to the baroclinic term and
DFV term (see Fig. 22). Indeed, VSG plays a major role transfer-
ring the turbulent energy from large scales to small scales in flows
at high Reynolds number as found in the work of Cottet et al.48

FIG. 22. Norm of VTE budget terms as a function of time (a) linear-scale and (b)
logarithmic-scale. Pink solid curve: enstrophy, gray solid curve: VSC, light green
solid curve: VSG, sky blue solid curve: baroclinic, and blue solid curve: DFV.

Positive correlation of VSG and VSC is observed (see Fig. 23). How-
ever, enstrophy is found to be predominantly correlated with VSG
compared to VSC. Furthermore, viscous effects via DFV term are
anticorrelated with enstrophy. DFV is also found to be anticorre-
lated with VSG, which is in accordance with the contours shown in
Fig. 20.

FIG. 23. Spatial cross-correlation of (a) enstrophy (E), (b) VSC (Vc), (c) VSG (Vg ),
(d) baroclinic (B), and (e) DFV (Dv ) terms of VTE budget with each other in time.
Pink solid curve: enstrophy, gray solid curve: VSC, light green solid curve: VSG,
sky blue solid curve: baroclinic, and blue solid curve: DFV.
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V. CONCLUSION

In this work, we presented a 3D analysis of turbulent flow fea-
tures originating from a shock wave diffraction over 90○ convex
corner that has never been attempted before. The intricate features
of the viscous effects, shock boundary layer interactions, and shock
shear layer interactions are well addressed by this analysis. LES with
the WALE model together with high-order numerical schemes (fifth
order WENO for inviscid, sixth order central differencing for vis-
cous fluxes, and third order explicit Runge-Kutta scheme for the
time advancement) is chosen to resolve the complex flow scales. The
in-house parallel solver used 3.3 × 109 cells to resolve the flow struc-
tures. The general dynamics of vortex core and shape of the Type-N
wall shock has been compared with the literature data30 favorably.
The chosen domain size in the spanwise direction is demonstrated to
be sufficient enough through the behavior of autocorrelation func-
tions. The effectiveness of the LES model and the mesh resolution
characteristics are quantified by SGS viscosity and SGS dissipation.
The 3D flow visualization with rotation dominated regions by nor-
malized Q criteria shows the quality of the current well resolved LES.
The 3D instantaneous field resembles the turbulent scale structures
observed in the experimental findings.25 We performed a flow topol-
ogy analysis based on TNTI. The JPDFs of the second and third
invariants (Q and R) of the velocity gradient tensor are used for
constant (first invariant) P planes for this purpose. Locally, incom-
pressible regions exhibit the teardrop shape of the PDF of Q and R
indicating the universal nature of the resolved smaller scales of the
turbulence. We found that SFS structures are dominating through-
out the flow transients in these regions. SN/S/S structures remain
predominant at the early stage in locally compressed regions, and
at the later stage, the flow structures evolve to more SFS structures.
Although unstable structures are found to be present relatively more
compared to locally incompressible regions. On the other hand, we
found mostly unstable structures at the locally expanded regions.
The present analysis also reveals the absence of UFS for locally com-
pressed region and the absence of SFC for locally expanded regions.
Neglecting the SGS contributions, the turbulent kinetic energy bud-
get terms are analyzed with only resolved parameters. This reveals
that the pressure dilatation is important at the early stage, while
turbulent diffusion becomes important at later stages and the dif-
fusion term exhibits anticorrelation with the pressure dilatation
term throughout the flow evolution. Furthermore, the relative con-
tribution of the constituent terms of the resolved mean vorticity
transport equation is analyzed. The VSC and VSG plays an impor-
tant role compared to DFV, and baroclinic term and enstrophy are
predominantly correlated with VSG compared to VSC.

The 2D viscous simulations of shock-wave diffraction over 90○

sharp corner with a high resolution numerical scheme can predict
the basic shock diffraction wave pattern, main vortex, secondary
viscous vortex associated with the wall shock interaction with the
boundary layer, shear layer, and lambda shocks observed in the
experiments specially at the early stage of the evolution. However,
2D simulations are limited to resolve the inherent 3D nature of the
turbulent flow features and together with the small-scale dissipation.
The present 3D LES captures the 3D turbulent scales, embedded
shocks/shocklets within the main vortex and the shear layer behav-
ior and boundary layer interactions in the viscous vortex region. The
spatio-temporal growth of the shear layer is strongly influenced by

the lambda shock as well as by the counterclockwise rotating viscous
vortex near the diffraction corner. Apparently, the lambda-shock-
shear-layer interaction at the upper side of the shear layer is more
intense than that of the interaction of the contact surface at the
bottom side of the shear layer. Note that the foot of the lambda
shock more effectively perturbs the shear layer and increases its
growth. This aspect is clearly resolved in the present LES. The shape
and large-scale structures of the turbulent envelop at the wall vis-
cous vortex region is also satisfactorily predicted by the LES. A fur-
ther investigation regarding the mechanism and possible influence
(upstream and downstream) of the contact surface at the underside
of the shear layer could be addressed in future work.

Future works will be undertaken to address the performance
of different LES models resolving this complex flow dynamics. A
detailed analysis of the local entrainment across the TNTI can be
explored for the compressible turbulent shear layer. The present LES
is performed with 3 × 109 mesh points and can be considered as well
resolved; however, further ensemble averaging could be attempted27

with phase-incohorence in the initial isotropic turbulence to make
stable flow statistics and detailed analysis toward the local mecha-
nisms of the complex evolution. From the large-scale tests of Skews
et al.,25 it appears that several lambda shocks could play an impor-
tant role toward large-scale KH instabilities at the later stage of the
shear layer development. Also, the onset of the decay of the turbu-
lence in the viscous vortex zone due to viscous dissipation is evident
from the experimental findings. These long-time flow features could
be investigated further to enhance the understanding of the complex
flow dynamics.
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