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a b s t r a c t 

Evaluating operator mental workload (MW) in human-machine systems via neurophysiological signals is 

crucial for preventing unpredicted operator performance degradation. However, the feature of physiologi- 

cal signals is associated with the historical values at the previous time steps and its statistical properties 

vary across individuals and types of mental tasks. 

In this study, we propose a new transfer dynamical autoencoder (TDAE) to capture the dynamical 

properties of electroencephalograph (EEG) features and the individual differences. The TDAE consists of 

three consecutively-connected modules, which are termed as feature filter, abstraction filter, and trans- 

ferred MW classifier. The feature and abstraction filters introduce dynamical deep network to abstract 

the EEG features across adjacent time steps to salient MW indicators. Transferred MW classifier exploits 

large volume EEG data from an source-domain EEG database recorded under emotional stimuli to im- 

prove the model training stability. We tested our algorithms on two target EEG databases. The classifi- 

cation performance shows TDAE significantly outperforms existing shallow and deep MW classification 

models. We also investigated how to select TDAE hyper-parameters and found its superiority in accuracy 

can be achieved with proper filter orders. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The increased complexity of the control and automation sys-

tems served to generate attention in understanding the locus

of the human-machine interaction. Unlike the unmanned, fully-

automated agents, the task performance in a human-machine col-

laboration environment is closely linked to the functional states of

human operators [1] . To meet the task demands, human cognitive

resources are partially occupied from the overall capacity account-

ing for information processing functionality of the brain [2] . When

assigning improper amount or type of tasks to the operator, the

high mental workload (MW) may arise leading to the potential

degradation of operator performance. Assessing the MW levels is

thus considered highly crucial aiming at reducing the possibility of

accidents caused by human factors. 

Considering the fact that electrical neurophysiological signals

can reflect the summation of spontaneous activity of the human
∗ Corresponding authors. 
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ortex, MW states were recognized via electroencephalograph

EEG) in well-documented works [3–5] . However, building a

eneric EEG model is problematic since EEG signals are known as

tochastic processes with nonstationarity and individual difference.

y employing the advantages of the machine learning principles,

nterpreting EEG into different cognitive states is obtained by

arious data-driven modeling techniques [4–10] . For instance, the

ulti-layer perceptron [4] , support vector machine (SVM) [5] ,

xtreme learning machine (ELM) [6] , random forest [7] , stacked

utoencoder (SAE) [8] , deep belief networks (DBN) [9] and multi-

ayer convolutional neural network (CNN) [10] . Among them, the

eep learning classifiers received high attention in the newest

orks due to its higher classification accuracy benefiting from the

ierarchical feature abstractors [8–10] . 

In our primary investigations on deep learning approaches

11–12] , feature vectors are computed from non-overlapped EEG

egments and the current MW output is solely determined via

he feature vector of the current time step. However, inherent

ortical states are known as continuous-time process. The current

W level is also associated with the historical feature vectors

https://doi.org/10.1016/j.neucom.2019.02.061
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.02.061&domain=pdf
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Nomenclature 

Acronym Description 

AE Autoencoder 

ANN Single-hidden-layer feedfoward neural network 

AutoCAMS Automation-enhanced cabin air management sys- 

tem 

CNN Convolutional neural network 

DBN Deep belief network 

DEAP Database for emotion analysis using physiological 

signals 

DCE Deep collaborative embedding 

ECG Electrocardiogram 

EEG Electroencephalograph 

EOG Electrooculogram 

ELM Extreme learning machine 

KNN K -nearest neighbor 

LSSVM Least square support vector machine 

LR Logistic regression 

MATB Multiple-Attribute Task Battery 

MW Mental workload 

NB Naive Bayesian model 

NPV Negative predicting value 

PSD Power spectral density 

PLS Partial least square 

PCA Principal component analysis 

RBF Radial basis function 

RSSL Robust structured subspace learning 

SD Source domain dataset 

SAE Stacked autoencoder 

SVM Support vector machine 

TD Target domain dataset 

TDAE Transfer dynamical autoencoder 

omputed from the EEG recordings at the previous time steps.

oreover, we found the deep learning models possess outstanding

eneralization capability only if the huge amount psychophysi-

logical data are available for training [13] . Since the statistical

roperties of the physiological signals vary across individuals and

ypes of mental tasks [14–15] , the EEG features extracted from

ifferent domains cannot be directly fused as the training database

or a specific MW-assessing environment. The reason behind is

hat most machine learning methods follow the assumption that

he training and testing instances are independently drawn from

dentical distribution. It then leads to a high burden in collecting

ersonal EEG data for each operator. 

To overcome the two shortcomings mentioned above, the pri-

ary objective of the present study is to introduce dynamical deep

etwork to abstract the EEG features across adjacent time steps to

alient MW indicators. Specifically, we compress the EEG features

ia a two-layer SAE where the input neurons are linked to both of

he current and historical feature vectors corresponding to multi-

le recording time steps. Then, the pre-trained SAE can be consid-

red as a feature filter aiming at finding the dynamical properties

or ongoing EEG processes. To validate the effectiveness of the fea-

ure abstractor, two EEG databases collected in our previous works

re employed, where the operators were engaged with a simulated

rocess control system [11,16] . 

The secondary objective is to employ transfer learning prin-

iple to improve fine-tuning performance in the deep learning

ramework. Transfer learning emphasizes sharing knowledge

rom a source domain to a target domain [17] . When achieving

omain-adaptation across multiple training data sources, it could

acilitate MW classifier to be sufficiently trained via EEG feature
ets extracted from a different but similar task environment. Here,

e adopt the EEG recordings of DEAP, the Database for Emotion

nalysis using Physiological signals, that was originally utilized for

motion recognition [18] . We then designed two dependent SAE

etworks for knowledge transferring by comparing the similarity

f the high-level EEG feature abstractions between the target MW

atabases and source DEAP database for consistent data distribu-

ion. Finally, a new transfer dynamical autoencoders (TDAE) in the

eep learning framework is proposed by successively linking the

ltering SAEs and the transferred SAE classifier. 

The rest of the paper is structured as follows. The related works

re briefly reviewed in Section 2 . In Section 3 , we first introduce

ll adopted EEG databases and how we prepare the consistent EEG

eatures. Then, details of the proposed TDAE MW classifier are pre-

ented. The MW classification performance and the accuracy com-

arisons are shown in Section 4 . In Section 5 , we provide some

seful discussions on the present algorithms. The contribution of

he study is concluded in Section 6 . 

. Related works 

The ultimate goal for MW assessment is to achieve adaptive

ystems that can automatically allocate the tasks between human

nd machine agents. Byrne and Parasuraman then proposed the

oncept of adaptive automation [19] . The type of human-machine

ollaboration can be defined via the level of automation accord-

ng to Kaber et al., which is intended to design a human-centered

orking environment [20] . Lin et al. applied Kaber’s framework on

 simulated control room of the nuclear power plant to enhance

he operator performance [21] . Parallel work on air traffic control

ask can be noted in [22] . In the literature, MW states were mea-

ured via the secondary task performance. For instance, Parasura-

an et al. used the reaction time of radio communications in the

ultiple-Attribute Task Battery (MATB) platform to assess the MW

evel for the flight crew members [23] . 

Considering the fact that introducing secondary task may lead

o a complex dual-task mode and impairs the main task perfor-

ance, physiological measure received more attention in the past

 few years because of its superiority in nonintrusiveness, temporal

esolution and diagnostic capability. In early works, Pope et al. pro-

osed the engagement index for assessing MW, which is computed

y the ratio of the EEG power spectral densities [24] . Freeman et al.

nvestigated four different EEG power ratios by statistical analysis

25] . Besides the EEG feature, the electrocardiograms (ECG) were

iscussed in [26] by Haarmann et al.. Then, the middle- and high-

requency components (0.07–0.5 Hz) of the heart rate variability,

.e., the fast Fourier transformation of the ECG signal, were used

o measure MW in [27] by Hoover et al. Moreover, the blink rate

aptured from the electrooculogram (EOG) was adopted by Noel et

l. to estimate the MW level of the trainer pilot [28] . Compared to

he ECG signal, EEG features are directly generated from the cen-

ral nervous system and are closely related to the working mem-

ry management manipulated in the prefrontal cortex. The multi-

hannel EEG recordings also possess better spatial resolution than

hysiological signals collected on the peripheral nervous system. 

The implementation of the machine learning approaches as

ognitive state classifiers were widely documented. The single-

idden-layer feedfoward neural network (ANN) was used by Rus-

ell et al. to classify MW levels [29] . Kumar et al. combined the

uzzy C-means clustering and the fuzzy maximum likelihood esti-

ation to classify EEG into different sleep states [30] . Guler and

beyli fused the discrete wavelet transformation and the adap-

ive neuron fuzzy inference system as a multiclass EEG classi-

er [31] . In a newly reported work [32] , the classical k -nearest

eighbor method also showed high performance. In our previous

orks [16,33] , we applied the least square support vector machine
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(LSSVM) and the locally linear embedding to classify operator MW.

Recently, Faust et al. reviewed the popular deep learning methods

applied in this domain [34] , where the DBN, SAE and CNN were

listed as attractive deep models. 

In particular, Wang et al. indicated the perfect MW classifier

should accurately predict the MW levels under any given day,

training subjects and human-machine tasks [14] . In their work, a

cross-subject MW classifier based on the hierarchical Bayes model

was proposed. Cross-day MW classifiers built by Christensen et al.

with LSSVM, ANN and the linear discriminant analysis approaches

can be found in [35] . Baldwin et al. reported their attempt to reach

the cross-task classification [15] . Recently, a task-independent MW

recognition framework using the SVM and the cortical connectiv-

ity features was reported by Dimitrakopoulos et al. [36] . In our

previous works [11–12,37] , we developed an adaptive SAE, switch-

ing DBN, and deep ELM model to tackle the cross-day, individual-

independent and task-generic MW classification problems. From

the above related works, we found dynamical properties of the

data time courses and a limited size of training samples may im-

pair the classification performance when applying deep learning

methods for assessing mental workload via EEG features. 

For the shallow feedforward ANN applied in [29] , a single hid-

den layer can accurately approximate a mapping across input EEG

features and class labels. However, the potential overfitting may

arise when too many hidden neurons are predefined. The SVM im-

plemented in [33] avoided this problem since it introduces a reg-

ularization term to minimize the norm of the weight vector in

the decision hyper-plane that achieves max margin classification.

In [37] , the input weight of an ELM network is completely ran-

dom while its output weight is computed by minimizing the least

square error and the weight norm. Since only a part of weight pa-

rameters need to be tuned, the training speed of the ELM is much

higher than ANN and SVM methods. It is noted the learning capa-

bility is limited for above shallow learning machines on the MW

classification issue when raw EEG indicators were employed [12] .

For the neural network structure in deep SAE, DBN, and CNN mod-

els, there are several intermediate layers for abstracting high level

feature representation. It provides a wider range of possibilities for

the feature fusion and improves the efficiency for the physiological

feature engineering. 

It is noted that latent subspace learning techniques have shown

promising performance for automatic feature engineering. In par-

ticular, Li et al. [38] proposed the robust structured subspace learn-

ing (RSSL) method to capture complex geometric structures of

image data. They designed a new objective function for feature

mapping by evaluating the local and global structure consistency

when minimizing the least square cost and the regularization term.

Their results showed RSSL outperformed a wide range of manifold

learning methods when they were combined with a rigid regres-

sion classifier. In a newly-reported work, Li et al. [39] proposed

the deep collaborative embedding (DCE) algorithm aiming at find-

ing the optimal latent feature representations for social images.

The DCE integrated the collaborative factor analysis with the CNN

training algorithm to generate an end-to-end classification frame-

work. The statistical analysis indicated a significant improvement

was achieved by the DCE. Both of the works above show the inter-

mediate feature representation module is critically important for a

pattern classification system. 

Motivated by the results shown in [33–38] , in this study we

employ a dynamical deep learning architecture to uncover proper

latent EEG variables targeting the mental workload levels. Across

multiple hidden layers, the original EEG feature can be automat-

ically fused to generate high level feature representations. Note

that in [39] the outlier problem was tackled via introducing a new

term in the objective function that evaluated the consistency be-

tween the local and global data structures. Here, we controlled the
verfitting of deep model by applying the transfer learning prin-

iple to tackle the problem for the limited size of the training

ataset. That is, multiple data sources from different domains are

ntegrated to learn the proper weights. The adequate size of the

raining sample is collected and used for network fine-tuning.

n the end, we characterize the dynamical properties for both

f EEG features and abstractions in the proposed deep learning

ramework. 

. Materials and methods 

.1. Neurophysiological databases 

In this section, we provide descriptions for three EEG databases

nvolved in modeling the proposed deep MW classifier. Regarding

he transfer learning principle, the first two databases are target

omain sets, where subjects were engaged with process control

asks under different task demands. For the third database, how-

ver, EEG signals were recorded along with emotional stimuli and

re defined as source domain database for knowledge transferring.

.1.1. Target domain EEG sets 

Two target domain EEG sets (denoted as TD1 and TD2 here-

nafter) were collected in our previous works [11,33] . When sub-

ects performed tasks on automation-enhanced cabin air manage-

ent system (AutoCAMS), we simultaneously measured the EEG

ignals from the their scalps. Details of AutoCAMS software were

oted in [40] , where operators were instructed to manually per-

orm a safety-critical task with multiple subsystems that control

he air quality of a space cabin. Task demand of AutoCAMS was

rogrammed via the number of failed subsystems and the actuator

ensitivity. For TD1 [33] and TD2 [11] , eight and six healthy partic-

pants were engaged, respectively. Each of them accomplished two

essions of experiments. 

In TD1, four-phase EEG signals in each session were selected

ith each phase lasting 15 min. In phases #1 and #4, subjects in-

eracted with AutoCAMS under low task demand while only one

ailed subsystem was to be manipulated. In phases #2 and #3, high

ask demand was activated via four failed subsystem. In TD2, we

elected seven phases with each of 5 min from each session, where

hases #1, #3, #5, and #7 were baseline conditions with zero-task-

emand. In the remaining phases #2, #4, and #6, subjects oper-

ted 2, 3, and 4 failed subsystems under high actuator sensitivity,

espectively. For facilitating supervised learning, we then set the

EG instances corresponding to low- and zero-task-demand phases

s low MW class while the remaining phases as high MW class.

he variation of the task demand for TD1 and TD2 was illustrated

n Fig. 1 . It is noted we removed transient phases to improve the

ata separability between low and high MW classes. 

.1.2. Source domain EEG set 

Considering the data volume in TD1 and TD2 was relatively

imited, we further employ DEAP as the source domain database

denoted as SD hereinafter). The DEAP was publicly accessible for

nvestigating human physiological responses stimulated by music

ideos and details were noted the literature [18] . The SD was con-

tructed by selecting EEG data from the DEAP that contains 32

ealthy subjects. For each subject, 40-trial experiment was carried

ut. In each trial, 1-min EEG signals induced by the video stimu-

us were selected. That is, 40-min EEG data were available for each

ubject while the total data length was 1280-min for all 32 sub-

ects. 

.2. Consistent EEG feature extraction 

For SD, TD1 and TD2, 32, 11, and 15 channels of EEG were

ecorded according to 10–20 international system, respectively. To
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Fig. 1. Task demand variation for a session of experiment in (a) TD1 and (b) TD2. Number of the failed subsystem is denoted by NOS. Note that EEG data for transient 

phases a, b, c, d , and e were omitted. The details follow our previous work [11,33] . 
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ransfer knowledge from the source domain to the target domain,

xtracted EEG features from three databases must be exactly con-

istent possessing same dimensionality and mathematical repre-

entations. Therefore, we only choose 11 shared channels, i.e., F3,

4, Fz, C3, C4, Cz, P3, P4, Pz, O1, and O2. The EEG signals were

ltered and preprocessed via independent component analysis fol-

owing a framework proposed in [11] . For TD1 and TD2, EEG sig-

als were sampled at 500 Hz and split to non-overlapped segments

ith each of 2-second-length. Since we removed the first 5 seg-

ents in each phase of TD2 due to muscular noise [16] , 1800 and

015 EEG segments were elicited for each session of TD1 and TD2,

espectively. For the SD database, EEG signals were downsampled

o 128 Hz. We split the signals in each trial into 30 non-overlapped

egments with the invariable 2-second-length. In total, there were

0 ×40 ×32 = 38,400 segments of SD. 

For each data segment, 137 EEG features were extracted. The

EG features with the index #1 to #44 were the average power

pectral density (PSD) within frequency bands of theta (4–8 Hz),

lpha (8–12 Hz), beta (12–30 Hz) and gamma (30–40 Hz) across 11

hannels. That is, for each channel four power features were com-

uted via fast Fourier transform. #45 to #60 features were PSD

ifferences between right and left scalps on the channel pairs F3-

4, P3-P4, C3-C4, and O1-O2. For each channel pair, four difference

eatures from the same frequency bands were employed. The re-

aining 77 features were the mean, variation, zero crossing rate,

hannon entropy, spectral entropy, kurtosis, and skewness across

1 channels. 

In Fig. 2 (a), we visualize the extracted features by displaying

he Spearman correlation coefficient between EEG features and

arget MW levels. Each value in the line plot is the coefficient

veraged in all sessions and subjects in each database between the

eature time course and the corresponding MW levels. The high

orrelation was discovered for both of the features in frequency

nd time domains, e.g., PSD features, variation, zero crossing rate,

nd Shannon entropy. In Fig. 2 (b) and (c), 3D-scatterplots were

hown via EEG features #1-#3 and #35-#37, respectively. We se-

ected 20 instances of each MW class in TD1 ( Fig. 2 (b)), TD2 ( Fig.

 (c)) and 40 instances from SD. Both of the subfigures indicate

wo distinguishable clusters for low and high MW levels. Such

nter-class margin insures the session-specific classification per-

ormance. It is important to note that the cluster of the unlabeled

nstances from SD was located near the manifold constructed

y the target domain databases, which facilitate the knowledge

ransferring from SD to TD1 and TD2. 

.3. Deep transfer dynamical autoencoder for MW classification 

A deep-SAE-based MW classifier hypothesizes that the EEG fea-

ures can be hierarchically represented as high-level abstractions
haracterizing inherent cortex states for distinguishing MW levels.

his section reviews the architecture of the classical SAE and intro-

uces the formularized TDAE framework for binary MW classifica-

ion. 

.3.1. Stacked autoencoder 

The architecture of a SAE-based deep learning model is gen-

rated by stacking multiple autoencoders [41] . An autoencoder is

quivalent to a single-hidden-layer feed-forward neural network

ith identical inputs and outputs. Its architecture is shown in

ig. 3 (a). Given a training set of N EEG feature vectors, 

 tr = { ( x k , y k ) | x k ∈ R 

m , y k ∈ R 

2 , k = 1 , 2 , ..., N} , (1)

he function signal for m -dimensional EEG instance x i propagates

n the feed-forward path and leads to hidden neuron activations g .

or i th hidden neuron, the i th element of g is computed as, 

 i = f ( u i ) = f 

( 

m ∑ 

j=1 

w i j x j + b i 

) 

, i = 1 , 2 , ..., ˜ m , (2)

here u i , w ij , b , and ˜ m denote the induced local field, synap-

ic weight, bias, and number of hidden neurons, respectively. In

his study, the activation function f ( · ) employs the logistic sigmoid

unction f (u ) = 1 / (1 + e −au ) with a = 1 . 

In the reconstruction layer, the identical features ˜ x =
 ̃ x 1 , ˜ x 2 , ..., ˜ x m 

] T are approximated via, 

˜ 
 i = f ( ̃  u i ) = f 

( 

˜ m ∑ 

j=1 

˜ w i j g j + ̃

 b i 

) 

, i = 1 , 2 , ..., m. (3)

The error signal in the feedback path employs the squared error

unction ɛ , 

 i ( x i , ̃  x i ) = 

1 

2 

( x i − ˜ x i ) 
2 . (4) 

The correction of output weights � ˜ w i j can be computed

hrough Back-Propagation (BP) algorithm via 

∂ ε i 
∂ ˜ w i j 

= 

∂ ε i 
∂ ̃  x i 

· ∂ ̃  x i 
∂ ̃  u i 

· ∂ ̃  x i 
∂ ˜ w i j 

. (5) 

For input weights, �w ij is derived by summing the feedback

 i of all nodes in the reconstruction layer, 1 / 2 
∑ m 

i =1 ( x i − ˜ x i ) 
2 
. Note

hat b i and 

˜ b i are rewritten as w i 0 and ˜ w i 0 when applying Eq. (5) .

hen, the optimal parameters θ = { W 

∗, ˜ W 

∗, b 

∗, ̃  b 

∗} are learned

s, 
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Fig. 2. Visualization of the extracted EEG features. (a) Spearman correlation coefficient between time course of 137 EEG features and the target MW level in TD1 and TD2. 

(b) 3D-scatterplot for selected EEG feature vectors corresponding to low, high MW classes in TD1 and instances in SD without class labels. (c) 3D-scatterplot for selected 

EEG feature vectors corresponding to low, high MW classes in TD2 and instances in SD without class labels. 
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θ = arg min 

1 

N 

N ∑ 

k =1 

m ∑ 

j=1 

ε j,k 

{
x j (k ) , f 

[
˜ m ∑ 

i =1 

˜ w ji 

· f 

( 

m ∑ 

j=1 

w i j x j (k ) + b i 

) 

+ ̃

 b j 

]}
. (6)

In Eq. (6) , w ij , ˜ w ji , b i , and 

˜ b j are corresponding entries for the

matrices W 

∗, ˜ W 

∗, b 

∗, and 

˜ b 

∗, respectively. 

The architecture of a SAE model is illustrated in Fig. 3 (b), where

the high-level feature representation g ( l ) is hierarchically elicited

by stacking multiple autoencoders with reconstruction layer re-

moved, 

g 

(L ) = f ( W 

(L ) ... f ( W 

(2) f ( W 

(1) x + b 

(1) ) + b 

(2) ) ... + b 

(L ) ) . (7)

By denoting s (L ) 
θ

(x ) = g (L ) , the SAE parameters θ are pre-trained

in a greedy, layerwise manner. Then, an output layer y of two

nodes corresponding to low and high MW levels is added to

s (L ) 
θ

(x ) , 

y = f (V g 

(L ) + b v ) = f [ V s (L ) 
θ

(x ) + b v ] , (8)

where V and b v are the output weights and bias. In the end, θ,

V and b v are finely-tuned based on their pre-trained values to

achieve optimal θ∗, V 

∗ and b v 
∗ via the BP algorithm. 
.3.2. Transfer dynamical autoencoders 

The proposed TDAE framework for MW classification is shown

n Fig. 4 . The TDAE consists of three consecutively-connected mod-

les, which are termed as feature filter, abstraction filter, and

ransferred MW classifier. All modules are designed based on the

AE architecture shown in the previous section. The function of

eature and abstraction filters is to discover hidden patterns un-

erlying the dynamics of the EEG features and high-level represen-

ations. Transferred MW classifier exploits large volume EEG data

rom the SD database and is expected to find generalizable synap-

ic weights in TDAE deeper layers. The details for each module are

resented as follows. 

Feature filter module: As shown in Fig. 4 , we design m feature

lters to process m -dimensional EEG features, where inputs of each

lter are the values of the same feature at current and historical

ime steps, 

 

(1) 

i ̂ j 
(k ) = f 

[ 

D 1 ∑ 

j=1 

w 

(1) 
ˆ j j,i 

x i (k − j + 1) + b (1) 
ˆ j 

] 

, i = 1 , 2 , ..., m. (9)

In Eq. (9) , the indices of the input and hidden nodes for filter

 are denoted by j and 

ˆ j , respectively. The number of the hidden

odes is set to be equal to that of the input dimensionality D 1 . The

alue of D 1 can be considered as the order of an weighted-moving-

verage filter, where the filter parameters are the synaptic weights
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Fig. 3. Architectures of (a) an autoencoder and (b) an SAE. 

Fig. 4. Architecture of the proposed TDAE for binary MW classification. For feature and abstraction filters, x 1 ( k ) denotes the value of #1 EEG feature at time step k , Z −1 

represents one-step backward shifting operator, h and g are hidden neuron activations of the SAEs. For the transferred MW classifier in the right section, y 1 ( k ) and y 2 ( k ) 

denote low and high MW level at time step k , respectively 
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h
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s
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m  
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i

 

f an autoencoder. For simplicity, we employ the same value of the

yper-parameter D 1 for all filters. 

The filter weights w ˆ j j,i 
are computed by repeatedly applying the

P algorithm noted in Eqs. (5) –( 6 ). Then, h (1) 

i ̂ j 
(k ) is recognized as

he value of a hidden variable at time step k that integrates dy-

amical properties of EEG feature x i (k − j) . Since positive weights

re required for data smooth, we rescaled w 

(1) 
ˆ j j,i 

as follows, 

ˆ 
 

(1) 
ˆ j j,i 

= w 

(1) 
ˆ j j,i 

/ 

D 1 ∑ 

j=1 

w 

(1) 
ˆ j j,i 

+ z i , i = 1 , 2 , ..., m. (10)
here z i is a constant that controls the range of ˆ w 

(1) 
ˆ j j,i 

values. For

implicity, we employ the same z i for all filters. 

After all hidden neuron activations are elicited via the pre-

rained, rescaled ˜ w ˆ j j,i 
, the abstraction dimension increases to

 × D 1 . To avoid the curse of the dimensionality, we only select

ne neuron for each filter linking to the next hidden layer accord-

ng to the minimum Shannon entropy, 

ˆ j ∗ = arg min 

ˆ j 

− 1 

N 

N ∑ 

k =1 

h 

(1) 

i ̂ j 
(k ) · log 2 [ h 

(1) 

i ̂ j 
(k )] , i = 1 , 2 , ..., m. (11)
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Table 1 

Pseudo codes for building feature filters in TDAE, the no- 

tations are consistent with Eqs. (1) –( 11 ). 

Algorithm 1: Building feature filters. 

1 : Set the training set S (1) 
tr 

2 : S (1) 
tr = { x (k ) | x (k ) ∈ R m , k = 1 , 2 , ..., N} 

3 : for i = 1 : m 

4 : Initialize all w 

(1) , b (1) with random values 

5 : for ˆ j = 1 : D 1 

6 : h (1) 

i ̂ j 
(k ) = f 

[
D 1 ∑ 

j=1 

w 

(1) 
ˆ j j,i 

x i (k − j + 1) + b (1) 
ˆ j 

]
7 : Endfor 

8 : arg min 
w (1) , ̃ w (1) , b (1) , ̃ b (1) 

1 

N 

N ∑ 

k =1 

D 1 ∑ 

j=1 

ε j,k 

{
x j (k − j + 1) , 

f 

[
D 1 ∑ 

ˆ j =1 

˜ w 

(1) 
ˆ j j,i 

· h (1) 

i ̂ j 
(k ) + ̃

 b (1) 
ˆ j 

]}
9 : for ˆ j = 1 : D 1 

10 : ˆ w 

(1) 
ˆ j j,i 

= w 

(1) 
ˆ j j,i 

/ 
D 1 ∑ 

j=1 

w 

(1) 
ˆ j j,i 

+ z i 

11 : Endfor 

12 : ˆ j ∗
i 

= arg min 
ˆ j 

− 1 
N 

N ∑ 

k =1 

h (1) 

i ̂ j 
(k ) · log 2 [ h 

(1) 

i ̂ j 
(k )] 

13 : ˜ h (1) 
i 1 

= h (1) 

i ̂ j ∗

14 : Endfor 

15 : Return ˆ w 

(1) , b (1) , ̃ h (1) , as the feature 

filter parameters and outputs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Pseudo codes for building the abstraction filter in TDAE, 

the notations are consistent with Eqs. (12) –( 13 ). 

Algorithm 2: Building the abstraction filter. 

1 : Call Algorithm 1 

2 : Return ˆ w 

(1) , b (1) , ̃ h (1) 

3 : Set the training set S (2) 
tr 

4 : S (2) 
tr = { ̃ h (1) (k ) | ̃ h (1) (k ) ∈ R m , k = 1 , 2 , ..., N} 

5 : Initialize all w 

(2) , b (2) with random values 

6 : for ˆ j = 1 : m 

7 : h (2) 
ˆ j 

(k ) = f 

[
m ∑ 

i =1 

D 2 ∑ 

j=1 

w 

(2) 
ˆ j j,i 

˜ h (1) 
i 1 

(k − j + 1) + b (2) 
ˆ j 

]
. 

8 : End for 

9 : arg min 
w (2) , ̃ w (2) , b (2) , ̃ b (2) 

1 
N 

D 2 ∑ 

j=1 

m ∑ 

i =1 

N ∑ 

k =1 

ε i j,k 

{
˜ h (1) 

i 1 
(k − j + 1) , 

f 

[ 
D 2 ∑ 

ˆ j =1 

˜ w 

(2) 
ˆ j j,i 

· h (1) 
ˆ j 

(k ) + ̃

 b (2) 
i j 

] }
10 : Return w 

(2) , b (2) , h (2) , as the abstraction 

filter parameters and outputs 
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Targeting the hidden abstraction h (1) 

i ̂ j 
(k ) with minimum entropy

is aimed to discover the most informative representation of the

EEG feature dynamics. In the end, the 1st ranking abstraction is se-

lected, i.e., ˜ h (1) 
i 1 

(k ) = h (1) 

i ̂ j ∗
(k ) , i = 1 , 2 , ..., m . The algorithm for build-

ing the feature filters in TDAE is summarized in Table 1 . 

Abstraction filter module : The output ˜ h (1) 
i 1 

(k ) of each feature fil-

ter is the value of the smoothed feature i at time step k under the

lowest entropy. To further discover the data structure across cur-

rent and historical time steps for these shallow representations, we

add a shared SAE layer next to all EEG feature filters to generate

an abstraction filter. The corresponding hidden activation h (2) 
i 

(k ) is

derived as follows, 

h 

(2) 
ˆ j 

(k ) = f 

[ 

m ∑ 

i =1 

D 2 ∑ 

j=1 

w 

(2) 
ˆ j j,i 

˜ h 

(1) 
i 1 

(k − j + 1) + b (2) 
ˆ j 

] 

. (12)

In Eq. (12) , the value of D 2 is a predefined constant indicat-

ing the order of the abstraction filter, i, j and 

ˆ j are indices for the

EEG feature, time steps and hidden nodes, respectively. To reduce

the model complexity, the number of the hidden neurons is simply

equal to the EEG feature dimension, i.e., ˆ j = 1 , 2 , ..., m. 

The computation of the synaptic weights w 

(2) 
ˆ j j,i 

and bias b (2) 
ˆ j 

is achieved by implementing Eqs. (4) and ( 5 ) to minimize the

squared loss function, 

min 

w 

(2) , ̃ w 

(2) , b (2) , ̃ b (2) 

1 

N 

D 2 ∑ 

j=1 

×
m ∑ 

i =1 

N ∑ 

k =1 

ε i j,k 

{
˜ h 

(1) 
i 1 

(k − j + 1) , f 

[ D 2 ∑ 

ˆ j =1 

˜ w 

(2) 
ˆ j j,i 

· h 

(1) 
ˆ j 

(k ) + ̃

 b (2) 
i j 

]}
(13)

where ˜ w 

(2) 
ˆ j j,i 

and 

˜ b (2) 
i j 

denoting the reconstruction weights and bias,

respectively. The algorithm for building the abstraction filter of the

TDAE is listed in Table 2 . 

Transferred MW classifier : The transferred MW classifier consists

of two SAE networks as shown in Fig. 4 . We first employ a SAE to

examine the geometric similarity of the feature abstractions across

SD and TD databases. Given a training set from the TD with two

MW levels indicated, the pre-trained, finely-tuned SAE parameters
ith L hidden layers are computed according to Eq. (6) , 

∗ = { W 

(1) ∗, W 

(2) ∗, ..., W 

(L ) ∗, b 

(1) ∗, b 

(2) ∗, ..., b 

(L ) ∗} . (14)

Then, we map EEG features from the input space to the abstrac-

ion space. High-level feature representations for the TD databases

re elicited as neuron activations of the last hidden layer according

o Eq. (7) , 

 

(L ) 
θ ∗ [ x T D (k )] 

= f ( W 

(L ) ∗... f ( W 

(2) ∗ f ( W 

(1) ∗x T D (k ) + b 

(1) ∗) + b 

(2) ∗) ... + b 

(L ) ∗) . 
(15)

In Eq. (15) , x TD ( k ) and s (L ) 
θ∗ [ x T D (k )] denote the k th EEG feature

nd abstraction vectors in the TD database, respectively. By imple-

enting exactly the same SAE, we then compute feature abstrac-

ions from SD database as s (L ) 

θ∗ [ x SD (k )] . 

The domain adaptation is achieved by minimizing the L2 norm

f the MW and emotion EEG abstractions, 

in 

j 
ϕ[ x SD ( j)] = 

∥∥∥∥∥ 1 

N y 

N y ∑ 

i =1 

s (L ) 
θ ∗ [ x T D (i )] − s (L ) 

θ ∗ [ x SD ( j)] 

∥∥∥∥∥
2 

. (16)

In Eq. (16) , N y is the number of training instances of class y . By

pplying Eq. (16) , the EEG feature vector x SD of the index j ∗ with

he minimum Euclidean distance to the class center is determined.

hen, we generate a set of adaptive training instances x SD ( j 
∗) that

re iteratively drawn from the SD database. Finally, the adaptive

raining instances are used in the fine-tuning stage for the other

AE as the MW classifier. The training algorithm for building such

ransferred MW classifier is summarized in Table 3 . 

. Results 

.1. Model selection of MW classifiers 

For each subject in TD1, the 3600 instances were split into

raining, validating, and testing sets with each of 1200 instances.

hat is, the overall size of the above three sets is 1200 × 8 = 9600

nstances. For each subject in TD2, there are 2030 EEG vectors

hile the sizes for training, validating and testing sets are 677, 677,

nd 676 instances, respectively. Accordingly, the overall sizes of the

hree sets from six subjects in TD2 are 40 62, 40 62, and 4056 in-

tances. It is noted that only a single trial of the classification ex-

eriment was performed. To make the results repeatable, the initial

tates of all model parameters are all fixed as the same. To guar-

ntee the consistency of the temporal sequence and the class bal-

nce, the training, validating and testing data were evenly sampled
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Table 3 

Pseudo codes for building the transferred MW classifier in TDAE, 

the notations are consistent with Eqs. (14) –( 16 ). 

Algorithm 3: Building the transferred MW classifier. 

1 : Set the training set S (1) 
tr from TD 

2 : S (1) 
tr,TD 

= { x TD (k ) | x TD (k ) ∈ R m , y TD (k ) ∈ R 2 , k = 1 , 2 , ..., N TD } 
3 : Set the SD dataset S (1) 

sd 

4 : S (1) 
SD 

= { x SD (k ) | x SD (k ) ∈ R m , y SD (k ) ∈ R 2 , k = 1 , 2 , ..., N SD } 
5 : Pre - train and finely - tune a SAE s (L ) 

1 
via S (1) 

tr,TD 

6 : for k = 1 : N TD 

7 : a TD (k ) = s (L ) 
1 

[ x TD (k )] 

8 : End for 

9 : for k = 1 : N SD 

10 : a SD (k ) = s (L ) 
1 

[ x SD (k )] 

11 : End for 

12 : Set adaptive training set S (1) 
tr,AD 

= ∅ 
13 : for j = 1 : N AD 

14 : j ∗ = arg min 
j 

ϕ( j) = ‖ 1 
N y 

N y ∑ 

i =1 

a TD (k ) − a SD (k ) ‖ 2 . 
15 : S (1) 

tr,AD 
= S (1) 

tr,AD 
∪ { x SD ( j 

∗) , y ( j ∗) } 
16 : S (1) 

SD 
= S (1) 

SD 
\{ x SD ( j 

∗) , y ( j ∗) } 
17 : End for 

18 : Call Algorithm 1 and 2 on S (1) 
tr,TD 

19 : Return ˆ w 

(1) , b (1) , w 

(2) , b (2) , h (2) 

20 : Pre - train a SAE s (L ) 
2 

via h (2) 

21 : Finely - tune s (L ) 
2 

via h (2) and S (1) 
tr,AD 

22 : Return s (L ) 
2 

as the transferred MW classifier 

Note: N TD , N SD , and N AD denote the number of the training in- 

stances in TD, SD and adaptive training set, respectively. 
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s  
rom the overall EEG feature set of each subject. That is, in every

hree consecutive instances of a session, the 1st, 2nd, and 3rd EEG

eature vectors were used for training (with the temporal index of

, 4, 7 …), validating (with the temporal index of 2, 5, 8, …), and

esting (with the temporal index of 3, 6, 9, …), respectively. 

In particular, the validating set is employed for model selection

o predetermine the optimal hyper-parameters of the learning ma-

hine. Since the conventional SAE is repeatedly used in the trans-

erred MW classifier module of TDAE, we carry out a grid search

n different numbers of hidden neurons (denoted by ˜ m in Fig. 4 )

nd training epochs. During the grid search, the learning rate and

umber of hidden layers (denoted by L in Fig. 4 ) are fixed to 1 and

, respectively, according to our previous work [33] . 

Validating classification accuracy of SAE on different hyper-

arameter combinations is illustrated in Fig. 5 (a) and (b) for TD1

nd TD2, respectively. The candidate values of the hidden neuron

nd epoch numbers are set to {5, 10, 15, ..., 100} and {1, 2, 3, ...,

0}. Among all 400 cases, the range of validating accuracy varies

rom 0.4 to 0.74 with the optimal values achieved by 0.7297 and

.7450 for two cases. Then, we employ 95 hidden neurons for the

ransferred MW classifier in TDAE while the training epoch num-

er is selected at 20 and 17 for two cases. 

To facilitate the classification performance comparison, we also

pply two powerful machine learning methods, LSSVM and ELM on

he same model selection procedure. The validating accuracies are

hown in Fig. 5 (c)–(f). For LSSVM, Gaussian radial basis function

RBF) kernel is implemented. A grid search is conducted in a space

f the kernel width and the regularization parameter. For ELM, we

mploy the logistic sigmoid function 1 / (1 + ρ · e −x ) with a tunable

arameter ρ . Then, the grid search exhausts different values of ρ
nd hidden neuron number. From the figure, we found both of the

ptimal LSSVM and ELM models outperform standard SAE regard-

ng the optimal validating accuracy. 

In the proposed TDAE framework for mental workload classifi-

ation, we integrated multiple autoencoder layers for feature rep-

esentation. In the fine tuning stage, TDAE predicted the validat-

ng EEG feature vectors via an additional ANN layer as shown in
ig. 4 . Here, we adopted the ELM and the LSSVM independent from

DAE for the comparison purpose. Due to their shallow structures,

he corresponding validating performance is superior to that of the

lassical SAE when the size of the training set is limited. 

For the low validating performance of the deep SAE shown in

ig. 5 (a), the possible reason is the potential overfitting of the EEG

eatures for particular network structure. When the number of the

idden neurons were set around 50, the high level feature abstrac-

ions may be ill represented with the growth of the number of the

raining epochs. For Fig. 5 (b), the poor performance can be caused

y the inadequate size of the training set since there are much

ewer instances in TD2 than TD1. For instance, when only two or

hree epochs were applied for training, the SAE parameters in large

umber of hidden neurons cannot be perfectly tuned. Other failed

ases can be interpreted as the result of the algorithm instabil-

ty for specific values of the initial weights. For Fig. 5 (c)–(d), the

rong combinations of the regularization and kernel parameters

f LSSVM yield that all EEG instances were assigned to the same

ental workload class. Then, lowest performances of 0.5–0.55 are

chieved. For ELM classifiers shown in Fig. 5 (e)–(f), the validating

erformance is closely linked to the hidden neuron number. The

ow accuracy corresponds to those simple ELM models of low fit-

ing capability, e.g., the validating accuracy is only around 0.6 with

0–30 hidden neurons implemented. 

The details of the classification experimental settings used in

he following sections are listed in Table 4 . In total, ten differ-

nt classification methods are adopted and analyzed, i.e., naive

ayesian model (NB), logistic regression (LR), k -nearest neighbor

KNN), ANN, ELM, LSSVM, SAE, DBN, CNN, and the proposed TDAE.

n the table, the selected hyper-parameter values on TD1 and TD2

re presented along with the size and the dimensionality of the

EG databases. 

.2. MW classification performance of TDAE 

After selecting the optimal hyper-parameters via the validating

et, MW classification is carried out in a subject-generic manner

y training one classifier that is generalizable for all individuals in

ach target-domain database. For TDAE, the structure of the trans-

erred MW classifier module is consistent with the optimized SAE

hown in Fig. 5 . The orders of the feature and abstraction filters

 D 1 and D 2 in Fig. 4 ) are set to 19 and 3, respectively. Since the

izes of the training set in TD1 and TD2 are different, we employ

0,0 0 0 and 20,0 0 0 adaptive training instances ( N AD in Table 3 ) for

wo databases. 

By denoting the low (or high) MW level as the positive (or

egative) class, the performance metrics of accuracy, sensitivity,

pecificity, F1-score, precision, and negative predicting value (NPV)

f TDAE, SAE, LSSVM, and ELM are computed and shown in

igs. 6 and 7 for TD1 and TD2, respectively. We find TDAE achieves

he highest classification accuracy for 11 subjects, i.e., A, C, D, E, F,

, I, J, K, M and N (as shown in Figs. 6 (a) and 7 (a)). In Fig. 6 (b) and

f), the substantial improvement of the sensitivity and NPV of TD1

ndicates most of low-MW EEG vectors are correctly predicted by

DAE. It is also shown the values of all metrics of TDAE increase

n TD2. For other classifiers, LSSVM outperforms both of ELM and

AE while SAE achieves the lowest accuracy. The finding is in

ine with the rank of the optimal validating accuracy illustrated in

ig. 5 . 

The classification confusion matrices corresponding to different

W classifiers are given in Table 5 . Each matrix is the summation

f testing results for all subjects in each database. Numbers of

esting EEG vectors of TD1 and TD2 are 9600 and 4056, respec-

ively. When implementing TDAE on TD1, 4534 low-MW and 3744

igh-MW instances are correctly predicted. The classifier misclas-

ifies 266 low-MW instances as high-MW while 1056 high-MW
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Fig. 5. Model selection results via validating sets for (a)–(b) SAE, (c)–(d) LSSVM and (e)–(f) ELM. 
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instances are wrongly predicted as low MW level. Among all four

methods, TDAE possesses the highest accuracy, sensitivity, and NPV

on TD1. For TD2, TDAE is superior to others on all five metrics. 

4.3. Accuracy comparison for TDAE against shallow and deep 

classifiers 

In this section, we implement several popular shallow and deep

classifiers on TD1 and TD2. The corresponding MW classification
erformance is compared with that of TDAE shown in the previous

ection. 

In Figs. 8 and 9 , the performance metrics of TDAE and 12 dif-

erent shallow classifiers is illustrated in error-bar plots. Subfigures

rovide the subject-average accuracy, F1-score, sensitivity, and

pecificity on each database. The results of TDAE, LSSVM and ELM

re consistent with those in the previous section. After carefully

electing model hyper-parameters, we newly introduce NB, LR,

NN, and ANN. By incorporating principal component analysis
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Table 4 

Experimental settings for mental workload classification using different methods. 

Classification 

methods 

Hyper-parameter settings for TD1 Hyper-parameter settings for TD2 Number of EEG 

features 

Number of EEG 

instances 

NB Prior probabilities: 0.5, 0.5 Prior probabilities: 0.43, 0.57 137 TD1: 28,800 

TD2: 12,180 

LR Distribution model: binomial Distribution model: binomial 137 TD1: 28,800 

TD2: 12,180 

KNN k value: 51 k value: 31 137 TD1: 28,800 

TD2: 12,180 

ANN Number of hidden nodes: 190 Number of hidden nodes: 180 137 TD1: 28,800 

TD2: 12,180 

ELM Number of hidden nodes:190 

Activation function parameter: 4 

Number of hidden nodes:180 

Activation function parameter: 2 

137 TD1: 28,800 

TD2: 12,180 

LSSVM Regularization and kernel 

parameters: 16, 128 

Regularization and kernel 

parameters: 4, 64 

137 TD1: 28,800 

TD2: 12,180 

SAE Numbers of hidden nodes, layers, 

and training epochs: 90, 4, 20 

Numbers of hidden nodes, layers, 

and training epochs: 90, 4, 17 

137 TD1: 28,800 

TD2: 12,180 

DBN Numbers of hidden nodes, layers, 

and training epochs: 90, 2, 20 

Numbers of hidden nodes, layers, 

and training epochs: 90, 2, 17 

137 TD1: 28,800 

TD2: 12,180 

CNN Numbers of hidden nodes, layers, 

and training epochs: 144, 4, 20 

Numbers of hidden nodes, layers, 

and training epochs: 144, 4, 20 

137 TD1: 28,800 

TD2: 12,180 

TDAE Numbers of hidden nodes, layers, 

and training epochs: 90, 4, 20 

Numbers of hidden nodes, layers, 

and training epochs: 90, 4, 20 

137 TD1: 28,800 

TD2: 12,180 

Fig. 6. Testing classification performance of 8 subjects (denoted by A–H) in TD1 computed by TDAE, SAE, LSSVM, and ELM. The hyper-parameters of all classifiers are selected 

according to Fig. 5 . NPV denotes the negative predicting value. 
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Fig. 7. Testing classification performance of 6 subjects (denoted by I–N) in TD2 computed by TDAE, SAE, LSSVM, and ELM. The hyper-parameters of all classifiers are selected 

according to Fig. 5 . 
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(PCA) for feature dimensionality reduction, six hybrid classifiers

are generated and defined as PCA-LSSVM, PCA-ELM, PCA-NB,

PCA-LR, PCA-KNN and PCA-ANN, where the principal components

are determined by a threshold of 0.9 for the total variance. 

For TD1 database, TDAE achieves the highest value of the accu-

racy, F1-socore, and sensitivity among all 13 MW classifiers while

the optimum specificity is reached by KNN. PCA-NB elicits the

worst overall performance regarding the accuracy and F1-score.

It is noted both of L SSVM and PCA-L SSVM are competitive. The

results of ELM, LR, and ANN are comparable and outperform

KNN model. The PCA preprocessing does not significantly improve

the classification performance on all shallow classifiers. For TD2

database, TDAE is superior to other shallow classifiers on all

performance metrics. Competitive results from LSSVM and LR

methods are found. Similarly, NB and PCA approaches are not

effective. By im plementing a two-sided Wilcoxon signed-rank

test, we notice the classification improvement of TDAE on the

average accuracy and F1-score is statistically significant across all

14 subjects ( p < 0.005). 

Furthermore, we compare TDAE against three deep learning

primitives, i.e., SAE, DBN, and CNN. For the DBN network, se-

vere overfitting is struck for three or more hidden layers so that

we adopt a two-hidden-layer structure for feature abstraction. The

CNN model is constructed with four hidden layers of two blocks.

Each block consists of a convolution layer and a consecutive sub-

sampling layer. Since CNN only accepts 2-dimensional input, we

reshape 137 EEG features into a 12-by-12 pixel matrix. The value

of seven empty pixels (i.e., 144–137 = 7) is set to 1 for the train-

ing, validating and testing datasets. Subject-average error-bar plots

are shown in Fig. 10 , where the performance of TDAE and SAE is
onsistent with that in Section 4.1 . From the figure, we observe

DAE is superior to other classifiers except for the specificity de-

ived on TD1 while CNN achieves the lowest performance. By using

he two-sided Wilcoxon signed-rank test, we find the classification

mprovement on the average accuracy and F1-score is statistically

ignificant ( p < 0.005). 

.4. Performance of TDAE using different hyper-parameter settings 

There are three important hyper-parameters of TDAE that affect

ts generalization capability, i.e., the size of the adaptive training

et ( N AD ), the order of feature filters ( D 1 ), and the order of the

bstraction filter ( D 2 ). The value of N AD stands for how many in-

tances from SD has been properly selected and added to TD train-

ng sets. In Fig. 11 , we examine the testing performance of TDAE

nder different N AD values while D 1 and D 2 are separately fixed

o 19 and 3 as given in Section 4.2 . For most cases the accuracy

an be higher than the optimum listed in Table 5 (i.e., 0.8623 for

D1 and 0.8987 in TD2). Moreover, the accuracy can be improved

o 0.9030 and 0.9127 when adding 14,0 0 0 and 31,0 0 0 instances on

D1 and TD2, respectively. The observation indicates transferring

nowledge from the EEG features stimulated by emotional clues

ia deep networks is quite helpful for further enhancing the per-

ormance of TDAE for MW recognition tasks. Here, a moderate size,

.g., around 30,0 0 0 instances, of the adaptive training set is recom-

ended since too small or too large N AD may impair the stability

f the classifier performance. 

We also investigate how D 1 and D 2 affect the TDAE perfor-

ance in Fig. 12 . Different combinations of two hyper-parameters

re examined while the values of D and D vary from 1 to 5 and
1 2 
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Fig. 8. Testing MW classification performance on TD1 computed by TDAE and 12 shallow classifiers. In each column data, the subject-average (subjects A–H) performance 

metric is shown. The error bar marks the standard deviation. 
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 to 20, respectively. When both of them are set to 1, the archi-

ecture of TDAE is equivalent to SAE. Given D 1 = 1 , moderate D 2 ,

.e., four, can improve the accuracy by approximately 7%. In gen-

ral, larger D 1 is more effective for improving the classification per-

ormance. The underlying reason is that the EEG features can be

trongly smoothed when using SAE as a local filter across a wider

ange of historical time instants. However, combining too large D 1 

nd D 2 may lead to overfitting. For instance, the accuracy degrades

ith D 1 = 19 and D 2 = 5 for TD1 and D 1 = 16 and D 2 = 5 for TD2.

ere, we recommend a large (15–19) and a moderate ( 2 –4 ) value

or D 1 and D 2 to be selected, respectively. 

.5. Computational cost and performance stability of different MW 

lassifiers 

The computational cost of all shallow and deep classifiers for

wo target-domain databases is shown in Table 6 . For each method,

he CPU time for training and testing a subject-generic MW recog-

ition model is recorded. The table lists the average and standard

eviation of the time duration for ten same trials. All algorithms

ere programmed and implemented via Matlab® 2011b software

nd tested by a laptop computer with Windows 7® operation sys-

em, Intel®i7 CPU 2.5GHZ and 8GRAM configurations. It is noted

SSVM is implemented by using a function toolbox developed by

uykens et al. [42] . The ELM classifier is constructed via the codes
rom Huang et al. [43] . The reason for employing ELM for compar-

son is that it possesses very fast training speed. 

From the table, we find the lowest computational cost is ob-

ained by the NB classifier according to the smallest average

PU time. Similarly, ELM and LR based approaches were also fast

rained and implemented. By using PCA for feature dimension re-

uction, the time cost for PCA-LSSVM, PCA-KNN, and PCA-ANN

ecreases. Neural network based approaches, i.e., ANN, SAE, CNN,

BN and TDAE, show higher training and testing time cost. In par-

icular, TDAE possesses the highest computational burden. The rea-

on behind is that a large number of feature and abstraction filters

ave to be trained via autoencoders with gradient-based optimiza-

ion algorithms. Moreover, as the SD database is utilized for knowl-

dge transferring via an adaptive training set, additional computa-

ional burden is induced by an enlarged training sample. However,

aking into account the fact that the high computational cost of

DAE corresponds to the significantly-improved accuracy, the pro-

osed method is still competitive against conventional MW classi-

ers. 

To investigate the stability of the proposed algorithm, we re-

eatedly performed the mental workload classification on 10 tri-

ls. In each trial, the model parameters are randomly initialized.

he mean testing accuracy along with the standard deviation on

or each classifier is summarized in Table 7 . It is shown the re-

ults are consistent with that illustrated in Figs. 8-10 , i.e., TDAE
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Fig. 9. Testing MW classification performance on TD2 computed by TDAE and 12 shallow classifiers. In each column data, the subject-average (subjects I–M) performance 

metric is shown. 

Fig. 10. Testing MW classification performance on (a)–(d) TD1 and (e)–(f) TD2 computed by TDAE and three deep classifiers. 
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Fig. 11. Testing MW classification performance of TDAE vs. the size of the adaptive training set from SD. The results of TD1 and TD2 are shown in subfigure (a) and (b), 

respectively. 

Fig. 12. Testing MW classification performance of TDAE vs. orders of feature and abstraction filters on (a)–(b) TD1 and (c)–(d) TD2. 
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Table 5 

Mental MW confusion matrices summated over all subjects in each database. 

Classifier- 

Database 

Predicted 

MW level 

Target MW level Classification 

performance 
Low High 

TDAE- P pre = 0.8111 P npv = 0.9337 P acc = 0.8623 

TD1 Low 4534 1056 P sen = 0.9446 

High 266 3744 P spe = 0.7800 

TDAE- P pre = 0.9007 P npv = 0.8958 P acc = 0.8987 

TD2 Low 2141 236 P sen = 0.9244 

High 175 1504 P spe = 0.8644 

SAE- P pre = 0.7536 P npv = 0.6745 P acc = 0.7068 

TD1 Low 2949 964 P sen = 0.6144 

High 1851 3836 P spe = 0.7992 

SAE- P pre = 0.7214 P npv = 0.7087 P acc = 0.7170 

TD2 Low 1903 735 P sen = 0.8217 

High 413 1005 P spe = 0.5776 

LSSVM- P pre = 0.8170 P npv = 0.8052 P acc = 0.8109 

TD1 Low 3847 862 P sen = 0.8015 

High 953 3938 P spe = 0.8204 

LSSVM- P pre = 0.8364 P npv = 0.8475 P acc = 0.8407 

TD2 Low 2076 406 P sen = 0.8964 

High 240 1334 P spe = 0.7667 

ELM- P pre = 0.7403 P npv = 0.7447 P acc = 0.7425 

TD1 Low 3586 1258 P sen = 0.7471 

High 1214 3542 P spe = 0.7379 

ELM- P pre = 0.7792 P npv = 0.7586 P acc = 0.7712 

TD2 Low 1937 549 P sen = 0.8364 

High 379 1191 P spe = 0.6845 

Note : The optimal values of the results on each database are marked in bold. P acc , 

P sen , P spe , P pre , and P npv denote the values of accuracy, sensitivity, specificity, preci- 

sion, and NPV, respectively. 

Table 6 

Average CPU time (in sec) for training and testing a MW classifier using EEG fea- 

tures from each database. The mean and standard deviation (s.d.) are computed for 

10 repeated trials. 

MW Classifier TD1 TD2 

Mean s.d. Mean s.d. 

LSSVM 36.22 0.56 5.38 0.19 

ELM 1.47 0.09 0.66 0.04 

NB 0.52 0.05 0.23 0.03 

LR 1.54 0.08 0.80 0.04 

KNN 17.88 0.18 3.31 0.02 

ANN 145.98 17.07 51.79 2.79 

PCA-LSSVM 35.73 0.57 5.02 0.12 

PCA-ELM 1.53 0.06 0.71 0.07 

PCA-NB 0.64 0.08 0.32 0.06 

PCA-LR 0.84 0.06 0.43 0.07 

PCA-KNN 7.32 0.11 1.38 0.04 

PCA-ANN 59.18 0.33 22.38 0.27 

SAE 193.74 0.34 101.47 0.80 

DBN 75.26 1.29 38.50 0.42 

CNN 150.16 3.67 89.32 1.08 

TDAE 496.35 4.04 394.80 8.67 

Note : The smallest and largest values in each column are marked in bold and italic 

styles, respectively. 

 

 

 

 

 

 

 

 

Table 7 

Mean value of the subject-average testing accuracy for each MW classifier on two 

EEG databases. The mean and standard deviation (s.d.) are computed for 10 re- 

peated trials. In each experiment trial, the initial parameters of the classifiers are 

randomized. 

MW 

Classifier 

TD1 TD2 

Mean s.d. Mean s.d. 

LSSVM 0.8109 0 0.8407 0 

ELM 0.7440 0.003 0.7759 0.006 

NB 0.6799 0 0.5624 0 

LR 0.7660 0 0.8092 0 

KNN 0.7303 0 0.7707 0 

ANN 0.7514 0.0125 0.7657 0.0693 

PCA-LSSVM 0.7971 0 0.8277 0 

PCA-ELM 0.7420 0.0023 0.7705 0.0060 

PCA-NB 0.6484 0 0.6166 0 

PCA-LR 0.7497 0 0,7818 0 

PCA-KNN 0.7266 0 0.7724 0 

PCA-ANN 0.7519 0.0016 0.7584 0.0659 

SAE 0.6953 0.0460 0.6616 0.1047 

DBN 0.7672 0.0255 0.7680 0.0298 

CNN 0.6547 0.0215 0.6552 0.0214 

TDAE 0.8774 0.0092 0.9071 0.0173 

Note : The optimal value in each column is marked in bold. 
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achieves the highest mean value and outperforms the 2nd rank

classifier, LSSVM, by 0.06 for both of TD1 and TD2. Note that the

testing performance of LSSVM, NB, KNN, and LR based methods is

unique since initial values are unnecessary. For the remaining neu-

ral networks, the gradient descent approach has made the trained

model be related to the initial weights. In general, the s.d. value in-

dicates the stability of the TDAE is superior to classical deep learn-

ing methods but worse than shallow classifiers except for ANN.
ote that the s.d. value is also related to the size of the training

atabase. That is, for TD2, the stability of all training algorithms

re undermined (except for CNN) because of fewer training EEG

nstances. 

.6. TDAE compared with linear feature mapping approaches 

To investigate the difference between TDAE and linear feature

ngineering methods, we compare TDAE against PCA and partial

east square (PLS) approaches. For PCA and PLS based models, two

inear mapping layers (i.e., the weight matrix is computed via PCA

r PLS) are employed as feature and abstraction extractors, then

e adopted two autoencoder (AE) layers for classifying mental

orkload levels because of the reduction of the dimensionalities.

he corresponding two frameworks are denoted as PCAAE, and

LSAE, respectively. For each PCA layer, the number of the prin-

iple components are determined by a threshold of 0.9 for the to-

al variance. For each PLS layer, the number of feature represen-

ations are selected via the optimal validating performance. Each

lgorithm was carried out for 10 trials under randomized initial

eights. We illustrate the testing classification accuracy of three

ases via box-whisker plots in Fig. 13 . It is observed that the fea-

ure mapping of TDAE is superior to that of PLS and PCA. The po-

ential reason lies in two as aspects. The linear feature mapping is

ery sensitive to the outliers and the mapping quality can be im-

aired by the noise in EEG features. Moreover, the employed EEG

eatures are heterogeneous from multiple domains and are known

o be nonlinearly correlated with the mental workload classes. 

. Discussions 

The results shown in Section 4 indicate the proposed TDAE has

he capability to accurately classify EEG feature vectors into bi-

ary MW levels. To give an insight into the mechanism of how

DAE improves the classification performance, we illustrate an in-

ut feature, a feature filter output and an abstraction filter out-

ut in Fig. 14 . The EEG feature is selected as the theta power of

ubject A from the 1st session experiment. From the figure, it is

learly shown the feature filter output could track the variation

f the original EEG indicator with outliers properly smoothed. The

nderlying reason is the feature values at both current and histori-

al time steps are nonlinearly fused. Therefore, the drastic variation

s weighted and averaged in a wider time interval. 
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Fig. 13. Average testing classification accuracy of TDAE and the linear feature mapping based deep AE classifiers, i.e., PCAAE and PLSAE. For each column data, 10 trials of 

the experiment was performed with randomized initial weights. 

Fig. 14. Illustration of a TDAE input (original feature #1, the theta power of F3 

channel), the output of the 1st feature filter and the activation of the 1st output 

neuron in the abstraction filter. The 30-min data of subject A from the 1st session 

are shown. The first 450 instances are from the low-MW level while the remaining 

corresponds to the high-MW class. 
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For the NB classifier, the prior probability of each class was

omputed via the ratio of the instances between two mental work-

oad classes. However, low classification accuracy was achieved

ecause of the potential noise in the EEG time sequences. Similar

bservation can be found for the KNN classifier, where the selected

earest neighbors can be contaminated by outliers. It is noticed

he performance of ELM and ANN is comparable since the same

etwork structure was employed. Among all shallow classifiers,

SSVM possesses the highest accuracy and F1-score. It is because

he maximum margin classification is more generalizable against

he noise for designing the decision hyper-plane. The limitation
f the LSSVM in this study is its single layer structure that is

nadequate for modeling the dynamical properties in EEG feature

equences. 

Compared to the feature dimensionality (i.e., 137), the sizes of

he training sets for TD2 (4062) is relatively inadequate. It leads

o unsatisfactory performance of the classical deep learning meth-

ds as shown in Fig. 10 . Note that the CNN model achieves the

owest performance since its convolution filers are not suitable for

apturing local information across heterogeneous EEG indicators.

or shallow models, their performance on TD1 (with 9600 train-

ng instances) is generally lower than that of TD2 ( Figs. 8 and 9 ). It

ay be due to that the simple model structure without intermedi-

te feature representations cannot perfectly tackle raw EEG feature

ectors. For both of the TDAE and the compared mental workload

lassifiers, the choice of the hyper-parameters is critically impor-

ant. In general, for a smaller database of TD2, a simpler model

tructure is preferable, e.g., the low value of k for KNN and the

mall number of the hidden nodes in ELM are more suitable as

hown in Table 4 . 

Another advantage of TDAE is that the fine tuning stage of the

lassifier employed transfer learning principles. Depending on the

esults show in Figs. 5, 9 and 10 , the generalization capability of

he conventional deep classifiers (e.g., SAE and CNN) is not com-

arable with the shallow classifier like LSSVM. The reason behind

s the limited number of training instances as well as the outlier

roblem cause the deep model to be easily overfitted in the su-

ervised learning. The results in Fig. 11 imply it is possible to im-

rove the model performance via EEG features of a different men-

al task. As the size of the training sample in TD2 is smaller than

D1, transferring EEG features is more effectual for the latter ac-

ording to Fig. 11 (b). It should be noted such scheme possesses the

isk of inducing accuracy impairment if improper EEG data were

elected. In Fig. 11 (a), it is shown the classification rate was only

chieved to 0.84 when 17,0 0 0 data points from SD were selected. 

In our previous work, the average classification rate can reach

.87 when an adaptive SAE was used for binary MW estimation

11] . In this study, optimal accuracies elicited by TDAE for TD1 and

D2 are 0.8623 and 0.8987, respectively. It is shown the average

erformance of the proposed method is competitive against our



228 Z. Yin, M. Zhao and W. Zhang et al. / Neurocomputing 347 (2019) 212–229 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

 

[  

 

previous one. Such MW recognition accuracy is also comparable

with the newest work reported in [32] , where 0.86 workload clas-

sification rate is achieved (note that the environment for imple-

menting classifier is different in two works). However, the subject-

specific classification paradigm is used in [11] while we trained

subject-generic classifiers for TDAE. The latter can be more chal-

lenging since individual differences in the EEG data were to be

properly tackled. Moreover, when the orders of feature and ab-

straction filters were exhausted by using the grid search, the TDAE

performance can be further improved to 0.92 according to Fig. 12 . 

The main limitation of the proposed TDAE deep learning frame-

work for MW recognition lies in two aspects. The computational

cost for training the entire network is significantly higher than

classical shallow and deep classifiers. It leads to high time cost

in selection optimal hyper-parameters of the model. Therefore, we

employed the same value of the feature filter order to reduce the

computational burden. However, it is no doubt that the filer or-

der should feature-specific. Moreover, there exists a prerequisite

for knowledge transferring across two mental-task domains. That

is, we need to select exactly the same EEG channels for data pre-

processing and it leads to a possibility that useful MW indicators

are excluded. In future work, we will further investigate the deep

learning methods for MW assessment on these two aspects. 

6. Conclusion 

In the proposed TDAE framework for tackling the MW recogni-

tion issue, we first implement a group of autoencoder-based mod-

els to design multiple feature filters. The input of the feature fil-

ter consists of the EEG feature value of both current and historical

time steps. Then, the optimal hidden activation with the minimum

entropy is selected and fed to an abstraction filter for represent-

ing high-level dynamical properties of filtered EEG features. Finally,

two SAEs were employed to transfer knowledge from a source-

domain EEG database recorded under emotional stimuli to MW-

related databases collected with varied operation complexity. The

results show TDAE can achieve binary classification accuracies of

0.86 and 0.90 for two cases. The statistical analysis indicates the

improvement is significant compared to conventional shallow and

deep models with optimal hyper-parameters determined. The main

contributions of TDAE is its effectiveness of the dynamical deep

structure in exploiting EEG data from different tasks and subjects

for MW recognition. The limitations of the study are the high com-

putational cost and the restriction of the same paradigm for EEG

channel settings when applying knowledge transferring. 
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