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To understand the typical dynamics of an open quantum system in continuous time, we introduce an
ensemble of random Lindblad operators, which generate completely positive Markovian evolution in the
space of the density matrices. The spectral properties of these operators, including the shape of the
eigenvalue distribution in the complex plane, are evaluated by using methods of free probabilities and
explained with non-Hermitian random matrix models. We also demonstrate the universality of the spectral
features. The notion of an ensemble of random generators of Markovian quantum evolution constitutes a
step towards categorization of dissipative quantum chaos.
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Introduction.—Any real system is never completely
isolated from its environment and the theory of open
quantum systems [1–3] provides appropriate tools to deal
with such phenomena as quantum dissipation and
decoherence. In the Markovian regime (which assumes a
weak interaction between the system and its environment
and separation of system and environmental timescales),
the evolution of an N-level open quantum system can
be modeled by using the master equation _ρt ¼ LðρtÞ.
The corresponding Markovian generator L (often called
a Lindblad operator or simply “Lindbladian” [1,4]) has
the well-known Gorini-Kossakowski-Sudarshan-Lindblad
form (GKSL) [5,6]

LðρÞ ¼ −i½H; ρ� þ LDðρÞ ¼ LUðρÞ þ LDðρÞ; ð1Þ
with the dissipative part

LDðρÞ ¼
XN2−1

m;n¼1

Kmn

h
FnρF

†
m −

1

2
ðF†

mFnρþ ρF†
mFnÞ

i
; ð2Þ

where traceless matrices fFng, n ¼ 1; 2; 3;…; N2 − 1,
satisfy the orthonormality TrðFnF

†
mÞ ¼ δn;m. Finally, the

complex “Kossakowski matrix” K ¼ fKmng is positive
semidefinite. The solution of the master equation _ρt ¼
LðρtÞ gives rise to the celebrated Markovian semigroup
Λt ¼ etL, such that for any t ≥ 0 map Λt represents
a quantum channel, a completely positive and trace-
preserving linear map [7].
In this Letter, we analyze the spectral properties of

random Lindblad operators. Spectral analysis lies in the

heart of quantum physics. In the static case, the spectrum of
the Hamiltonian provides full information about the pos-
sible state of the system and system evolution. Such an
analysis plays also a key role in the study of dissipative
quantum evolution—eigenvalues and eigenvectors of the
Lindblad operator provide the full information about the
dynamical properties of the open system [9]. Spectra of
dynamical maps were recently addressed in Ref. [10] in
connection to quantum non-Markovian evolution. This
connection was experimentally verified recently [11], which
proves that spectral techniques can be used to characterize
non-Markovian behavior as well. Here, instead of analyzing
specific physical models (like in Refs. [10,11]), we look for
universal spectral properties displayed by “typical” Lindblad
operators. It should be stressed that the standard examples of
generators of order N ¼ 2, usually considered in the
literature, do not display universal features. We address
the problem in the limit N ≫ 1 by using the apparatus of the
random matrix theory (RMT) [12].
The RMT has already found many applications in

physics. It started from the Wigner statistical approach
to nuclear physics [13] and a series of Dyson papers on
statistical theory of spectra [14–17]. It was soon realized
that quantum dynamics corresponding to classically chaotic
dynamics can be described by suitable ensembles of
random matrices [18–20]. Depending on the symmetry
properties of the system investigated, one may use orthogo-
nal, unitary, or symplectic ensembles [12]. Similar ideas
found applications in disorder systems and single-particle
[21] and many-body [22] ones. From a different perspec-
tive, a deep connection to RMT was observed in
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the models of 2D quantum gravity [23,24] and gauge
theories [25].
In the case of discrete dynamics described by quantum

operations, various ensembles of random channels are
known [26,27]. Recently, the RMT found interesting
applications in quantum information theory [28–30]. In
the case of continuous quantum dynamics, a class of
Lindblad equations with decay rates obtained by tracing
out a random reservoir was studied in Refs. [31,32].
RMT was applied to open quantum systems in the context
of scattering matrices and non-Hermitian effective
Hamiltonians [33].
Our perspective in this paper is different: We introduce

an ensemble of random Lindblad operators, which describe
continuous time evolution of an N-level open quantum
system, and evaluate universal properties of operator
spectra. Namely, we analyze the distribution of eigenvalues
of a randomly chosen operator L and study the scaling of
spectral characteristics with N. For generators of classical
Markovian evolution, a similar program was initiated and
realized by Timm in Ref. [34].
We start by briefly recalling main results concerning

random quantum channels [27,35]. Next, we analyze the
extreme case of purely dissipative evolution, H ¼ 0 and
L ¼ LD. This part can be considered as a quantum
extension of the program outlined in Ref. [34] [from the
opposite perspective, classical Pauli rate equations can be
obtained as a reduction of the quantummaster equation (1)].
Finally, we address the general situation, when both unitary
and dissipative components LU and LD are present.
Random quantum channels.—An ensemble of random

channels (i.e., completely positive and trace-preserving
transformations [1–3]) Φ∶MNðCÞ → MNðCÞ can be
defined by the flat Hilbert-Schmidt measure in the space
of all quantum operations. The spectrum of Φ includes the
leading eigenvalue λ1 ¼ 1, corresponding to the invariant
state, while all remaining eigenvalues fill a disk of radius
R ¼ 1=N centered at zero; see Fig. 1(a). The bulk of the
spectrum can be obtained by sampling random matrices

ð1=NÞGR [27], with GR being a member of a real Ginibre
ensemble [36–39].
Thus, for a generic superoperator Φ the size of its

spectral gap, ΔN ¼ λ1 − jλ2j ¼ 1 − 1=N, increases with
dimension N, so the convergence to an invariant state
becomes exponentially fast. For a largeN, a typical channel
becomes close to a one-step contraction, which sends any
initial state into the invariant state, ΦðρÞ ¼ ρinv ¼ ΦðρinvÞ.
It is known [40] that a typical channel is close to a unital
one and the correction term Φð1Þ − 1 behaves like a
random Hermitian matrix of the Gaussian unitary ensemble
with an asymptotically vanishing norm.
Purely dissipative random Lindblad operators.—To

generate a random operator LD, we fix an orthonormal
Hilbert-Schmidt basis fFng [41] and first sample a random
Kossakowski matrix K. There are many ways to do such
sampling. However, as we show below, a particular way in
which this non-negative order N2 − 1 matrix is sampled is
not important: The spectral features of random purely
dissipative Lindbladians are universal.
The most intuitive way is to sample K from the ensemble

of square complex Wishart matrices [50]. AWishart matrix
[51] has the structureW ¼ GG† ≥ 0, whereG is a complex
square Ginibre matrix with independent complex Gaussian
entries [52]. Such a choice is also physically motivated by
the fact that these ensembles of random matrices corre-
spond to nonunitary evolution of quantum dynamical
systems under the assumption of classical chaos [18,35].
We use the following normalization condition TrK ¼ N,

that is, K ¼ NGG†=TrGG†. Note that eigenvalues of K,
γm, m ¼ 1;…; N2 − 1, which can be interpreted as
decay rates [1], are distributed according to the universal
Marchenko-Pastur law [51] with the mean value hγi ∼ 1=N.
By diagonalizing the Kossakowski matrix, one can reduce
the form of LD to

LDðρÞ ¼
XN2−1

m¼1

γm
h
VmρV

†
m −

1

2
ðV†

mVmρþ ρV†
mVmÞ

i
; ð3Þ

FIG. 1. Eigenvalue localization areas (gray) of a (a) random quantum channel, (b) random purely dissipative Lindblad operator,
Eq. (3), and (c) random generic Lindbladian with relative weight of the unitary component α, Eq. (8). While for the random channel
(a) the distribution approaches a Girko’s disk upon the increase of the number of system levels N [27], eigenvalues of the random purely
dissipative Lindblad operator (b) fill the interior of the universal lemonlike contour, Eq. (7). For the Lindblad operator with the unitary
component (c), the spectral boundary approaches an ellipse upon increase of α.
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where Vm are called “jump operators” [53]. ΦðρÞ ¼P
m γmVmρV

†
m defines a Kraus representation of a com-

pletely positive map. Moreover,
P

m γmV
†
mVm ¼ Φ†ð1Þ,

where Φ† is the dual map, Tr½A ·Φ†ðBÞ� ¼ Tr½ΦðAÞ · B�,
and 1 is the identity matrix in MNðCÞ. Therefore, Eq. (3)
can be rewritten as

LDðρÞ ¼ ΦðρÞ − 1

2
½ðΦ†ð1Þρþ ρΦ†ð1Þ�; ð4Þ

which shows that the purely dissipative Lindblad generator
is fully determined by a completely positive map Φ. If, in
addition,Φ is trace preserving, i.e., it is a quantum channel,
we have LðρÞ ¼ ΦðρÞ − ρ. This is not the case in general,
and the Hermitian translation matrix X ¼ Φ†ð1Þ − 1 does
not vanish. Making use of this notation, we rewrite the
Lindblad operator as LDðρÞ ¼ ½ΦðρÞ − ρ� − 1

2
ðXρþ ρXÞ.

Due to the trace-preserving quantum Markovian dynam-
ics, a Lindblad generator always has a zero eigenvalue. IfΦ
is a quantum channel, the spectrum of LD is the spectrum
of Φ shifted by −1. Thus, the leading eigenvalue λ1 ¼ 1 is
translated into l1 ¼ 0 and the Girko disk is now centered
at z ¼ −1.
To sample spectra of random Lindbladians, we generate

103 realizations for different values of N, ranging from 30
to 100. In order to reveal the universality of spectra of the
operators, it is useful to apply an affine transformation,
L0
D ¼ NðLD þ 1Þ [41]. Then the bulk of the spectrum

of L0 becomes scale invariant and independent of N, see
Figs. 2 and 3(a).
Sampled eigenvalue distributions P½Reðl0Þ; Imðl0Þ� are

significantly different from the Girko disk and display a
universal lemonlike shape. Already for N ¼ 50, a single
realization is enough to reproduce the universal shape, see
Fig. 3(b). From the scale invariance, it follows that the
spectral gap of LD scales as ΔN ≃ 1 − ð2=NÞ. It is clear
that the very term ðXρþ ρXÞ is responsible for the

“disk → lemon” deformation. The density inside the
lemon is manifestly nonuniform. Also notable is the
eigenvalue concentration along the real axis and the corre-
sponding depletion nearby, see Fig 3(a). Although LD is
represented by a complex matrix, it can be made real by a
similarity transformation, which explains the concentration
[37,39,55].
Finally, we performed sampling by using alternative

algorithms (see Supplemental Material [41]) and obtained
near identical results (differences are within the sampling
errors) for N ≥ 50; see Fig. 2(c). This confirms the
universality of the spectral distribution. It is noteworthy
that a similar-looking shape of the eigenvalue distribution
was observed with classical random transition rate matrices
[see Fig. 7(b) in Ref. [34] ]. However, the singularities at
the real poles are much stronger in the classical case [56].
Random matrix model.—Let us recall that the spectrum

of LD represented in (4) coincides with the spectrum of the
following N2 × N2 complex matrix Lmn ¼ Tr½FmLDðFnÞ�.

FIG. 2. Spectral density P½Reðl0Þ; Imðl0Þ� of the rescaled eigenvalues, l0 ¼ Nðlþ 1Þ, from the spectrum of random purely dissipative
Lindblad operators LD for N ¼ 50 and 100. We use two different sampling procedures for N ¼ 100 (a),(b), sampling the Kossakowski
matrix from the Wishart ensemble and (c) an alternative procedure (Supplemental Material [41]). Note a perfect agreement with the
asymptotic boundary of the spectral bulk, Eq. (7) (thick black line), derived with the random matrix model (6). Observe also a
concentration of eigenvalues along the real axis, accompanied by depletion nearby—compare to Fig. 3(a)—which decreases with N.
Each distribution was sampled with 103 realizations.

FIG. 3. (a) Marginal distribution, Reðl0Þ ¼ 0, of rescaled
eigenvalues for three different values of N. (b) Rescaled eigen-
values l0 (empty dots) of a single Lindblad operator realization
for N ¼ 50. Red outer contour is the boundary derived from the
random matrix model, Eq. (6).
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This matrix becomes real if basis matrices Fm are
Hermitian, due to the fact that LD is Hermiticity preserving.
Another well-known matrix representation of the Lindblad
operator reads

L̂D ¼ Φ̂ − 1 ⊗ 1 −
1

2
ðX ⊗ 1þ 1 ⊗ X̄Þ; ð5Þ

where Φ̂ ¼ P
N2−1
m¼1 γmVm ⊗ V̄m, and V̄m stands for the

complex conjugation. Note that Φ̂ is neither Hermitian
nor real; however, the term X ⊗ 1þ 1 ⊗ X̄ is perfectly
Hermitian. To understand the spectrum of L0

D, we use the
matrix representation (5) and approximate its rescaled
version with the following random matrix (RM) model:

L̂D
0 ≈GR − ðC ⊗ 1þ 1 ⊗ CÞ: ð6Þ

The N2 × N2 matrix GR is sampled from the real Ginibre
ensemble, while C approximates X by a symmetric N × N
Gaussian orthogonal ensemble (GOE) matrix [40].
Matrices are normalized as TrGRG

†
R ¼ N2, so that its

spectrum covers uniformly a disk of radius 1, while TrC2 ¼
N=4 assures that its density forms the Wigner semicircle
of radius 1. The scaling and parameters of the model
follow from the normalization of the Kossakowski matrix
(Supplemental Material [41]).
We approach spectral properties of the RM model (6)

with the quaternionic extension of free probability [57–61].
Within this framework, we determine the border of the
spectrum of L0

D as given by the solution of the following
equation involving a complex variable z [41]:

Im½zþ GðzÞ� ¼ 0; ð7Þ

with

GðzÞ ¼ 2z −
2z
3π

�
ð4þ z2ÞE

�
4

z2

�
þ ð4 − z2ÞK

�
4

z2

��
;

where EðkÞ and KðkÞ are complete elliptic integrals of the
first and second kind, respectively. The results of the
sampling are in perfect agreement with this border, see
Figs. 2 and 3. Evaluation of the spectral density inside the
“lemon” is a much harder task; it could potentially be
performed with diagrammatic techniques [58].
General case of random Lindbladians.—Finally, we

include the unitary component LU into the Lindblad
operator L. For that we use random Hamiltonian H, which
is sampled from the Gaussian unitary ensemble (GUE). To
compare the spectra of the general and the purely dis-
sipative Lindblad operators, we normalize the Hamiltonian,
TrH2 ¼ 1=N, and introduce a parameter α ≥ 0, which
weights contribution of the unitary component. The cor-
responding Lindbladians can be written as [see Eq. (4)]

LðρÞ ¼ −
iα
ℏ
ðHρ − ρHÞ þΦðρÞ − 1

2
½Φ†ð1Þρþ ρΦ†ð1Þ�:

ð8Þ

The sampled spectra of the operator L0 ¼ NðLþ 1Þ, for
different values of α, are shown in Figs. 4(a), 4(b), and 4(d)
(see also Supplemental Material [41]). Similar to the case of
purely dissipative evolution, we find a perfect scale
invariance starting from N ≥ 50.
To capture the shape of the spectra with the RMT, we

transform expression (8) into

L̂¼ Φ̂− 1⊗ 1−
�
1

2
Xþ iαH

�
⊗ 1þ 1⊗

�
1

2
X̄ − iαH̄

�
:

ð9Þ

The spectrum of L̂ can be explained by updating the matrix
model (6),

L̂0 ≈ GR − ðW ⊗ 1þ 1 ⊗ W̄Þ; ð10Þ

where GR is again taken from the real Ginibre ensemble,
while the extended correction termW ¼ Cþ iαH0 contains

FIG. 4. Probability distributions P½Reðl0Þ; Imðl0Þ� of the rescaled eigenvalues, l0 ¼ Nðlþ 1Þ, from the spectrum of random
Lindblad operators L, Eq. (8), for N ¼ 100 and different values of the unitary component weight α. (a),(b),(d) We present here the
results of the sampling of the Kossakowski matrix from the Wishart ensemble, emphasizing that alternative generation procedures
(Supplemental Material [41]) yield the same results. (c) Spectral distribution obtained with the random matrix model, Eq. (10). Each
distribution was sampled with 103 realizations. Additional normalization of the densities is performed in order to keep maximal
values of all distributions equal.
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now a random GOE matrix C and an anti-Hermitian term
proportional to a GUEmatrixH0 normalized as TrH02 ¼ N.
Spectral density of the RMT model for α ¼ 1 is shown in
Fig. 4(c). It reproduces spectral density of the correspond-
ing Lindbladian ensemble (except of eigenvalue concen-
tration at the real axis [37,39,55]).
Eigenvalues of W uniformly cover an ellipse with

semiaxes 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p
and 4α2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p
. Spectral den-

sity of L̂0 is therefore a (classical) convolution of two
uniform densities supported on these ellipses followed
by free convolution with the Girko disk of unit radius;
see Fig. 1(c). Contrary to the case of purely dissipative
Lindbladians, it is not possible to find an analytically
spectral boundary in this case. However, when α ¼ 1

2
, it

immediately follows (since a convolution of two disks is
a disk) that the spectral boundary is a circle. This is in
full agreement with the results of the sampling; see
Fig. 4(a).
Conclusions.—Universal spectral features of different

ensembles of unitary evolution generators—that are
Hamiltonians—are the main pillar of the quantum chaos
(QC) theory [18]. A notion of an ensemble of random
operators of quantum Markovian evolution is therefore a
first step in generalization of QC to open quantum systems.
Two next steps would be (i) establishing links between the
idea of “typical Lindbladian” and physical models [62] and
(ii) evaluation of spectral properties of steady states of
random Lindbladians.
Finally, our approach works equally well in the classical

limit, where continuous dynamics in the space of proba-
bility distributions is determined by random transition rate
matrices. By using a free probabilities apparatus, we were
able to derive analytically [56] the boundary of the
eigenvalue distributions reported earlier in Ref. [34].
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Note added.—One of the authors (W. T.) attended a
talk by Tankut Can given at the conference in Yad

Hashmona (Israel), in which a parallel project on random
Lindblad operators was presented. Recently, three other
papers on related subjects have appeared [65–67].
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