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Dynamics of an open N-state quantum system is often modeled with a Markovian master equation describing
the evolution of the system density operator. By using generators of SU(N ) group as a basis, the density operator
can be transformed into a real-valued “coherence-vector.” A generator of the dissipative evolution, so-called
“Lindbladian,” can be expanded over the same basis and recast in the form of a real matrix. Together, these
expansions result is a nonhomogeneous system of N2 − 1 real-valued linear ordinary differential equations. Now
one can, e.g., implement standard high-performance algorithms to integrate the system of equations forward in
time while being sure in exact preservation of the trace (norm) and Hermiticity of the density operator. However,
when performed in a straightforward way, the expansion turns to be an operation of the time complexity O(N10).
The complexity can be reduced when the number of dissipative operators is independent of N , which is often
the case for physically meaningful models. Here we present an algorithm to transform quantum master equation
into a system of real-valued differential equations and propagate it forward in time. By using a specific scalable
model, we evaluate computational efficiency of the algorithm and demonstrate that it is possible to handle the
model system with N = 103 states on a single node of a computer cluster.

DOI: 10.1103/PhysRevE.100.053305

I. INTRODUCTION

The most conventional approach to modeling of the dy-
namics of an open quantum system, i.e., a system interacting
with its environment, is to use a Markovian master equation
[1,2]. Such an equation describes the evolution of the system
density operator �, �̇ = L(t )�, and its key ingredient is a time-
dependent (in general) generator of evolution, Lindbladian
L(t ) [1].

To define a semigroup, which fulfill conditions of trace
preservation and complete positivity, a generator (hence-
forth referred to as “Lindbladian”) has to be of the
so-called Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
form [3–5],

L(t )� = LH (t )� + LD(t )� = −i[H (t ), �] +
P∑

p=1

γpDp(�),

Dp(�) = 1

2
([Lp, ρL†

p] + [Lpρ, L†
p]), (1)

where H (t ) is a time-dependent Hamiltonian and the set
of quantum dissipative operators, {Lp}, p = 1, ..., P, capture
the action of the environment on the system (formally, any
complex N × N matrix could be chosen as an operator Lp).
Dissipative operators act via P “channels” with nonnegative
rates γp. As a theoretical tool, the GSKL Eq. (1) is very
popular in quantum optics [2], cavity optomechanics [6], and
quantum electrodynamics [7,8]; it is also used in the context
of ultracold atom physics [9,10].

When Lindbladian L is time-independent, the structure of
the GSKL equation ensures the existence of an asymptotic
state �A (at least one), which is a nontrivial zero eigen-element
(kernel) of L [11]. When the Lindbladian is time periodic,
L(t + T ) = L(t ), Floquet theory [12] applies, and the asymp-
totic density operator is time-periodic with the same period
T , �A(t + T ) = �A(t ) [13]. In either case, the main challenge
consists in explicit numerical evaluation of the matrix form of
�A or �(t ) [14].

Leaving aside recently developed tensor methods [15],
which apply to lattice systems [16] only, there are three
means to find �A or �(t ) numerically. Here we only briefly
list them (we refer the interested readers to the introduction
of Ref. [17] for a more detailed discussion). First, one may
use spectral methods (complete/partial diagonalization and
different kinds of iterative algorithms [18]) to calculate �A as
an eigen-element of L. Next, one can propagate the system
density operator forward in time, by numerically integrating
the GKSL equation. Finally, one can unravel the GKSL
Eq. (1) into a set of stochastic realizations, called “quantum
trajectories” (QTs) [19–21], and thus transform the problem
into a task of statistical sampling over QTs (which have to be
propagated for a long time to approach �A [17]).

Here we address the second option; namely, we consider
propagation of the density operator forward in time by nu-
merically integrating the GKSL equation. This strategy was
already implemented in a number of works; it is also included
in such popular open-source package as QuTiP [22]. The
first step in the realization of this idea is a vectorization
of the density operator, based either on the straightforward
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row(column)-wise unfolding of the density matrix or usage of
the matrix unit basis, Gβ ≡ Gj,k = | j〉〈k|, and some arbitrary
bijection β ⇔ ( j, k). The vectorization renders the GKSL
equation in a system of complex-valued linear differential
equations, which is then propagated by using some standard
high-order integrators [23]. Neither of the discussed vector-
ization accounts for (i) the norm conservation, Tr�(t ) = 1,
(ii) Hermiticty, �†(t ) = �(t ), and (ii) nonnegativity, �(t ) � 0,
of the density operator. At the same time, it well known
that the first two conditions can be accounted explicitly [24]
by using an orthonormal (Hilbert-Schmidt) basis of traceless
Hermitian operators, which transform the GKSL equation
into a set of real-valued linear differential equations [3,27–
29]. For a single qubit this procedure is well-known as the
Bloch-vector representation and it leads to the famous Bloch
equations [1]. For an N = 3 system it can be realized by
using eight Gell-Mann matrices [30]. For any N > 3 it can
be performed [27,28] by using a complete set of infinitesimal
generators of the SU(N ) group [31], rendering density matrix
in form of the so-called “coherence-vector” [27]. However,
this strategy was never implemented in practice for N > 4,
to the best of our knowledge. We guess that one of the main
problems which prevents the usage SU(N ) unfolding is its
computational complexity (see Sec. V). This aspect has not
been discussed in the literature; at the same time it is an
interesting technical problem, for two reasons, “physical” and
“computational” ones.

First, the coherence-vector representation allows for an
alternative quantification of entanglement in multipartite sys-
tems; see, e.g., Refs. [32–34]. It also provides a tool to
investigate a “geometry” of quantum states [35] by using
the condition of positivity [36,37]. Second, by performing
expansion over the SU(N ) generators, a search for �A could
be transformed into a linear programming problem [38]. This
allows us to use a toolbox of parallel simplex methods, devel-
oped for large optimization problems, and implement them on
a cluster or supercomputer [39], thus opening a way to large
model systems. These reasons are our main motivation.

Here we present an implementation which realizes the ex-
pansion of a Lindbladian over the basis of SU(N ) generators
[40]. It is tailored to handle model systems with number P of
dissipative channels which grows sub-linearly with N or just
remains constant. The latter condition is not very limiting; in
fact, many currently studied models fulfill it. One could think,
e.g., of two “baths,” L1 and L2, acting on the ends of an 1D
spin chain [41] or of an ensemble of qubits interacting with a
photonic mode in a leaky cavity [42].

The paper is organized as follows: In Sec. II we outline
the idea of the expansion and present main definitions. In
Sec. III we introduce a scalable model system. Section IV is
devoted to the implementation of the algorithm on a cluster;
its performance and scalability are analyzed in Sec. V. These
results are summarized, together with an outline of further
perspectives, in Sec. VI.

II. EXPANSION OF A LINDBLADIAN OVER THE BASIS OF
SU(N) GENERATORS

In Refs. [27,28] the expansion is presented in detail; here
we only summarize the results and introduce necessary defi-
nitions and notations.

The basis consists of M = N2 − 1 N × N traceless Hermi-
tian matrices, among which there are [43]

(1) N (N − 1)/2 symmetric, S( j,k) = 1√
2
(Gj,k + Gk, j ), 1 �

j < k � N ,
(2) N (N − 1)/2 antisymmetric, J ( j,k) = − i√

2
(Gj,k −

Gk, j ), 1 � j < k � N ,
(3) and N − 1 diagonal, Dl = 1√

l (l+1)
(
∑l

k=1 Gk,k −
lGl+1,l+1), 1 � l � N − 1,
which are forming a set F̄ = {Fi}, i = 0, ..., M. This set is
complemented with the identity matrix, F0 = 1. Now we have
a basis which is orthonormalized with respect to the trace,
Tr(FiFj ) = δi j , and complete. Important are commutators and
anticommutators of the basis elements,

[Fi, Fj] = i
N2−1∑

k=1

fi jkFk, (2)

{Fi, Fj} = 2

N
F0δi j +

N2−1∑

k=1

di jkFk, (3)

with fi jk (di jk ) being a real completely antisymmetric (sym-
metric), with respect to permutation of any pair of indices,
tensor,

zi jk = fi jk + idi jk, i, j, k = 1, N2 − 1,

fi jk = iTr(Fk[Fi, Fj]), i, j, k = 1, N2 − 1,

di jk = Tr(Fk{Fi, Fj}), i, j, k = 1, N2 − 1.

(4)

A density operator can be expanded over this basis,

ρ = 1

N
F0 +

N2−1∑

i=1

viFi, (5)

where coherence-vector (also called “generalized Bloch vec-
tor” or simply “Bloch vector” [29]) v̄ = (v1, v2, ..., vM ) con-
sist of real-valued elements [28]. As a Hermitian operator,
H (t ) can also be expanded, H (t ) = ∑N2−1

i=1 hi(t )Fi (without
loss of generality, henceforth we assume the Hamiltonian to
be traceless). The unitary part of the Lindbladian, LH , yields
a M × M matrix Q, with elements

qsm =
N2−1∑

i=1

fimshi, (6)

which is skew-symmetric, QT = −Q, due to the antisymmetry
of tensor f . Thus, the unitary part of the GKSL Eq. (1)
transforms into ˙̄v = Qv̄.

Expansion of the dissipative part of the Lindbladan is more
involved. In the original GKSL equation, this part can be
rewritten in the following form [3]:

LD = 1

2

N2−1∑

j,k=1

a jk ([Fj, ρF †
k ] + [Fjρ, F †

k ]), (7)

where complex M × M matrix A = {a jk} is positive semidef-
inite (at any instant of time), A � 0, and has rank P. It can
be diagonalized, Ã = SAS† = diag{γ1, γ2, ..., γP}, and dissi-
pators can be expressed as L̄ = S†F̄ . By using spectral de-
composition, A = ∑P

p=1 l̄pl̄†
p , the dissipative part can be recast
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into

LD = 1

2

P∑

p=1

γp

N2−1∑

j,k=1

lp; j l
∗
p;k ([Fj, ρF †

k ] + [Fjρ, F †
k ]). (8)

To the equation for the coherence-vector LD contributes
with M × M matrix R and vector K ,

dv(t )

dt
= [Q(t ) + R]v(t ) + K, (9)

with components

rsm = −1

2

P∑

p=1

γp

N2−1∑

i1,i2, j=1

lp;i1 l∗
p;i2 (zi1 jm fi2 js + z∗

i2 jm fi1 js),

m, s = 1, N2 − 1, (10)

ks = i

N

P∑

p=1

γp

N2−1∑

i, j=1

lp;il
∗
p; j fi js, s = 1, N2 − 1. (11)

Summation over p in Eqs. (10) and (11) renders a trivial
parallelization, because the computation of the sum for every
dissipative operator Ld can be performed independently. so
henceforth we restrict consideration to the case P = 1 (a
single dissipative operator).

III. TEST-BED MODEL

As a test bed we use a model describing N − 1 indis-
tinguishable interacting bosons, which are hopping between
the sites of a periodically modulated dimer. The model is
described with a time-periodic Hamiltonian

H (t ) = J (b†
1b2 + b1b†

2)

+ 2U

(N − 1)

2∑

j=1

n j (n j − 1) + ε(t )(n2 − n1), (12)

where b j and b†
j are the annihilation and creation operators

of an atom at site j, while n j = b†
jb j is the operator of

number of particles on jth site, J is the tunneling ampli-
tude, U/(N − 1) is the interaction strength (normalized by
a number of bosons), and ε(t ) represents the modulation of
the local potential. ε(t ) is chosen as ε(t ) = ε(t + T ) = E +
Aθ (t ), where E is the stationary energy offset between the
sites and A is the dynamic offset. This type of Hamiltonian has
been studied theoretically [44–47] and was implemented in
several experiments [48,49]. Two types of the driving are are
popular: (i) piecewise constant periodic driving, θ (t ) = 1 for
0 � t < T/2, θ (t ) = −1 for T/2 � t < T and (ii) sinusoidal
driving, θ (t ) = sin(t ).

As a dissipative operator we use

L = γ

N − 1
(b†

1 + b†
2)(b1 − b2). (13)

This dissipative coupling tries to “synchronize” the dynamics
on the sites by constantly recycling antisymmetric out-phase
mode into symmetric in-phase one [9]. Since the jump op-
erator is non-Hermitian, the asymptotic state is different (in
general) from the maximally mixed state, �A �= 1/N . This

type of dissipation was realized in recent experiments with
trapped ions [50].

As a result of modulations, the asymptotic state is char-
acterized by a time-periodic density operator, �A(t + T ) =
�A(t ), so that the asymptotic state has to be specified over one
period of the driving, �A(ts), ts = t mod T ∈ [0, T ] [13].

Note that term HJ = (b†
1b2 + b†

2b1) is represented by a
tridiagonal matrix (in the Fock basis). The components HU =

2U
N−1

∑2
j=1 n j (n j − 1) and HE = ε(t )(n2 − n1) are diagonal

matrices. Thus, the Hamiltonian is represented by a symmetric
tridiagonal matrix. Dissipative operator L gives an antisym-
metric tridiagonal matrix. Altoghether, this means that the
resulting Lindbladian is very sparse.

IV. IMPLEMENTATION

The expansion described in Sec. II, together with the
propagation, can be implemented in four steps; see Table I.

During the initialization step, the algorithm reads initial
data, allocates memory, and initializes main data structures.
During the second step, it prepares data for subsequent cal-
culations. Namely, the coefficients of the expansion of the
matrices H and L in the basis {Fi}, and the coefficients of
the ODE system, Eq. (9), are calculated. In the third step, the
ODE system is integrated up to time T . Finally, during the
finalization step, the computed results are saved to files and
memory is released.

The implementation of the expansion (step 2) seems to
be straightforward but a brute force direct realization leads
to a high time complexity and memory requirements, even
in the case of sufficiently sparse Hamiltonians and dissipator
matrix. Here we propose an implementation that allows to
substantially reduce memory requirements and time complex-
ity. This is achieved by taking into account sparsity patterns
of the involved matrices and performing operations only with
nonzero elements. In this section we estimate the implemen-
tation complexity and the amount of memory required for
the general case of dense matrices (both of a Hamiltonian
and dissipators), as well as for the application considered in
Sec. III. Note that all operator matrices have size N and we
use NZ to denote the number of nonzero elements in them.

A. Step 1: Initialization

The initialization of the Hamiltonian and the dissipator ma-
trices requires O(N2) operations and O(N2) space in general
case (for dense matrices). When dealing with the dimer model,
we use the sparse matrix storage format CSR, which requires
O(N ) operations for initialization and O(N ) space.

B. Step 2: Data preparation

First, we need to compute the coefficients hi, li of the
expansion of the matrices H and L in the basis {Fi} (step
2.1). The coefficients of the elements of the basis S( j,k), J ( j,k)

are calculated for O(1) operations, thanks to the form of
the basis matrices, which gives the total time complexity
O(NZH + NZL ). The coefficients for all Dl are calculated
with O(N ) operations. Thus, the total time complexity is
O(NZH + NZL + N ). We store the coefficients in two arrays.
The first array contains the values and takes O(NZ ) space.
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TABLE I. Main algorithm

Step Substep

1.1. Read the initial data from configuration files.
1. Initialization

1.2. Allocate and initialize memory.

2.1. Compute the coefficients hi, li of the expansion of the matrices H and L in the basis {Fi}.
2.2. Compute the coefficients fi jk , di jk , zi jk by Eqs. (4).
2.3. Compute the coefficients qsm by Eq. (6).

2. Data preparation
2.4. Compute the coefficients ks by Eq. (11).
2.5. Compute the coefficients rsm by Eq.(10).
2.6. Compute the initial value v(0).

3.1. Integrate the ODE (9), over time to t = T by means of the Runge-Kutta method.
3. ODE integration

3.2. Compute ρ(T ) by Eq. (5).

4.1. Save the results.
4. Finalization

4.2. Release memory.

The second array represents the expansion and contains −1
for zero coefficients and indexes in the first array for nonzero
ones. It takes O(N2) space. This allows quickly accessing the
element and checking if it is equal to zero. In the case of
dense matrices NZH = NZL = N2, while for the dimer model
NZH = NZL = 3N − 2.

Next, we need to compute the coefficients fi jk , di jk , zi jk

(step 2.2). The number and values of these coefficients depend
only on the size of the problem, N . Their direct calculation
by Eq. (4) requires 2(N2 − 1)3 matrix multiplications for
the basis matrices {Fi}. Most multiplications require a fixed
number of operations independent of N . Multiplication with
the participation of the matrices {Dl} require up to O(N ) op-
erations. The total time complexity is therefore O(N6). It can
be significantly reduced by taking into account the sparsity
patterns of the matrices {Fi}. The main idea is to account for
nonzero coefficients only. We found that it is possible to deter-
mine the set of nonzero coefficients analytically. Namely, the
number of nonzero coefficients fi jk is NZF = 5N3 − 9N2 −
2N + 6, the number of nonzero coefficients di jk is NZD =
6N3 − N (21N + 7)/2 + 1, and the complexity of calculating
each coefficient is O(1). Thus, the overall time complexity is
O(N3). It should be noted that, despite the apparent uniform
distribution of O(N3) nonzero coefficients in tensors of size
N2 × N2 × N2, every set of two-dimensional sections of the
tensor {di jk, i = const}, {di jk, j = const}, {di jk, k = const} in-
cludes O(N ) two-dimensional sections, with O(N2) elements
in each of them. It results in O(N3) elements in total in
every such sub-tensor. The example of nonzero coefficients
distribution for N = 3 is shown in Fig. 1).

When calculating the coefficients, we use the coordinate
sparse matrix format, which requires O(NZF + NZD) space.
Next, we convert the tensors from the coordinate format to the
CRS format. For this we employ the quicksort algorithm to
dictionary sort triples of indices (i, j, k). The resulted com-
plexity of this step is O([NZF + NZD] log[NZF + NZD]) ∼
O(N3 log N ) operations and it requires O(N3) space. The
subsequent addition of the tensors Z = F + D has the time
complexity O(NZF + NZD) ∼ O(N3) and requires another
O(N3) space. Two points are of importance. First, it is possible
to pre-compute the tensor Z and store it in a file. Second, we
can get rid of memory allocation and element computation for

the tensors D, F , and Z . Instead, elements of these tensors can
be computed on fly, when needed. We use this approach to
decrease memory consumption.

The next part of the algorithm (step 2.3) computes coeffi-
cients qsm, Eq. (6). A straightforward implementation requires
O(N6) operations. However, we again can significantly de-
crease the computational load thanks to sparsity of the tensor
F . Computations can be done by using the following recipe:

(1) Represent the tensor F in the coordinate format (F ′)
in which only nonzero f ′

i jk = fi jkhi are stored. It takes O(N3)
time and O(NZF ′ ) space. In the general case, NZF ′ depends es-
sentially on the form of the Hamiltonian. If there are nonzero
elements on its main diagonal, then NZF ′ ∼ O(N3), otherwise
O(N · NZH ).

FIG. 1. Sparsity patterns of tensors {di jk} (a) and { fi jk} (b) for
N = 3. The red points indicate nonzero elements.
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(2) Sort F ′ elements by a pair of indices (k, j). It can
be done by using the counting sort (or radix sort) algorithm,
which results in O(N3) scaling in time and O(NZF ′ ) in space.

(3) Calculate sums qsm = Re(
∑N2−1

i=1 fimshi ) and form the
Q matrix in the CRS format. The matrix can be filled in two
steps. At the first, the number of nonzero elements in each row
is computed. Next, the elements are calculated and indexes
are written. All this can be done in O(NZF ′ ) time and requires
O(NZF ′ ) space. The resulted time and space complexity of
step 2.3 is O(N3). The number of nonzero elements in the
resulting matrix Q depends essentially on the form of the
Hamiltonian, but it does not exceed O(N3).

During the next step 2.4, we compute the coefficients ks by
Eq. (11).

A direct calculation of the coefficients requires O(N4)
operations. This can be decreased if vector l is sparse. To
do this, we convert the vector into the coordinate format,
find all nonzero fi js for each nonzero lil∗

j , and add lil∗
j fi js to

corresponding ks. It requires O(NZ2
L ) time. The same result

can be achieved by using the sparsity of the tensor F . Thus, we
can just go through all nonzero elements of F , adding lil∗

j fi js

to corresponding ks. It requires O(N3) time. The choice of the
algorithm is determined by the relation between N and NZL.
We use the second option because it is independent of the
input data. In any case, storing the vector ks requires O(N2)
space.

Next (step 2.5), we compute the coefficients rsm by us-
ing Eq. (10). Again, a straightforward calculation of the
coefficients—even for P = 1—requires O(N10) operations,
which is unacceptable. The following details should to be
taken into account to reduce the scaling:

(1) Tensors F and Z are sparse and contain O(N3) ele-
ments each;

(2) Tensors F and Z are filled in such a way that their
two-dimensional ‘sections’ (matrices) contain O(N ) to O(N2)
elements;

(3) Vector l is sparse if the dissipator is sparse. For the
dimer model this vector contains NZL = 3N − 2 nonzero
elements (N2 − 1 elements in the general case).

The corresponding algorithm reads:
(1) Convert tensors F and Z to the coordinate format (F ′

and Z ′ correspondingly). Both tensors store only nonzero
elements l∗

i fi jk and lizi jk . It can be done in O(N3) time and
space.

If matrix L is dense, then tensors F ′ and Z ′ con-
tain NZF ′ , NZZ ′ ∼ O(N3) nonzero elements, and the two-
dimensional sections of F ′ and Z ′ contain O(N2) nonzero
elements.

Thanks to the sparsity of matrix L, the number of nonzero
elements is much smaller in the dimer model. Namely, it is
O(N2) for F ′ and Z ′ and O(N ) for their 2D sections.

(2) Sort elements of F ′ and Z ′ on the second and the third
indexes. When using the counting sort or radix sort algorithm,
it takes O(NZF ′ + NZZ ′ ) time and space.

(3) Compute sums of elements with the same second and
third indices. The results can be represented as matrices F ′′,
Z ′′ in the coordinate format, ordered by the second and third
coordinates. It requires O(NZF ′ + NZZ ′ ) time and space.

TABLE II. Algorithm complexity

Complexity Complexity
Algorithm step for dense H and L for the dimer model

Time Space Time Space

1. Initialization O(N2) O(N2) O(N ) O(N2)
2. Data preparation O(N5 log N ) O(N4) O(N3 log N ) O(N3)
3. ODE integration O(N4) O(N2) O(N3) O(N2)
4. Finalization O(N2) – O(N2) –

If the matrix L is dense, then O(N ) rows in the matrices
F ′′ and Z ′′ contain O(N2) nonzero elements. The remaining
O(N2) rows can contain O(N ) nonzero values. In the applica-
tion considered in this paper all rows of the matrices F ′′ and
Z ′′ contain no more than O(N ) nonzero elements.

(4) Store the matrix R as an array of the red-black trees
where every row of the matrix is represented as a separate tree.
For each l = 1, N2 − 1 compute all products li1 l∗

k (zi1 jm fi2 js +
z∗

i2 jm fi1 js) and add the results to the corresponding elements of
the matrix R.

It can be done in O(N · (N2)2 · log N ) + O(N2 · N2 ·
log N ) ∼ O(N5 log N ) time and O(N4) space for a dense
matrix and O(N · (N )2 log N ) time and O(N3) space for the
dimer model.

(5) Convert matrix R to the CRS format. It requires
O(N4 log N ) time and O(N4) space in the general case, and
O(N3 log N ) time and O(N3) space for the model problem.

Consequently, the step 2.5 requires O(N5 log N ) time and
O(N4) space for the general case and O(N3 log N ) time and
O(N3) space for the dimer model.

Finally, during step 2.6 we compute initial coherence-
vector v(0) and then initiate time propagation. For this pur-
pose, we expand the initial state ρ(0) in the F -basis, Eq. (5).
It takes O(N2) time and O(N2) space (see explanations for
step 2.1).

C. Step 3: ODE integration

During this step we integrate the linear real-valued ODE
system, Eq. (9), over one period of modulations, T (step
3.1), and compute resulted ρ(T ) (step 3.2). The complexity
of the ODE integration is determined by the method used for
propagation and the number of nonzero elements in matrices
Q and R (up to O(N4) elements for dense matrices). For
example, the time complexity of one time step is O(N4) for
the Runge-Kutta integration. However, the time complexity
of one step is O(N3) for the dimer model, Sec. III. The
integration of the corresponding ODE system by the forth-
order Runge-Kutta method requires O(N2) additional space
for storing intermediate results. The computation of �(T ) has
complexity O(N2), both in time and space.

D. Step 4: Finalization

During this step we save results to files and release mem-
ory. The time complexity is O(N2).

Resulted time and space complexity estimations are pre-
sented in Table II.
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FIG. 2. Error in the calculated density matrix by the quantum
jump method and the proposed method as a function of computation
time. For N = 200, integration step 1E − 4 corresponds to a compu-
tation time of 18 500 trajectories using the quantum jump method and
step 1.25E − 5 corresponds to 1 45 300 trajectories. For N = 400,
these values are equal to δt = 3E − 4 and 1600 trajectories, and
δt = 5E − 5 and 9600 trajectories, respectively. The initial state is
�(0) = |0〉〈0|.

V. PERFORMANCE ANALYSIS

For performance tests we use a node of the Lobachevsky
supercomputer [51] with a 2 × 8-core Intel Xeon CPU E5-
2660, 2.20 GHz, 128 GB RAM. The code was compiled with
Intel C++ Compiler, Intel Math Kernel Library and Intel MPI
from the Intel Parallel Studio XE suite of development tools.

To start, we compare the performance of the algorithm
with the performance of a recently proposed implementation
of quantum trajectory method [17]. The implementation has
only one tunable parameter, the depth S, which defines the
smallest step of propagation, δtmin = 2−Sδtmax, and thus the
error in determining time of the next jump. The propagation
in between jumps is numerically exact and performed by
using nonunitary matrix operators (exponentinated effective
Hamiltonians). The maximal time step δtmax is set to be equal
to the mean value of inter-jump time (which is estimated
during a warm-up phase). For further details we refer to
Ref. [17].

We use the picewise constant periodic driving (see Sec. III)
and propagate dimer from the pure initial state �(0) =
|0〉〈0| (all bosons are seating on the right site). The sys-
tem is propagated to t = 10T , by sampling over quantum
trajectories and integrating the coherence vector, and then
the obtained solutions, �qt (10T ) and �cv (10T ), are com-
pared with the test solution �∗(10T ) obtained by propagat-
ing Eq. (9) with the RK4 integrator and time step dt =
10−6. The error is defined as the spectral norm of the
difference matrix, ε = ‖�∗(10T ) − �s(10T )‖, s ∈ {′qt ′,′ cv′}.
We estimated the total computation time (on the node) tc
needed to reach the accuracy ε; the results are presented on
Fig. 2.

The error scaling in the case of the QT sampling is intu-

itive: spectral norm decays as t
− 1

2
c , which is consistent with

the linear scaling of the number Mr of realizations with the
computation time. In the case of the coherence vector prop-

FIG. 3. Computation time as a function of N . The total computa-
tion time (line; right y axis) was measured for the propagation time
10T . More detail analysis was performed for the propagation time T
(bars; left y axis). To get estimates for longer propagation times, one
has to scale linearly computation time of the ODE integration step.

agation, the error quickly saturates already for dt = 2E − 5
(the corresponding computation time is 50 min for N = 200).
However, there is a substantial difference even for a maximal
computation time used in the tests; namely, it is near four
order of magnitude. We conclude that, at least for a sparse
Hamiltonian and a single jump operator, as in the test-bed
model, the numerical propagation of the coherence vector
is much more efficient, from the point of view of the time
complexity, than the QT sampling.

Next we analyze scaling of computation times of different
steps as functions of N . To do so we set propagation time
to T . The results are shown in Fig. 3 (bars). First, it shows
that the time of the preparation step, although significant,
is substantially smaller than the time of ODE integration.
Taking into account that the preparation step is performed
once, while integration time scales linearly with the actual
time of propagation, we conclude that it is the latter that
determines the total computation time of the algorithm. It
is evident that the initialization and finalization steps do
not make a significant impact on the overall computational
time.

Now we compare theoretical predictions obtained for N =
102 for the propagation time 10T upon the increase of the
problem size to N = 103; see Fig. 4. Namely, we compare
computation times of the most time consuming steps and the
overall computation time with the theoretical predictions. To
do so, we scale (as discussed above) the measured estimate
and compare them with actual ones. First observation is that
the relation obtained for the preparation step saturates to a
constant value. The relation for the integration step slowly
goes down with the increase of N ; therefore, the estimated
obtained early can be considered as an upper bound and the
actual number of the operations during this step is less then
expected. It is not a surprise if we recall that the matrix
sparsity scales nontrivially with N . Finally, we analyze the
scaling of the memory use. First we consider how it scales
with the propagation time. The results of the analyses are
presented with Fig. 5, where the memory used during different
algorithm steps is shown as function of N . It peaks during
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FIG. 4. Ratio between the actual computation time and the cor-
responding asymptotic predictions, Table II (time complexity for the
dimer model) For a fixed N , the ratio is scaled to make the total time
(to perform all steps) equal to one.

the data preparation step, when matrix Q is calculated. It
is noteworthy that the memory use is around 100 GB for
N = 103; this already sets certain demands to the computa-
tional cluster. Now we compare the results of computation
experiments with theoretical estimates. For this we tune the
size of the model from N = 102 to 103 and calculate the
ratio between the maximal memory use obtained in numerical
experiments and estimates; see Fig. 6. Thus, the latter are
confirmed.

VI. CONCLUSIONS

We have presented an algorithm to transform a quan-
tum master equation in the Gorini–Kossakowski–Sudarshan–
Lindblad form into a system of N2 − 1 linear real-valued
ordinary differential equations (ODEs). We included a prop-
agation stage into an implementation of the algorithm so
that the obtained system can be integrated forward in time.
By using a test-bed model, we evaluated the performance of
the implementation and demonstrated that it is possible to
propagate a system with N = 103 states on a single node of
a standard cluster.

A. Applications

We see our implementation as a computational tool to
propagate large open models of general type, which may also

FIG. 5. Scaling of memory used during the different steps of the
algorithm as functions of N , for N = 200, 400, 600, 800, 1000 (from
bottom to top).

FIG. 6. Ratio between the maximal memory use measured in
computation experiments and the corresponding asymptotic predic-
tions, Table II (space complexity for the dimer model). For a fixed N ,
the ratio is scaled to make the total time (to perform all steps) equal
to one.

include time-dependent Hamiltonians and dissipation rates.
There is an interesting context to this which appeared very
recently.

During last five years, random sampling of complex states
was considered as a way to prove “quantum supremacy”
[52]. Conventionally, such sampling is performed by con-
structing random quantum circuits and passing some trivial
pure initial state (e.g., a product state) through them. A
proposal to perform sampling of mixed quantum states, by
using dissipative effects and time-modulated Hamiltonians,
was presented in a recent work [53]. The consideration is
based on the Lindbald equation, which described the action
of a dissipative “circuit,” and its unrevealing into ensemble
of quantum trajectories [19–21]. The QT approach brings the
issue of the variance around the relevant expectational values
(e.g., diagonal elements of the density matrix) and the speed
of the sampling should be estimated by restricting the variance
to some threshold value ε and estimating the total number
of trajectories needed to reach this threshold. As it follows
from our results (though for a specific model, see Fig. 2), the
numerical propagation of the density matrix, by encoding it
into a coherence-vector, can be more efficient from the point
of view of computational resources.

Parallelization is another potential resource to refine the
implementation. Note that the calculations are performed in
two stages, data preparation and integration of the obtained
ODE system. At the same time, significant memory consump-
tion during the data preparation stage is the main bottleneck
limiting further increase of the model size. In this regard, the
parallelization should help to satisfy memory requirements for
models of larger size (we estimate it as N � 2000–3000), by
using the resources of several nodes. We do not expect a dras-
tic reduction of the propagation time from the parallelization;
yet it is not the key limiting factor in this case.

The asymptotic state of a model with a time-independent
Lindbladian can potentially be calculated by using the method
of linear programming [38]. Namely, the task can be reduced
to minimization of the right-hand side of the ODE system,
Eq. (9), by varying real-valued coherence vector υ. This pro-
vides with a possibility of futher parallelization since there is
a toolbox of parallel methods designed to solve such problems
[39].
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B. Alternatives

There are recent advances which serve alternatives to
our approach. If a model many-body system is local, i.e.,
every local “body” (usually spin) is interacting, then both
through Hamiltonian and dissipative operators, only with a
small number of its neighbors, the corresponding Lindbladian
is sparse. In this case, it is expediently to try tensor-based
methods to propagate the system [15]. However, it could be
that jump operators do not destroy long-range entanglement in
the system (a special dissipation can even work in the opposite
direction, see, e.g., Ref. [9]); in this case the tensor-based
methods do not apply and our approach becomes of relevance.

In Ref. [54] it was proposed to calculate the asymptotic
state of a Lindbladian L by transforming the problem into
finding the ground state of a fictitious Hamiltonian HL =
L†L. Hamiltonian HL inherits this sparsity of L, for the price
of squaring the number of nonzero elements [55]. In this case,
the matrix product state representation [56] may work well—
if the ground state of HL is characterized by a short-ranged en-
tanglement. Normalization, Tr� = 1, and Hermeticity, �† =
�, conditions can be built into the algorithm; however, similar
to our approach, the positivity, � � 0, is hard to control. It
would be interesting, by using several models with sparse
Lindbladians, to gauge performance of the algorithm from
Ref. [54] vs our implementation.

When a Lindbladian is not sparse, the coherence vector
approach may become advantageous—but in this case its

efficiency has to be re-evaluated (especially versus QT ap-
proach). How dense a typical Lindbladian could be? It is not
enough to have a model with a full Hamiltonian because it
would only yield a Lindbladian with a block diagonal struc-
ture (with only 1/N fraction of nonzero entries). Physically
meaningful jump operators are usually acting on a very small
subspace of the total system Hilbert space each; e.g., in case of
a spin network model, these operators act either individually
on every spin or, at most, on pairs of neighboring spins.
Moreover, jump operators are typically identical (though their
rate can be different). Such jump operators can diminish the
sparsity of the Lindbaladian but they cannot make if fully
dense. In the case of physically relevant model, one would
probably deal with an intermediate situation.
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