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Abstract This work reports analysis of complex shockwave diffraction and long-time 
behavior of shock-vortex dynamics over splitter geometry encountered in both external and 
internal compressible flows. The simulation resolved the experimental findings of literature 
and the insight of the flow topology is being presented with the probability density functions 
(PDFs) of various contributing terms of enstrophy transport equation and the invariants of the 
velocity gradient tensor. We use an artificial viscosity (AV) based explicit Discontinuous 
Spectral Element Method (DSEM) based compressible flow solver for this purpose. The 
numerical scheme utilizes entropy generation based artificial viscosity and thermal 
conductivity to simulate the conservative form of the governing compressible flow equations. 
A shock sensor based switch is used to reduce the addition of AV coefficients in rotation-
dominated regions.  

1 Introduction 

Analysis of the mechanism of shockwave diffraction and shock-vortex interaction is of great 
interest to the shockwave community to utilize this knowledge in various engineering 
applications involving internal and external compressible flows. Numerical predictions with 
qualitative studies of shock diffraction over two-dimensional wedge and wall interaction of 
compressible vortex are reported in [1-5]. Nevertheless, studies related to the understanding 
of the mechanism of such complex dynamics are not abundant in literature. For example, Sun 
& Takayama [2] addressed the baroclinic and slip-stream vorticity generation in connection to 
the shock diffraction problems. On the other hand, Abate & Shyy [6] studied the dynamics of 
shock diffraction via numerical quantifications with the vorticity transport equation. They 
discussed the link between location of high strain rates and stress rates to solenoidal and 
dilatational dissipation rates of turbulent kinetic energies respectively. In these situations the 
baroclinic torque enhances the vorticity generation. It can be realized that, the viscous effects 
and small-scale turbulent dissipations are important for the long time evolution of primary 
vortex and subsequent smaller vortices generated from Kelvin-Helmholtz instability. The 
interactions of vortices with shocks and shock-lets also play important role in energy 
redistribution. Fomin [7] presented an interesting review of the evolution of the shock tube 
experimental facilities. Unsteady flow-separation behind a diffracting shock wave over 
curved walls and multi-faceted walls are presented in [8] and [9]. Experimental study of 
Quinn & Kontis [10] reported measurement of the static pressure for shock diffraction 
process. The detailed analysis of shock vortex dynamics related to the shock diffraction 
problems is still absent in the literature. The motivation of the present work is thus to shed 
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light on the complex dynamics of unsteady waves, coupled interactions like shock-shock, 
shock-vortex, vortex-vortex and shock-turbulence using high-fidelity numerical simulations. 
High order Weighted Essentially Non-Oscillatory (WENO), high-order discontinuous 
Galerkin methods (DGM) or DSEM are suitable numerical tools, on which one can rely upon. 
For example, unsteady studies exploiting WENO based solver can be found for application 
related to shockwave mitigation/propagation in [11, 12], shockwave focusing in [13] and 
nozzle flow separations in [14]. Noting the advantage of DGM and more general DSEM 
dealing with complex geometries with unstructured mesh arrangements, we employ DSEM to 
resolve the complex flow dynamics of the experimental observations reported in [15] and gain 
more insights of the flow mechanism. Since Gibb’s phenomena are difficult handle in 
conjunction with DG and spectral methods, capturing shocks with DGM/DSEM in multi-
dimensions subsequently gained much attention to the computational researchers. In their 
recent study, Chaudhuri et al. [16] presented the application of AV on shock capturing with 
DSEM for viscous shocked flows. In the present work, we use this entropy based AV method 
for a new detailed numerical study of shock diffraction over splitter geometry. 

 The paper is organized as follows. In section 2, a brief description of the governing 
equation and AV methodology recalled. The problem setup is given in the following section. 
Results and the transient flow analysis are presented in section 4. Finally, conclusions are 
drawn at the end in section 5. 
 
2 Governing Equations and Numerical Method  
 
The non-dimensional Navier-Stokes (NS) system of equations for compressible flow with 
artificial viscosity (AV) assumes the form given in Eq. (1). For the present study, we set 
viscosity and thermal diffusivity coefficients as zero. We thus solve the Euler system of 
equations with AV, estimated via entropy generation.  
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where, U is the conservative solution vector, Fa and Fv are the inviscid and viscous flux 
vectors respectively.  is the density, is the velocity vector,  is the total internal energy, 

 is the static pressure and is the temperature.  is the ratio of specific heats, is the 
Kronecker delta tensor. , and are the reference Mach number, Reynolds number, 
and Prandtl number respectively. Assuming Stokes’ hypothesis with zero bulk viscosity, the 
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is the effective dynamic viscosity and is the symmetric part of velocity 

gradient tensor (here the superscript ‘T’ designates a transpose). Similarly, the effective 
thermal conductivity is given by . Finally, the ideal gas equation of state, 

, closes Eq. (1). In this study, we set ,  and . 
The overall idea of an AV method is to add a high order dissipation term to stabilize the 

numerical scheme in the vicinity of shocks. We scale AV coefficients with viscous and 
thermal entropy generation terms of the viscous entropy transport equation (see detail in [16]). 
We also limit the artificial coefficients by setting the upper bounds to ensure that the inviscid 
time step remains smaller than the viscous time step. The staggered multidomain DSEM, in 
nodal collocation formulation involves finding solution vector on the Chebyshev-Gauss 
quadrature points while fluxes are computed on the Chebyshev-Lobatto quadrature points of 
the mapped computational elements. 
 
3 Problem setup 
 
We consider a non-dimensional rectangular domain of  in two-dimensional (2D) 
x-y plane with a splitter plate of thickness ≈1.956 and wedge angle 8°. These are similar to 
those reported for experimental setup in [15]. A shock wave with a Mach number  
is allowed to pass through the lower-half section of the splitter plate. The initial conditions are 
prescribed using Rankine-Hugoniot relation for stagnant state (1) and shocked gas state (2) 
with the initial shock location at . The left and right boundaries are situated 
sufficiently far to avoid any reflection on the zone of analysis and the initial states and are 
fixed at those boundaries. We set symmetry conditions for the rest of the boundaries. Time 
snaps are saved to match the corresponding data with the experimental results. The reference 
state , is taken as the stagnant state conditions at state (1), , to satisfy  and 

reference length is taken as the height of the shock-tube of the experiment mm. We 

have taken 57,350 P3 (fourth order) elements with total number of degrees of 
freedom within the domain. The elements are having a size of ≈0.012 in the main interaction 
zone and are stretched outwards. The zone of the analysis thus contains a mesh resolution of 
20 µm to 130 µm. In this work, the value of the CFL number is taken as 0.9 and the model 
constants for AV are set as: . The details about the model 

constants of AV can be found in [16]. 
 
4 Results and Discussion 
 
We first compare the experimental Schlieren of [15] with the numerical Schlieren of the 
present simulation (see Fig. 1a). An excellent agreement can be seen between the two at time 
instant t4 = 3.098 . The initial time evolution (not shown) is also found to be in very good 
agreement with the experimental results. The present simulation captures the essential 
features of the shock dynamics and the shock-vortex interaction. Fig. 1b shows the basic flow 
visualization in terms of rotation-dominated region of the flow-field. Here we plotted the 
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contours of strain-enstrophy angle ψ = tan−1 S ⋅ S
A ⋅ A
⎛

⎝
⎜

⎞

⎠
⎟ . A is the anti-symmetric part of the 

velocity gradient tensor. Note that, the blue colored regions are associated with lower values 
of ψ . This clearly indicates the rotation dominated vortex core regions of the flow-field. In 
the next section we present the flow-analysis from the data window as shown in Fig. 1b.   

The enstrophy (Ω )	 transport equation for viscous compressible flows with constant 
transport properties along with the AV coefficients (non-dimensional form) is given by, 
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is the vorticity vector. 

 

 
 

(a)                                                                (b) 
Fig. 1 (a) Comparison of numerical (left) and experimental [18] schlieren (right) pictures, (b) 

Contours of strain-enstrophy angle (window for analysis). 
 

              
 

            
 

Fig. 2 PDFs (all vertical axes) of various terms: budget terms of enstrophy transport equation, 
( t1 = 0.578, t3 = 2.258, t4 = 3.098 ).  
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The first three terms of the right hand side of Eq. (2) can be expressed in term of Lamb vector 

L =ω
!"
×V
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⋅∇× L =∇⋅ V
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!"
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of the Eq. (2) is known as the vortex stretching term and is zero in 2D flow-field. In the 
following figures, we compare the other terms, namely, the enstrophy convection: C

Ω
 (first 

term), the vortex expansion: E
Ω

(3rd term), the Baroclinic term: B
Ω

 (4th term) and the 
diffusion term: D

Ω
(5th term). With the present AV methodology, the contribution of the 

diffusion term is active with non-zero µh . The PDFs of the standardized variables of these 
quantities are illustrated in Fig. (2) at different time instant. It can be seen that all PDF's 
exhibit very high intermittent character with high flatness values. The skewness of D̂

Ω
is 

negative throughout.  The distribution of Ĉ
Ω

 is near symmetric with low negative skewness 
values. During the initial growth regime of the enstrophy, E

Ω
 and B

Ω
 override the other 

terms with positive skewness values. The divergence of the Lamb vector can be expressed as: 
∇⋅ L =V

!"
⋅∇×ω
!"
−ω
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!"

. It is evident that positive flexion product, F =V
!"
⋅∇×ω
!"

, is associated 
with positive ∇⋅ L . We also observed highly peaked PDF of divergence of the Lamb vector 
(not shown) with positive skewness, which evolves towards the near symmetric shape at the 
later stage. The joint PDF of divergence of the Lamb vector and the enstrophy is shown in 
Fig. 3. The asymmetric distribution with negative correlation coefficients clearly depicts the 
association of vortex core regions with the negative ∇⋅ L . 
 
 

 
Fig. 3 Joint PDFs of divergence of Lamb vector with enstrophy at t1,t3,t4 . Contour levels are 

in log of joint PDF. 
 
 
 
5 Conclusions 
 
In this work, we made an initial attempt to resolve complex shock-vortex interaction via high-
fidelity numerical simulation and made a novel analysis for understanding the mechanism of 
the flow-evolution related to shock diffraction over splitter geometry. An excellent agreement 
between the numerical findings and the experimental results of literature is found. The Euler 
system of equation is solved with high-order DSEM solver equipped with entropy generation 
based AV coefficients. We analyzed the non-dimensional enstrophy transport equation for the 
viscous compressible flows. The diffusive term of this equation is active based on AV of the 
present scheme. All component terms of the transport equation are compared via the PDFs. 



	

The PDF of divergence of Lamb vector shows an overall positive skewness and its anti-
correlation with enstrophy reveals the association of negative values of divergence of the 
Lamb vector with vorticity cores. Extension of this work will be carried for further 
understanding of the evolution of the flow topology of the complex dynamics. Subsequent 3D 
study will be the next phase of our work for understanding and quantifying the role of AV in 
resolving complex multi-dimensional interactions like transverse-waves, shocklet-vortex, 
shock-turbulent fluctuation and small-scale viscous dissipations. 
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