
PHYSICAL REVIEW E 100, 042140 (2019)

Infinite horizon billiards: Transport at the border between Gauss and Lévy universality classes
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We consider transport in two billiard models, the infinite horizon Lorentz gas and the stadium channel, pre-
senting analytical results for the spreading packet of particles. We first obtain the cumulative distribution function
of traveling times between collisions, which exhibits nonanalytical behavior. Using a renewal assumption and
the Lévy walk model, we obtain the particles’ probability density. For the Lorentz gas, it shows a distinguished
difference when compared with the known Gaussian propagator, as the latter is valid only for extremely long
times. In particular, we show plumes of particles spreading along the infinite corridors, creating power-law
tails of the density. We demonstrate the slow convergence rate via summation of independent and identically
distributed random variables on the border between Lévy and Gauss laws. The renewal assumption works well
for the Lorentz gas with intermediate-size scattering centers, but fails for the stadium channel due to strong
temporal correlations. Our analytical results are supported with numerical samplings.
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I. INTRODUCTION

The infinite horizon Lorentz gas [1] is a paradigmatic
model of deterministic classical transport, thoroughly studied
by physicists [2–8] and mathematicians [9–22]. It consists of
an infinite periodic lattice of convex obstacles, and pointlike
particles which undergo elastic collisions with them. The most
common configuration of the Lorentz gas model is composed
of circular scatterers arranged into an infinite square lattice of
unit spacing. Several important properties of this model, such
as ergodicity [14] and algebraic decay of the velocity correla-
tions in time [11], have been rigorously proven. Importantly,
Bleher [12] showed that a particle’s position vector r(t ) has
a limiting Gaussian distribution when normalized correctly.
More accurately, the quantity limt→∞[r(t ) − r(0)]/

√
t ln(t )

is a two-dimensional Gaussian variable with zero mean and
a covariance matrix which depends on the arrangement of
scatterers. However, this asymptotic form is valid only when
ln[ln(N )]/ ln(N ) = ε � 1, where N is the number of colli-
sions. To satisfy this condition, N has to be extremely large
(e.g., ε = 0.01 requires that N ≈ 10281). Bleher’s time is too
large to be physically relevant [3], while microscopic intercol-
lision times cannot describe transport processes happening on
much larger timescales. As such, key features of the Lorentz
gas model can only be seen for intermediate times that are
most relevant for transport regimes. Unfortunately, currently
there are no analytical results for these mesoscopic times.

In billiard models, an important characteristic of the trans-
port is the presence (or absence) of infinite horizons, corridors
along which collisionless ballistic trajectories propagate (see
Fig. 1). The packet of spreading particles in an infinite horizon
billiard model exhibits two main features: The center part of
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the packet is approximately Gaussian and the far tails are
described by plumes of particles spreading along the infinite
corridors. For a specific configuration of the Lorentz gas, we
found in our previous Rapid Communication [23] that the
scatterers’ geometry is embedded in the crosslike shape of
the spreading packet [see Figs. 1(a) and 2]. Here we wish
to extend our theory to other configurations, showing its
generality. For this aim, we consider the Lorentz gas with
corridors forming a British flaglike structure for the packet
of spreading particles [seen in Figs. 1(b) and 3], together with
a quasi-one-dimensional transport in a chain of concatenated
Bunimovich billiard stadiums [3,9] [seen in Figs. 1(c) and 4].
While the models are distinctive, along the corridors the far
tails of the density decay spatially with a universal power law,
a feature well described by the Lévy walk model [24–27].

Our analysis is composed of two main ingredients; one of
them is obtaining the aforementioned billiard systems’ full
distribution of intercollision times. For the Lorentz gas, results
in the limits of R → 1/2 and τ → ∞ (where R is a scat-
terer’s radius and τ is an intercollision time) were found by
Bouchaud and Le Doussal [2]. More recently, an asymptotic
form in the limit of R → 0 was established [13,15,19]. How-
ever, this important aspect in the characterization of transport
is hardly discussed in the literature when finite-size scatterers
are considered. This distribution’s probability density function
(PDF) exhibits a far tail obeying

lim
τ→∞ τ 3ψ (τ ) = τ 2

0 , (1)

which is valid for both limits of large and small scatterers.
Therefore, we use a Lévy walk model with exponent −3
for the other ingredient, which is calculating the density of
spreading particles. A principal issue here is that in a Lévy
walk approximation one uses a renewal assumption, i.e., one
neglects correlations between consecutive collisions. It was
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FIG. 1. The considered models: the infinite horizon Lorentz gas
with (a) two and (b) four open horizons and (c) the stadium channel
model. For the Lorentz gas we take the lattice constant to be 1, while
for the stadium channel we use 1 for the radius of a semicircle wall.
The parameter which controls the qualitative behavior for the Lorentz
gas is the scatterers’ radius R. When 1/

√
8 � R < 1/2, there are two

directions of infinite corridors. A particle that collided with the black
circle can fly along the blue solid arrows, reaching scatterers along
them. Decreasing the radius such that 1/

√
20 � R < 1/

√
8 creates

two additional directions of infinite corridors. A particle that collided
with the black circle can now fly along the red dashed arrows as
well (see Fig. 7 for additional details). In the stadium channel model
the controlling parameter is the walls’ separation D > 0. A particle
which was scattered from the thick bottom semicircle can reach
any stadium of the top row, but can also hit the origin semicircle
again (the dashed stadiums are unreachable in this case). All of
the numerical simulations were performed using unit speed, namely,
V = 1.

shown that for the crosslike configuration of the Lorentz gas
and in the limit of large scattering centers, this condition is
nullified as an effective trapping mechanism emerges [4]. In
contrast, when the scattering centers are not too large, the
Lévy walk with the obtained cumulative distribution function
(CDF) of the waiting times works perfectly, as demonstrated
below. Deviations from the renewal theory do exist for the
stadium channel model where correlations are strong, as we
show below. However, this does not imply that the Lévy
walk model is not predictive here as well, and in fact we
find the opposite. Another primary issue is caused since these
two systems are operating on the border between Gauss and

Lévy central limit theorems, due to the exponent −3, which
causes a logarithmic divergence of ψ (τ )’s second moment.
Thus, an ultraslow convergence rate problem arises that can
be understood via a toy model: summation of independent
and identically distributed (IID) random variables (RVs), with
a common symmetric PDF that decays algebraically with a
power of −3 for a large argument. Here we encounter the
same type of convergence problem discussed in the first para-
graph, which is neutralized using what we call the Lambert
scaling approach. This is a crucial step for these systems, as it
allows us to compare finite-time simulations with our theory
for duration regimes where previous results do not hold.

The rest of this paper is organized as follows. In Sec. II
we provide an example of the Lambert scaling for sums of
IID RVs. In Sec. III we derive the main formula of the spatial
PDFs by using the Lévy walk model. In Sec. IV we obtain the
CDFs of intercollision times for the Lorentz gas and stadium
channel. We discuss our results in Sec. V.

II. SIMPLIFIED CASE OF LAMBERT SCALING

We now consider the problem of summation of IID RVs,
drawn from a power-law distribution. We work at the border
between Gauss and Lévy central limit theorems, which is
clearly related to the exponent −3 in Eq. (1). Some aspects
of this by far simpler approach are important for the discussed
billiard models. In particular, at this transition we find a crit-
ical slowing down in the sense that convergence to the Gaus-
sian limit theorem is ultraslow [28], a problem which is re-
solved by Lambert scaling. Consider a sum of N � 1 IID RVs

x =
N∑

n=1

χn, (2)

where the summands are drawn from a common symmetric
PDF which obeys f (χ → ∞) � χ2

0 /χ3. We define the scaled

sum as x̄ = x/
√

χ2
0 N�(N )/2, with N�(N ) a scaling parame-

ter, soon to be determined. We use the characteristic function

〈exp(ik̄x̄)〉 = exp

⎧⎨
⎩N ln

⎡
⎣ f̃

⎛
⎝ k̄√

χ2
0 N�(N )/2

⎞
⎠
⎤
⎦
⎫⎬
⎭, (3)

where f̃ (k) is the Fourier transform of f (χ ). Assuming that
�(N ) monotonically increases with N , the small-k behavior

FIG. 2. The position’s probability density function for the Lorentz gas with two open horizons produces a crosslike geometry. Here
the lattice constant and speed are 1, the scatterers’ radius is R = 0.4, and the time duration is t = 104. (a) The Lorentz gas simulation has
approximately 109 sampled trajectories. (b) Our theory Eq. (26) with q = 0 reproduces the simulation well.
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FIG. 3. The position’s probability density function for the Lorentz gas with four open horizons produces a British flaglike shape. Here the
lattice constant and speed are 1, the scatterers’ radius is R = 0.3, and the time duration is t = 104. The (a) Lorentz gas simulation is reproduced
without any fitting by (b) our theory, which is given by Eqs. (26) and (47).

of f̃ (k) is considered,

f̃ (k) � 1 + 1
2 (χ0k)2 ln[(Cf χ0k)2], (4)

which is derived in Appendix A. The first term is the
normalization, while the second is related to the power-law

FIG. 4. The position’s probability density function for the sta-
dium channel model with (a) t = 104 and (b) t = 4 × 104, where
D = 1. The solid red line is the stadium channel numerical simula-
tions and the dashed blue line is Eq. (23). Using a two-parameter
fitting procedure and the simulation of duration t = 104, we find that
C2

ψ 〈τ 〉 ≈ 0.3776 and 〈τ 〉/τ 2
0 ≈ 7.0607. These values were used when

calculating P1(x, t ) for t = 4 × 104. The curves match well, which
means that Eq. (23) can indeed describe the stadium channel model,
given an effective waiting-time distribution. The stadium channel
simulations have around 2 × 108 sampled trajectories (the smallest
values in the histograms represent cells with a single event).

tail of f (χ ), with Cf being

Cf = exp

{
γ − 3

2
−
∫ χ0

0
dχ f (χ )

(
χ

χ0

)2

−
∫ ∞

χ0

dχ

[
f (χ )

(
χ

χ0

)2

− 1

χ

]}
, (5)

where γ ≈ 0.5772 is Euler’s constant. Inserting Eq. (4) into
Eq. (3) and expanding, we get

〈exp(ik̄x̄)〉 � exp

{
k̄2

�(N )
ln

[
2C2

f k̄2

N�(N )

]}
. (6)

We now determine the slowly increasing function �(N ) with
the choice

ln

[
N�(N )

2C2
f

]
= �(N ), (7)

which yields

�(N ) =
∣∣∣∣∣W−1

(
−2C2

f

N

)∣∣∣∣∣. (8)

Here W−1(η) is the secondary branch of the Lambert W
function [29], defined for η ∈ [−1/e, 0) by the identity
W−1(η) = ln[η/W−1(η)]. The Lambert function has the
expansion, as η → 0−,

|W−1(η)| = L1 + L2 + L2

L1
+ O

(
L2

2

L2
1

)
, (9)

where L1 = ln(1/|η|) and L2 = ln[ln(1/|η|)]. Equations (8)
and (9) yield N�(N ) � N ln(N ) when N → ∞, reproducing
the well-known Gnedenko-Kolmogorov scaling

√
N ln(N )

[30]. However, for this to be of relevance, one must demand
ln(N ) � ln[ln(N )], which makes the convergence to this
mathematical limit ultraslow. Our Lambert scaling approach
unites all of the N-dependent logarithmic terms into a single
function, thus resolving this problem. We therefore expand
Eq. (6) for large �(N ), keeping terms up to subleading order
during the calculation

〈exp(ik̄x̄)〉 � e−k̄2

[
1 + k̄2

�(N )
ln(k̄2)

]
. (10)
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FIG. 5. The probability density function of the sum (2) with
N = 104, and its corresponding Lambert scaling approximation (11).
The common PDFs used here are (a) f (χ ) = 1/|χ |3 when |χ | � 1
and 0 otherwise and (b) g(χ ) = (1 + χ 2)−3/2/2. The exact values
(solid lines) are obtained from an inverse Fourier transform of f̃ N (k),
dashed lines are the theory (11), and dot-dashed lines are the limit
distributions of Gnedenko and Kolmogorov (GK) [30].

Inverting Eq. (10) back to position space, we reach our first
result, the PDF of x,

P(x, N ) � 1√
πξ 2(N )

exp

(
− x2

ξ 2(N )

)

×
{

1 + 1

�(N )

[
[2 − γ − ln(4)]

(
1

2
− x2

ξ 2(N )

)

− 1

2
M (1,0,0)

(
−1;

1

2
;

x2

ξ 2(N )

)]}
, (11)

with ξ (N ) =
√

2χ2
0 N�(N ). Here M(· · · ) is Kummer’s

confluent hypergeometric function [29] and the superscript
over M denotes its derivative with respect to its first argument.
Figure 5 shows a good match between Eq. (11) and the PDF
of the sum (2) for two different common density functions
f (χ ) and g(χ ), which are defined in the caption, with
N = 104. The Kummer function behaves asymptotically as
M (1,0,0)(−1, 1/2, η2) � −√

π exp(η2)/η3, suggesting that
P(x, N ) � Nχ2

0 /x3. Thus, the PDF of the sum x reproduces
the same power-law tails as of the original common PDF
f (χ ). As the distribution of traveling times between collisions

(1) exhibit the same heavy-tail exponent of −3, our next step
is implementing Lambert scaling to the Lévy walk model.

III. LAMBERT SCALING OF THE LÉVY WALK MODEL

The d-dimensional Lévy walk model [25,27] is defined as
follows. A random walker is placed at r(0) on time t = 0. Its
movement consists of segments of ballistic motion with con-
stant velocity, separated by collisionlike events which induce
a change in the velocity’s magnitude and/or direction. The
process lasts for a fixed duration, which is the measurement
time t . The model employs two PDFs in order to determine the
displacement during each of the ballistic motion epochs. The
velocity of each segment is drawn from a PDF Fd (v), whose
moments are all finite, and is further assumed to be symmetric
with respect to each of the components v j where 1 � j � d
(such that its odd moments vanish). The time duration of each
ballistic section is drawn from a PDF ψ (τ ). The movement
continues until the allotted measurement time is met; thus the
number of collisions N in [0, t] is random. This yields the total
displacement as

r(t ) − r(0) =
N∑

n=1

vn−1τn + vNτb, (12)

where τn is the traveling time of the nth walking epoch, vn is
the velocity after the nth collision, and the initial conditions
r(0) and v0 are randomly chosen. The traveling times and
velocities {τn, vn} (with 1 � n � N) are IID RVs, with the
last movement duration being τb = t −∑N

n=1 τn. Notice that
the measurement time divided by the mean time between col-
lisions t/〈τ 〉 and the lengths of intercollision travel {vn−1τn}
roughly correspond to N and {χn} from the preceding section,
respectively. We denote the particle’s speed by V , which is
kept unchanged in the billiards systems due to the collisions’
elasticity (in the numerical simulations V = 1). Let us denote
the probability to find the walker at position r on time t by
Pd (r, t ) and let �d (k, u) be its Fourier and Laplace transform

�d (k, u) =
∫

dd r
∫ ∞

0
dt Pd (r, t )e−ut+ik·x. (13)

An exact expression of �d (k, u) is given by the Montroll-
Weiss equation [31]

�d (k, u) =
〈

1 − ψ̂ (u − ik · v)

u − ik · v

〉
1

1 − 〈ψ̂ (u − ik · v)〉 , (14)

where ψ̂ (u) is the Laplace transform of ψ (τ ), defined as

ψ̂ (u) =
∫ ∞

0
dτ ψ (τ )e−uτ , (15)

and

〈· · · 〉 =
∫

ddv · · · Fd (v), (16)

with the above integral carried over all velocity space.
We now direct the reader’s attention to two points before

advancing with the calculation. First, note that the assumption
of finite moments for the velocity distribution Fd (v) is crucial
to our theory. For example, a diverging second moment yields
Lévy statistics in the bulk instead of a Gaussian, whereas for
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the Lorentz gas it is rigorously proven to be the latter case
[12]. Second, in Ref. [27] the authors discuss two different
variations of the Lévy walk: the velocity model and the jump
model. For the former, particles move constantly until the
measurement time ends, their last traveling epoch being τb.
However, for the latter particles are missing this final segment
of walk. Therefore, the two models differ only when consider-
ing approximation theories of the far tail (under the condition
of finite mean time between collisions). As our theory is
intended to approximate the bulk of the PDF Pd (r, t ), these
two aforementioned cases are indistinguishable. Technically
speaking, this difference is manifested by a different numer-
ator of Eq. (14), which does not change its approximated
versions which appear below [Eqs. (20) and (25)]. Further, in
the Lorentz gas a particle’s velocity is unity at any moment
of travel; therefore the velocity model is more suitable if
compared to the jump model.

To approximate Eq. (14) we use the asymptotic behavior of
ψ (τ ) [Eq. (1)], which implies that for small u,

ψ̂ (u) � 1 − 〈τ 〉u − 1
2 (τ0u)2 ln(Cψτ0u), (17)

which is derived in Appendix B. Here the first term is the
normalization, 〈τ 〉 is the mean time between collisions, and
the last term is related to the power-law tail of ψ (τ ), with Cψ

being

Cψ = exp

{
γ − 3

2
−
∫ τ0

0
dτ ψ (τ )

(
τ

τ0

)2

−
∫ ∞

τ0

dτ

[
ψ (τ )

(
τ

τ0

)2

− 1

τ

]}
. (18)

We assume a scaling of u ∼ k2L(k), where L(· · · ) is some
logarithmiclike function and k = |k|. This suggests that u � k
when k → 0, and as such we can expand the Montroll-Weiss
equation (14) in the small parameter u/kv, where v = |v|
(see Appendix C). For the one-dimensional stadium channel
model, we apply the distribution of velocities

F1(vx ) = 1
2 [δ(vx − V ) + δ(vx + V )], (19)

where δ(· · · ) is Dirac’s delta function, and in our case V =
1. We obtain in Appendix C the Fourier expansion for the
distribution

P̃1(κx, t ) � 2e−κ2
x

ξ1(t )

[
1 + 1

�1(t )
κ2

x ln
(
κ2

x

)]
, (20)

with

�d (t ) =
∣∣∣∣W−1

(
−4dC2

ψ

〈τ 〉
t

)∣∣∣∣,
ξd (t ) =

√
τ 2

0 〈v2〉 t�d (t )

d〈τ 〉 , (21)

where here and for the following Lorentz gas 〈v2〉 = V 2. The
walker’s position PDF in d spatial dimensions is given by the
inverse Fourier transform

Pd (r, t ) =
∫

ddκ

(2π )d
P̃d (κ, t ) cos

[
2(κ · r)

ξd (t )

]
. (22)

Inserting Eq. (20) into Eq. (22) results in

P1(x, t ) = 1√
πξ 2

1 (t )
exp

(
− x2

ξ 2
1 (t )

)

×
{

1 + 1

�1(t )

[
[2 − γ − ln(4)]

(
1

2
− x2

ξ 2
1 (t )

)

− 1

2
M (1,0,0)

(
−1;

1

2
;

x2

ξ 2
1 (t )

)]}
. (23)

The subscript 1 stands for one dimension, namely, this result
should hold for the stadium channel when we coarse grain
over the channel’s width. We see some similarities to the
problem of summation of IID RVs. For example, Kummer’s
function appears in both problems as a correction to the
leading term. There is however a major difference between the
two cases: Here Pd (r, t ) = 0 for |r| > V t , which is different
from the problem of summation of IID RVs. This is clearly
due to the particles’ finite speed. For the two-dimensional
Lorentz gas model with two or four infinite horizons we have

F2(v) = 1 − q

4
{[δ(vx − V ) + δ(vx + V )]δ(vy)

+ δ(vx )[δ(vy − V ) + δ(vy + V )]}

+ q

4

{[
δ

(
vx − V√

2

)
+ δ

(
vx + V√

2

)]

×
[
δ

(
vy − V√

2

)
+ δ

(
vy + V√

2

)]}
, (24)

where q � 0 is a parameter to be determined later, which
encodes the probability of a particle to be found in the far
tail of the diagonal corridors (for two open horizons, a cross
shape, one has q = 0). We get, from Eq. (14),

P̃2(κ, t ) � 4e−κ2
x −κ2

y

ξ 2
2 (t )

{
1 + 1 − q

�2(t )

[
κ2

x ln
(
κ2

x

)+ κ2
y ln

(
κ2

y

)]

+ q

2�2(t )
(κx + κy)2 ln

[
1

2
(κx + κy)2

]

+ q

2�2(t )
(κx − κy)2 ln

[
1

2
(κx − κy)2

]}
. (25)

We use a π/4 rotation transformation κ± = (κx ± κy)/
√

2 to
calculate the integrals over the last two terms in Eq. (25) and
obtain

P2(r, t ) � 1

πξ 2
2 (t )

exp

(
−x2 + y2

ξ 2
2 (t )

)

×
{

1 + 1

�2(t )

[
[2 − γ − ln(4)]

(
1 − x2 + y2

ξ 2
2 (t )

)

− 1 − q

2
M (1,0,0)

(
−1;

1

2
;

x2

ξ 2
2 (t )

)

− 1 − q

2
M (1,0,0)

(
−1;

1

2
;

y2

ξ 2
2 (t )

)
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− q

2
M (1,0,0)

(
−1;

1

2
;

(x + y)2

2ξ 2
2 (t )

)

−q

2
M (1,0,0)

(
−1;

1

2
;

(x − y)2

2ξ 2
2 (t )

)]}
, (26)

where the subscript 2 stands for two dimensions. This solution
is presented in Figs. 2 and 3, with the relevant parameters,
namely, τ0, 〈τ 〉, Cψ , and q, obtained from ψ (τ ) [more pre-
cisely, we extract them from CDF(τ )]. Thus, we continue with
deriving exact expressions for the distribution of traveling
times ψ (τ ) for the Lorentz gas model with two or four
open infinite corridors and for the stadium channel model. To
refrain from cumbersome formulas, we omit some of the next
section’s derivations. Refer to Appendix D for more details.

IV. DISTRIBUTION OF TRAVELING TIMES

A. Lorentz gas model

To obtain the distribution of traveling times we define a
two-dimensional cubic lattice of constant 1 occupied with
circular scatterers of radius R such that the center of each
circle is located at a grid point [see Figs. 1(a) and 1(b)].
Let the lattice coordinates of each scatterer be (n, m), where
n and m are integers. We focus on the origin and assume
that the particle has just collided with the (0,0) scatterer. We
define the collision’s impact parameter and recoil direction
as b and β, respectively [see Fig. 6(a)], where the ranges
of values for these two parameters are [−R, R] and [0, 2π ),
respectively. We denote by τ ∗

n,m(b, β, R) the time duration
until the following collision, and since V = 1 it is also the
distance traveled. Here we assume that the next scatterer to be
collided with is the (n, m) one. The expression obtained for
τ ∗

n,m(b, β, R) is

τ ∗
n,m(b, β, R) = n cos(β ) + m sin(β ) −

√
R2 − b2

−
√

R2 − [m cos(β ) − n sin(β ) − b]2. (27)

We then write the PDF ψ (τ ) as

ψ (τ ) =
∑
n,m

∫ βmax
n,m (R)

βmin
n,m (R)

dβ

2π

∫ bmax
n,m (β,R)

bmin
n,m (β,R)

db

2R
δ[τ − τ ∗

n,m(b, β, R)],

(28)

where the factors of 1/2π × 1/2R are the distributions of β

and b, respectively, which are both uniform due to ergodicity
[2]. In Eq. (28) the summation is carried over all relevant
integers (see Fig. 7) and the integration boundaries (IBs) need
to be found. Therefore, we define the discriminant of Eq. (27),

�n,m(b, β, R) = R2 − [m cos(β ) − n sin(β ) − b]2. (29)

Our starting point for obtaining the IBs is to notice that
the rooted quantities in Eq. (27) must be positive. Actually,
R2 − b2 � 0 means that the particle path indeed intersects the
(0,0) circle, which is an initial assumption here, and a positive
discriminant in Eq. (29) means that the particle does collide
with the (n, m) scatterer. However, in order for the particle
to reach the (n, m) scatterer, it must as well not collide with
another circle along its path. We therefore use a system of
inequalities which are drawn from Eq. (29) to determine β and

FIG. 6. The parameters which determine the trajectory’s length
for (a) the Lorentz gas model and (b) the stadium channel model.
For the Lorentz gas, the lattice coordinates of the next scatterer to
be collided with are denoted by (n, m), the recoil angle after the
previous collision is β, and the impact parameter is b. In this sketch,
we used n = 1, m = 0, β = π/6, b = −0.3, and R = 0.4, which
correspond to τ ∗

n,m(b, β, R) ≈ 0.255 (the lattice constant is 1). For
the stadium channel, we denote by (2n, m) the lattice site of the
next stadium to be collided with, where α is the recoil angle after
the previous collision, and a is an impact parameter. Here we used
n = 1, m = D, α = π/6, a = −0.4, and D = 1, which correspond
to τ ∗

2n,m(a, α) ≈ 4.11 (the semicircles’ radius is 1).

b’s IBs. Assuming that 1/
√

8 � R < 1/2, one has a single pair
of infinite corridors and the particle can only reach scatterers
with lattice indices that obey n = 1 or m = 1 [see the textured
colored circles in Fig. 7(a)]. Symmetry considerations allow
us to break the problem into eight areas composed of three
components each, and we choose to focus on m = 1 and
n � 0 [see the black rectangle-encircled area in Fig. 7(a)].
This area’s first component is the nearest-neighbor scatterer
(0,1). Here Eq. (29) suggests that b obeys

�0,1(b, β, R) � 0. (30)

The above condition ensures that the particle does collide with
the scatterer (0,1) on the next collision. In addition, one should
intersect this domain with |b| � R to ensure that the particle
indeed originated from the (0,0) scatterer. Similarly, for the
second component, the next-nearest-neighbor scatterer (1,1),
the system of inequalities which stems from Eq. (29) reads

�1,1(b, β, R) � 0,

�1,0(b, β, R) � 0,

�0,1(b, β, R) � 0,

(31)

and of course |b| � R as before. This ensures that the particle
collides with the (1,1) scatterer (first condition), but not with

042140-6



INFINITE HORIZON BILLIARDS: TRANSPORT AT THE … PHYSICAL REVIEW E 100, 042140 (2019)

FIG. 7. In the Lorentz gas, a tracer particle right after a collision
with the origin circle (solid black) can hit only the colored scatterers.
These are made of three distinct groups: four nearest neighbors (ver-
tical blue stripes), four next to nearest neighbors (horizontal green
stripes), and eight clusters of distant neighbors (crosshatch red). The
white circles are inaccessible for the particle. (a) Given a lattice
constant 1, for a scatterers’ radius of R = 0.4, one has two directions
for possible infinite trajectories, directed with the lattice axes. (b) For
a scatterers’ radius of R = 0.3, two diagonal infinite directions
are added, and the particle can now reach the yellow (light gray)
scatterers. When calculating the cumulative distribution function of
the traveling times between collisions, we sum the contribution of
each scatterer to the trajectories’ space (see Sec. IV). Exploiting the
noticeable symmetry, we focus on (a) the black rectangle-encircled
area and additionally (b) the black ellipse-encircled area when R is
decreased.

the (1,0) or the (0,1) circles (second and third conditions,
respectively) that will otherwise block its path. Finally, the
third component in this area is the distant-neighbor cluster
n > 1, which is dominated by the inequalities

�n,1(b, β, R) � 0,

�1,0(b, β, R) � 0,

�n−1,1(b, β, R) � 0,

(32)

as well as |b| � R. This ensures that the particle collides
with the (n, 1) scatterer, but avoids the (1,0) or the (n − 1, 1)
ones, which can block its path. Analyzing these inequalities in
Appendix D, we obtain

βmin
n,1 (R) = sin−1

(
1√

n2 + 1

)
− sin−1

(
2R√

n2 + 1

)
(33)

for the lower β IB,

βmax
n,1 (R) =

⎧⎨
⎩

π/2, n = 0
π/4, n = 1
βmin

n−2,1(R), n > 1
(34)

for the upper β IB, and

bmin
n,1 (β, R) =

{
cos(β ) − n sin(β ) − R, βmin

n,1 (R) � β � β
sep
n,1 (R)

R − sin(β ), β
sep
n,1 (R) � β � βmax

n,1 (R),

bmax
n,1 (β, R) =

{
R, βmin

n,1 (R) � β � β
sep
n,1 (R)

cos(β ) − (n − 1) sin(β ) − R, β
sep
n,1 (R) � β � βmax

n,1 (R)
(35)

for the IBs of b, where

β
sep
n,1 (R) =

{
π/2, n = 0
βmin

n−1,1(R), n > 0.
(36)

Equations (33)–(36) together with Eq. (28) provide a full
description of ψ (τ ) and alternatively, by an integration over
τ , a full description of CDF(τ ). Figure 8(a) depicts the CDF
obtained from these equations for R = 0.4 with its respective
numerical simulation counterpart, where an excellent match
can be seen. With these equations in mind, we derive an exact
expression for τ0, and numerical values of 〈τ 〉 and Cψ for
R = 0.4 (see Appendix E). For τ0 we obtain

τ 2
0 = 2

πR
(1 − 2R)2. (37)

This matches the limiting result obtained in Ref. [2] for R →
1/2. It is also in perfect agreement with our previous exact
result for τ0, which we obtained in Ref. [23] using a different
indirect approach. For the aforementioned numerical values,
we get 〈τ 〉 ≈ 0.621 55 and Cψ ≈ 4.4802 × 10−4, where the
former has a relative error of 0.021% compared to the known
rigorous result

〈τ 〉 = 1 − πR2

2R
, (38)

which is mentioned in [20]. These values provide excellent
results for the numerical simulations of the position’s PDF
when used as an input for the Lévy walk approximation, as
seen in Figs. 2 and 9.

Next we compute the case of four open horizons for the
Lorentz gas model (see Figs. 3 and 10). Assuming that

√
20 �

R < 1/
√

8, there are two additional open horizons, namely,
the two main diagonals. It turns out that the formulas we
obtained above for the m = 1 and n � 0 stripe are valid here
as well, excluding the (2,1) scatterer. Since R is now smaller,
possible trajectories emerge for the diagonal directions, and
we choose to focus on movements which end at the (m +
1, m) circles where m � 1 [see the ellipse-encircled area in
Fig. 7(b)]. Thus, we need to adjust the (2,1) scatterer’s upper
IB, as it is now counted in two distinct sets of scatterers.
The specifics are detailed in Appendix D, and we obtain the
correction

βmax
2,1 (R) = sin−1(2R). (39)

The diagonal area’s inequalities are obtained yet again from
Eq. (29). For the diagonal part of (2,1) we have

�2,1(b, β, R) � 0. (40)
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FIG. 8. The cumulative distribution function of intercollision
times for the Lorentz gas model derived in Sec. IV, its respective
result obtained from the numerical simulations, and the large-τ limit
given by CDF(τ ) � 1 − τ 2

0 /2τ 2. The scatterers radius is (a) R =
0.4 and (b) R = 0.3, corresponding to two and four open infinite
corridors, respectively (the lattice constant is 1). The numerical
histograms are made of a single long trajectory containing 106

collisions.

This circle is similar to the (0,1) one in the previous case,
as there are no possible obstacles for the (diagonal) nearest
neighbor. The rest of the IBs are found by analyzing

�m+1,m(b, β, R) � 0,

�m,m−1(b, β, R) � 0, (41)

�1,1(b, β, R) � 0

in a similar way as was done previously, where m > 1. This
time, the possible scatterers to block the particle’s path are
(m, m − 1) and (1,1). We obtain

βmax
m+1,m(R) = sin−1

(
m√

m2 + (m + 1)2

)

+ sin−1

(
2R√

m2 + (m + 1)2

)
(42)

for the upper β IB,

βmin
m+1,m(R) =

⎧⎪⎨
⎪⎩

sin−1(2R), m = 1

sin−1(2R), m = 2

βmax
m−1,m−2(R), m > 2

(43)

for the lower β IB, and

bmin
m+1,m(β, R) =

{
(m − 1) cos(β ) − m sin(β ) + R, βmin

m+1,m(R) � β � β
sep
m+1,m(R)

−R, β
sep
m+1,m(R) � β � βmax

m+1,m(R),

bmax
m+1,m(β, R) =

{
cos(β ) − sin(β ) − R, βmin

m+1,m(R) � β � β
sep
m+1,m(R)

m cos(β ) − (m + 1) sin(β ) + R, β
sep
m+1,m(R) � β � βmax

m+1,m(R)
(44)

for the IBs of b, where

β
sep
m+1,m(R) =

{
sin−1(2R), m = 1
βmax

m,m−1(R), m > 1.
(45)

Using Eqs. (42)–(45), we calculate the CDF(τ ) for R = 0.3,
which is plotted in Fig. 8(b), where an excellent match to the
simulations can be seen. We derive from these equations an
exact expression for τ0, obtaining

τ 2
0 = 2

πR
(1 − 2R)2 +

√
2

πR
(1 −

√
8R)2. (46)

Equation (46) is used to define q, which determines the
relevant weight of the velocities’ PDF in the Lévy walk for-
malism, along respective directions of the infinite corridors.
Recalling that q determines the probability of a particle to be
at the diagonal corridors, we define this parameter as the ratio
between the diagonal corridors’ contribution for the behavior

ψ (τ ) ∼ τ−3 and the overall τ 2
0 and find that

q = (1 − √
8R)2

√
2(1 − 2R)2 + (1 − √

8R)2
(47)

when 1/
√

20 � R < 1/
√

8. We also get from ψ (τ ) numerical
values for 〈τ 〉 and Cψ for this specific value of R (see Ap-
pendix E). We find that 〈τ 〉 ≈ 1.1947, with a relative error
of 0.059% from the rigorous result (38), and also Cψ ≈
1.5250 × 10−2. These values provide excellent results for the
numerical simulations of the position’s PDF when used as an
input for the Lévy walk approximation, as seen in Figs. 3 and
10.

B. Stadium channel model

Let us now precisely define the notation used for the
stadium channel. As we have lower and upper boundaries for
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FIG. 9. Cross sections of the probability density function of the
Lorentz gas with R = 0.4 (Fig. 2) for (a) y = 0 and (b) y = x. The
green dot-dashed curve is Bleher’s Gaussian limit, solid red is the
Lorentz gas numerical simulations, and dashed blue is Eq. (26) with
q = 0. Deviations in the x ≈ 300 area of the y = x case are caused
by the finite number of sampled trajectories approximately equal
to 109.

this pipe structure, we define two parallel one-dimensional
straight lattices of constant 2 which are separated by a distance
D. These are occupied by circular stadiums of radius 1 such
that the center of each stadium is located at a grid point [see
Fig. 1(c)]. Let (2n, m) denote the center of a given stadium,
where n is an integer and m can take two possible values,
0 and D [see Fig. 6(b)]. We focus on the origin and assume
that the particle has just been scattered from the lower wall’s
n = 0 stadium. We define the collision’s impact parameter
and recoil direction as a and α, respectively [see Fig. 6(b)],
where the ranges of values for these two parameters are
[−1, 1] and [0, 2π ), respectively. We denote by τ ∗

2n,m(a, α)
the time duration until the following collision, and since
V = 1 it is also the distance traveled. Here the next stadium
to be collided with is (2n, m), where the integer n can be
regarded as a semicircle’s numbering, while m denotes the
top or bottom wall. Notice that the particle is able to reach
the stadium of origin, namely, n = m = 0. We obtained, for
τ ∗

2n,m(a, α),

τ ∗
2n,m(a, α) = 2n cos(α) + m sin(α) +

√
1 − a2

+
√

1 − [m cos(α) − 2n sin(α) − a]2. (48)

The particle can only reach semicircles located in the upper
row, or the origin stadium. Symmetry considerations allow
us to break the problem into two areas, and we choose to

FIG. 10. Cross sections of the probability density function of
the Lorentz gas with R = 0.3 (Fig. 3) for (a) y = 0 and (b) y = x.
The green dot-dashed curve is Bleher’s Gaussian limit, solid red is
the Lorentz gas numerical simulations, and dashed blue is Eq. (26)
with q > 0, which is given by Eq. (47). The curves match perfectly.

focus on n � 0 [see Fig. 1(c)]. We then write the PDF ψ (τ )
as

ψ (τ ) = 4
∫ αmax

0,0

αmin
0,0

dα

2π

∫ amax
0,0 (α)

amin
0,0 (α)

da

2
δ[τ − τ ∗

0,0(a, α)]

+ 4
∞∑

n=0

∫ αmax
2n,D

αmin
2n,D

dα

2π

∫ amax
2n,D (α)

amin
2n,D (α)

da

2
δ[τ − τ ∗

2n,D(a, α)],

(49)

where the factors of 1/2π × 1/2 are the distributions of α

and a, respectively. As the corresponding parameters of the
Lorentz gas β and b are known to be uniform [2], here we
assume the same for α and a. The particle can travel into
the n � 0 area, as well as from top to bottom, hence the
multiplicative factor of 4. To obtain the IBs, we use a similar
scheme as for the Lorentz gas. However, there is a major
difference between the two cases. Due to convexity, there are
two possible points of origin or collision for the particle’s
trajectory. In the Lorentz gas case, there was no need to differ-
entiate between these two options during the calculations; thus
we used the discriminant to tell whether a given scatterer was
hit or missed. In the stadium channel case, the discriminant is
of no use as the stadiums are semicircles, and the discriminant
cannot differentiate between a true stadium and a continuation
of its wall to a complete circle. Therefore, here we define the
vertical axis coordinate of the origin and target points y0(a, α)
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and w2n,m(a, α), respectively,

y0(a, α) =
√

1 − a2 sin(α) + a cos(α),
(50)

w2n,m(a, α) = y0(a, α) + τ ∗
2n,m(a, α) sin(α),

and extract the needed inequalities from them instead. This
time we demand that w2n,m(a, α) − m be non-negative for the
upper stadiums and nonpositive for the origin stadium. This
replaces the demand of a positive discriminant in the Lorentz
gas case. We also demand that y0(a, α) be nonpositive, which
is analogous to |b| � R in the Lorentz gas case. The first
component of the chosen area is the origin semicircle, for
which Eq. (50) dictates that a obey

y0(a, α) � 0, w0,0(a, α) � 0. (51)

The upper IB of α is set to π/2 and the lower to −π/2, which
is possible due to symmetry. The second component is the
n = 0 upper stadium, for which we have

y0(a, α) � 0, w0,D(a, α) � D. (52)

The upper IB of α is set again to π/2 from symmetry consid-
erations and the lower is found by analyzing Eq. (52). Finally,
in order for the particle to reach the n > 0 upper semicircles,
it must not collide with another stadium wall along its path.

For this third component, the conditions are

y0(a, α) � 0, w2n,D(a, α) � D,

w2n−2,D(a, α) � D, w0,0(a, α) � 0. (53)

The first line in Eq. (53) ensures that the particle originated
from and arrived at the correct points, while the second line
prevents the top 2n − 2 and bottom n = 0 semicircles from
blocking the particle’s path. Analyzing these inequalities in
Appendix D, we obtain for the origin (namely n = m = 0)
stadium as the target,

−1 � a � − sin(α), 0 � α � π

2

−1 � a � sin(α), −π

2
� α � 0, (54)

and for the top n � 0 and m = D row of stadiums as targets,

αmin
2n,D = tan−1

(
D

2n + 2

)
(55)

for the lower α IB,

αmax
2n,D =

{
π/2, n = 0, 1
αmin

2n−4,D, n > 1
(56)

for the upper α IB, and

amin
2n,D(α) =

{
D cos(α) − (2n + 1) sin(α), αmin

2n,D � α � α
sep
2n,D

− sin(α), α
sep
2n,D � α � αmax

2n,D,

amax
2n,D(α) =

{
sin(α), αmin

2n,D � α � α
sep
2n,D

D cos(α) − (2n − 1) sin(α), α
sep
2n,D � α � αmax

2n,D

(57)

for the IBs of a, where

α
sep
2n,D =

{
π/2, n = 0

αmin
2n−2,D, n > 0.

(58)

Figure 11 depicts the CDF obtained from Eqs. (55)–(58) for
D = 1 with its respective numerical simulations counterpart,
where an excellent match can be seen. We also use these to
derive an exact expression for τ0, and the numerical values of
〈τ 〉 and Cψ for D = 1 (see Appendix E). For τ0 we obtain

τ0 =
√

2

π
D. (59)

We also find 〈τ 〉 ≈ 2.570 16, with a relative error of
0.005% from the simulation result 〈τ 〉 ≈ 2.570 31, and Cψ ≈
1.0903 × 10−5. However, these values do not provide a cor-
rect description for the Lévy walk approximation, due to
the renewal assumption being nullified by strong temporal
correlations discussed below. Nonetheless, one can fit the
Lévy walk approximation to the simulations data using a
two-parameter fit (C2

ψ 〈τ 〉 and 〈τ 〉/τ 2
0 ), and thus find effective

constants. These turn out to describe the problem well, as seen
in Fig. 4(a). We have verified that the values obtained for the
constants by fitting do not change over time [see Fig. 4(b)].

We would like to direct the reader’s attention to the differ-
ent geometry of the Lorentz gas CDF and the stadium channel

CDF. Both CDFs have qualitatively different shapes, being
convex (concave) for the Lorentz gas (stadium channel) [see
Fig. 8 (Fig. 11)]. This might be related to the scatterers’ shape
in the two models, which is convex (concave) for the Lorentz
gas (stadium channel). We believe that this phenomenon is

FIG. 11. The cumulative distribution function of intercollision
times for the stadium channel model derived in Sec. IV, its respective
result obtained from the numerical simulations, and the large-τ
limit given by CDF(τ ) � 1 − τ 2

0 /2τ 2. The walls of semicircles are
separated a distance D = 1 from each other and the radius of a
stadium is 1. The numerical histograms are made of a single long
trajectory containing 106 collisions.
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FIG. 12. Correlations of the traveling times between collisions. Shown are points of the form (τn, τn+1), where τn is the nth flight duration.
Depicted are numerical realizations of (a) the Lorentz gas model with two open horizons (R = 0.4) and (b) the stadium channel model (D = 1).
Also presented are points drawn from the intercollision times’ CDF obtained analytically for (c) the Lorentz gas with two infinite corridors
(28) (R = 0.4) and (d) the stadium channel (49) (D = 1). Each plot consists of approximately 106 points. The Lorentz gas displays strong
similarity between repeated draws and the simulation data, meaning that the renewal condition is indeed fulfilled. However, for the stadium
channel the patterns are substantially different, which means that here the condition fails. See additional discussion in Sec. V.

general as the geometry of the scattering centers is clearly
embedded in this basic distribution; however, we leave this
intriguing point for future work.

V. DISCUSSION AND SUMMARY

Returning to Sec. II, we address an issue we previously
disregarded with the Lambert scaling approach. The reader
may have noticed that the choice of the scaling function �(t )
is not unique, but can be determined up to a constant. More
accurately, one may choose to separate the logarithmic term
into two at an arbitrary point, as one can always write

ln

(
2C2

f k̄2

N�(N )

)
= ln

(
2C2

f η

N�(N )

)
+ ln

(
k̄2

η

)
. (60)

Recall that we used the first term on the right-hand side
of Eq. (60) with η = 1 to derive the Lambert scaling [see
Eq. (7)] while expanding the k̄2-containing exponential term
[see Eq. (10)]. Here η is a free parameter which cannot be
determined uniquely by the aforementioned steps alone. We
found that taking η = 1 produces good results for P(x, N ) and
alternatively for Pd (r, t ) (see Figs. 4, 5, 9, and 10). Of course,
if one sums the complete asymptotic series [which is given to
subleading order by Eq. (11)] η vanishes, but then the result
diverges.

Looking back at Figs. 2 and 3, the reader may notice that
the shape at |r| = r ∼ t of the analytical results mismatches
that of the simulations. This can be explained via our scaling
assumption u ∼ k2 ln(k), which suggests that k � u, namely,

our approximation is for displacement that obeys r � t .
Nonetheless, it holds well at the distribution’s infinite corri-
dors: y = 0 and x = 0 for two open horizons and additionally
y = x and y = −x for four. Utilizing the infinite covariant
density [32], which has recently been gaining attention, could
probably supply one with tools to approximate edge phenom-
ena such as this.

Finally, we direct the reader to interesting correlation pat-
terns of the stadium channel model, seen in Fig. 12(b). We
plot points of consecutive traveling times (τn+1, τn), for the
Lorentz gas and the stadium channel, obtained from numer-
ical samplings and analytical results. Both models exhibit a
phenomenon of clear pointless areas on the graph, which is
caused by the plateaus in the CDFs (Figs. 8 and 11), which
in turn correspond to a vanishing PDF ψ (τ ). Indeed, due
to the discrete nature of the scattering centers, there exist
certain durations of travel that are not possible (in a disordered
system this nonanalytical behavior would vanish). Technically
speaking, long traveling times become semidiscrete, which
is due to small parameter spaces {b, β} [see Eqs. (33)–(35)]
and {a, α} [see Eqs. (55)–(57)] which support these long
trajectories. Interesting patterns emerge from roughly τn �
4.25 for the stadium channel simulations [see Fig. 12(b)].
These patterns suggest a highly correlative system. Indeed,
when no correlations are present, one expects to find square-
shaped patterns that correspond to the independence of the
axes, e.g., as seen for the Lorenz gas case (both analytical
and numerical). However, the stadium channel’s simulations
reveal a complete opposite. Take, for example, the line τn+1 =
τn, extending roughly up to τn ≈ 1.5. Examining the raw
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FIG. 13. Piece of trajectory for the stadium channel model,
with colored correlative sequences. The right cell shows gallery
whispering paths, which are responsible for the τn+1 = τn line in
Fig. 12 (solid thick red). The left cell shows the up and down
repetitive movements termed periodic orbits, responsible for the
center rectangle-shaped area in Fig. 12 (dashed thick blue) discussed
in the text. These types of traps hold the particle in a localized area
in the phase space [17], thus invalidating renewals.

data, we found repeated instances of the form τ1, τ1, τ1, . . .,
where the number of elements depends on the size of τ1.
Each instance always summed to a value less than or equal
to π/2, the length of a semicircle arc [see Fig. 13 (right
cell)]. In these cases, a particle arrives at an almost vertical
angle at one end of an arc and then propagates along it,
similarly to gallery whispering modes of wave propagation.
Other patterns correspond to different repeated instances, e.g.,
a particle performing periodic orbits [see Fig. 13 (left cell)]
will have τn ≈ 2 + D = 3, which fits the middle rectangle. We
computed the correlation functions for both models and found
that the Lorentz gas one decays much faster than the stadium
channel one (not shown). Indeed, bounds on the temporal
decay of the CDFs were obtained, showing that the Lorentz
gas one decays with time in a stretched-exponential form [16],
while the stadium channel one decays in a polynomial form
[17]. Thus, it is not surprising that the renewal condition does
not hold for the stadium channel.

In conclusion, we have presented a geometrical method
which yields the CDF of traveling times between collision
events for billiard systems. We implemented this method for
the Lorentz gas with infinite horizon and the stadium channel
models. The approach is based on a shadowing effect (as some
scatterers cannot be reached), on symmetry, and also on the
uniformity of collision parameters (see Figs. 6 and 7). Our
analytical and numerical results coincide. The distribution of
waiting times has two main features. The first is a power-law
decay (1) and the second is its nonanalytical features (see
Figs. 8 and 11). The former is due to the infinite horizon and
the latter is obviously related to the periodic array of scattering
centers. For example, in the infinite horizon Lorentz gas, after
a collision event the traveling time of the tracer particle to
the next target must be longer than or equal to the distance

between two adjutant scattering centers (in units of unity
velocity). This and other dead times implies the observed
nonanalytical behavior of the traveling times’ distribution.
Note that for the channel model arbitrarily short times are
possible, due to a gallery whispering path effect [see Fig. 13
(right cell)]. These exhibit a very correlated motion, as a
short-time interval between collision events is most likely to
be followed by another short interval of the same size [see
Fig. 12(b)].

This leads to the second theme of our work: Can one use
the distribution of time intervals between collision events to
predict the time-dependent probability to find particles at a
given position? The answer is system dependent. The tech-
nique to make this step is based on the Lévy walk model, in
dimension 1 for the stadium channel and 2 for the Lorentz gas.
This model makes the assumption of renewal, and we found it
works well for the Lorentz gas and not at all for the stadium
channel. A tool to check the renewal hypothesis, from an anal-
ysis of the paths, is a correlation plot of consecutive waiting
times [see Figs. 12(b) and 12(d)], which clearly points out the
strong correlations for the stadium channel. However, even the
failure of renewal theory does not imply the complete break-
down of the Lévy walk scheme. In this case we introduced
effective (or renormalized) parameters for the Lévy walk
model obtained by fitting, yielding predictions that are still
very useful. In fact, there are general trends in the position’s
distribution that are universal and nicely predicted by the Lévy
walk. These include the fat tail of the spreading packet, sharp
cutoffs of the density at |r| = V t , the Kummer corrections to
the Gaussian (which are certainly not small on any reasonable
timescale), and the Lambert scaling. The latter is very im-
portant since it allowed us to compare finite-time simulations
with our theory, while the asymptotic Gaussian form (which
exists for the Lorentz gas) is not seen due to superslow
convergence problems (see Figs. 9 and 10). One way to
understand this behavior is to realize that the billiard systems
are operating at a transition point between Lévy and Gauss
statistics. Because of the exponent −3 in Eq. (1), the system
is essentially behaving as if it is critical in the sense of very
sluggish convergence. Roughly speaking and for finite times,
the packet of particles’ tails exhibits Lévy behavior (a power
law with cutoff), while the center part is Gaussian. In the prob-
lem of IID RV summation (Sec. II), we encountered a critical
slowing down at this borderline case, solved by departing
from the

√
N ln(N ) scaling and replacing it with the Lambert

approach.
To map the problem to a Lévy walk, one needs to model

the distribution of velocities Fd (v). For the stadium channel
this is rather easy, as the model is one dimensional and from
symmetry we use a velocity which is either +V or −V with
equal probability. For the Lorentz gas, a more careful analysis
is needed. As we decrease the size of scatterers, we open
more infinite corridors of motion. At first we have four open
horizons and this leads to a crosslike shape of the spreading
packet (see Fig. 2). Here the velocity distribution in the Lévy
walk scheme has a simple structure as the four directions are
clearly identical from symmetry. However, when R is made
slightly smaller than 1/

√
8, we open a new channel but only

slightly, meaning that the effective velocity in these directions
is statistically reduced compared to the original four corridors
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(note that we refer to the distribution of velocities in the Lévy
walk and not to the microscopic velocities of the Lorenz gas).
The resulting effect is the creation of a British flaglike type
of structure for the packet’s distribution (see Fig. 3). Thus, we
observe a transition from one geometry to another as we vary
R. Theoretically, this means that we assign different statistical
weights to each group of horizons as in Eq. (26), which is
made possible with geometrical considerations leading to the
important parameter q in Eq. (47).

Note added. A related work on the Lévy walk and Lorentz
gas has recently been presented in [33].
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APPENDIX A: LEADING BEHAVIOR OF f̃ (k → 0)

We assume that f (χ ) possesses the asymptotic behavior

lim
χ→±∞ f (χ )|χ |1+ν = χν

0 , (A1)

where ν > 0 and χ0 > 0 are real numbers. The Fourier transform of f (χ ) is defined as

f̃ (k) =
∫ ∞

−∞
dχ f (χ )eikχ . (A2)

Due to the evenness of f (χ ), f̃ (k) is even and real. Therefore, throughout the following sections we assume that k → 0+ and
use parity to find f̃ (k → 0−). As we show below, given a positive integer n̄, Eqs. (A1) and (A2) lead to

f̃ (k) �
n̄−1∑
n=0

(ik)n

n!
〈χn〉 +

⎧⎨
⎩

2�(−ν) cos( πν
2 )|χ0k|ν, n̄ − 1 < ν < n̄

π
n̄! (−1)(n̄+1)/2|χ0k|n̄, ν = odd n̄
1
n̄! (−1)(n̄+2)/2(χ0k)n̄ ln

(
C2

n̄ χ2
0 k2

)
, ν = even n̄,

(A3)

where Cn̄[ f (χ )] is defined in the corresponding section. Using Eqs. (A1) and (A2), we extract all of the converging moments
from the Fourier transform integral

f̃ (k) =
n̄−1∑
n=0

(ik)n

n!
〈χn〉 +

∫ ∞

−∞
dχ f (χ )

[
eikχ −

n̄−1∑
n=0

(ikχ )n

n!

]
(A4)

and consider each of the cases in Eq. (A3) separately.

1. Noninteger ν

Let us assume that n̄ − 1 < ν < n̄. In order to find the leading behavior of the second term of Eq. (A4), we consider the limit

l0 = lim
k→0+

1

kν

∫ ∞

−∞
dχ f (χ )

[
eikχ −

n̄−1∑
n=0

(ikχ )n

n!

]
. (A5)

Using l’Hôpital’s rule n̄ times yields

l0 = lim
k→0+

�(−ν)(−i)n̄

�(−ν + n̄)
kn̄−ν

∫ ∞

−∞
dχ f (χ )χ n̄eikχ , (A6)

where �(· · · ) is the Gamma function. We use an η = kχ variable change

l0 = �(−ν)(−i)n̄

�(−ν + n̄)
lim

k→0+

∫ ∞

−∞
dη eiηηn̄ f (η/k)

kν+1
. (A7)

We now switch the order of the limit and integration while using the asymptotic behavior (A1),

l0 = χν
0 �(−ν)(−i)n̄

�(−ν + n̄)

∫ ∞

−∞
dη

eiηηn̄

|η|ν+1
= 2χν

0 �(−ν) cos
(πν

2

)
, (A8)

which proves the first line of Eq. (A3).
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2. Integer ν

Let us assume that ν = n̄, where n̄ is even. In order to find the leading behavior of the second term of Eq. (A4), we consider
the limit

l1 = lim
k→0+

1

kn̄ ln(k)

∫ ∞

−∞
dχ f (χ )

[
eikχ −

n̄−1∑
n=0

(ikχ )n

n!

]
. (A9)

Using l’Hôpital’s rule n̄ + 1 times produces

l1 = in̄+1

n̄!
lim

k→0+
k
∫ ∞

−∞
dχ f (χ )χ n̄+1eikχ . (A10)

Changing the integration variable to η = kχ gives

l1 = in̄+1

n̄!
lim

k→0+

∫ ∞

−∞
dη eiη f

(η

k

)(η

k

)n̄+1
. (A11)

After switching the order of the limit and integration, the integral exists as a Cauchy principal value and we find

l1 = χ n̄
0

in̄+1

n̄!
P.V.

∫ ∞

−∞
dη eiηsgn(η) = − 2

n̄!
(−1)n̄/2χ n̄

0 . (A12)

If n̄ is odd, we return to Eq. (A8) and take the limit of ν → n̄, where n̄ is odd. We obtain

l1 = lim
ν→n̄

2χν
0 �(−ν) cos

(πν

2

)
= π

n̄!
(−1)(n̄+1)/2χ n̄

0 . (A13)

To compute the next-order correction for the case of an even n̄, we calculate the limit

l2 = lim
k→0+

1

kn̄

{∫ ∞

−∞
dχ f (χ )

[
eikχ −

n̄−1∑
n=0

(ikχ )n

n!

]
+ 2

n̄!
(−1)n̄/2(χ0k)n̄ ln(k)

}
. (A14)

Using l’Hôpital’s rule n̄ times results in

l2 = (−1)n̄/2

n̄!
lim

k→0+

{∫ ∞

−∞
dχ f (χ )χ n̄eikχ + 2χ n̄

0 [ln(k) + Hn̄]

}
, (A15)

where Hn̄ = ∑n̄
n=1

1
n is the n̄th harmonic number. Since n̄ is even, the integral in Eq. (A15) can be adjusted to the domain [0,∞),

with exp(ikχ ) → cos(kχ ). We split the adjusted integral at χ = χ0:

l2 = 2

n̄!
(−1)n̄/2 lim

k→0+

{∫ χ0

0
dχ f (χ )χ n̄ cos(kχ ) +

∫ ∞

χ0

dχ f (χ )χ n̄ cos(kχ ) + χ n̄
0 [ln(k) + Hn̄]

}
. (A16)

We now add and subtract a χ n̄
0 /χ n̄+1 term from f (χ ) in the second integral in Eq. (A16):

l2 = 2

n̄!
(−1)n̄/2 lim

k→0+

{∫ χ0

0
dχ f (χ )χ n̄ cos(kχ ) +

∫ ∞

χ0

dχ

[
f (χ ) − χ n̄

0

χ n̄+1

]
χ n̄ cos(kχ )

+
∫ ∞

χ0

dχ
χ n̄

0

χ
cos(kχ ) + χ n̄

0 [ln(k) + Hn̄]

}
. (A17)

Note that, due to the asymptotics (A1), the second integral above is finite when k → 0+. The bottom integral in Eq. (A17) can
be computed explicitly, after which the limit can be evaluated. Finally, we find

l2 = 2

n̄!
(−1)n̄/2

{∫ χ0

0
dχ f (χ )χ n̄ +

∫ ∞

χ0

dχ

[
f (χ ) − χ n̄

0

χ n̄+1

]
χ n̄ + χ n̄

0 [Hn̄ − γ − ln(χ0)]

}
, (A18)

where γ ≈ 0.5772 is Euler’s constant. After some algebra we obtain

l2 = −χ n̄
0

2

n̄!
(−1)n̄/2 ln(Cn̄χ0), (A19)

where

Cn̄[ f (χ )] = exp

{
γ − Hn̄ −

∫ χ0

0
dχ f (χ )

(
χ

χ0

)n̄

−
∫ ∞

χ0

dχ

[
f (χ )

(
χ

χ0

)n̄

− 1

χ

]}
(A20)

is a finite constant, which provides the second and third lines of Eq. (A3). Plugging n̄ = 2 into Eq. (A20) results in Eq. (5).
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APPENDIX B: LEADING BEHAVIOR OF ψ̂(u → 0)

We assume that ψ (τ ) possesses the asymptotic behavior

lim
τ→∞ ψ (τ )τ 1+ν = τ ν

0 , (B1)

where ν > 0 and τ0 > 0 are real numbers. The Laplace transform of ψ (τ ) is defined as

ψ̂ (u) =
∫ ∞

0
dτ ψ (τ )e−uτ . (B2)

As we show below, given a positive integer n̄, Eqs. (B1) and (B2) lead to

ψ̂ (u) �
n̄−1∑
n=0

(−u)n

n!
〈τ n〉 +

{
�(−ν)(τ0u)ν, n̄ − 1 < ν < n̄
1
n̄! (−1)n̄+1(τ0u)n̄ ln(Cn̄τ0u), ν = n̄,

(B3)

where Cn̄[ψ (τ )] is defined in the corresponding section. Using Eqs. (B1) and (B2), we extract all of the converging moments
from the Laplace transform integral

ψ̂ (u) =
n̄−1∑
n=0

(−u)n

n!
〈τ n〉 +

∫ ∞

0
dτ ψ (τ )

[
e−uτ −

n̄−1∑
n=0

(−uτ )n

n!

]
(B4)

and consider each of the cases in Eq. (B3) separately.

1. Noninteger ν

Let us assume that n̄ − 1 < ν < n̄. In order to obtain the leading behavior of the second term of Eq. (B4), we consider the
limit

l0 = lim
u→0

1

uν

∫ ∞

0
dτ ψ (τ )

[
e−uτ −

n̄−1∑
n=0

(−uτ )n

n!

]
. (B5)

Using l’Hôpital’s rule n̄ times yields

l0 = lim
u→0

�(−ν)un̄−ν

�(−ν + n̄)

∫ ∞

0
dτ ψ (τ )τ n̄e−uτ . (B6)

Changing the integration variable to η = uτ produces

l0 = �(−ν)

�(−ν + n̄)
lim
u→0

∫ ∞

0
dη ψ

(η

u

)(η

u

)ν+1
ηn̄−1−νe−η. (B7)

We switch the order of the limit and integration, which together with the asymptotic behavior (B1) gives

l0 = τ ν
0 �(−ν)

�(−ν + n̄)

∫ ∞

0+
dη ηn̄−1−νe−η = τ ν

0 �(−ν), (B8)

which proves the first line of Eq. (B3).

2. Integer ν

Let us assume that ν = n̄, where n̄ can be even or odd. In order to find the leading behavior of Eq. (B4), we consider the limit

l1 = lim
u→0

1

un̄ ln(u)

∫ ∞

0
dτ ψ (τ )

[
e−uτ −

n̄−1∑
n=0

(−uτ )n

n!

]
. (B9)

Using l’Hôpital’s rule n̄ + 1, we get

l1 = lim
u→0

(−1)n̄+1 u

n̄!

∫ ∞

0
dτ ψ (τ )τ n̄+1e−uτ . (B10)

We change the integration variable to η = uτ ,

l1 = lim
u→0

(−1)n̄+1

n̄!

∫ ∞

0
dη ψ

(η

u

)(η

u

)n̄+1
e−η, (B11)

and switch the order of the limit and integration while applying the asymptotic behavior (B1),

l1 = τ n̄
0

n̄!
(−1)n̄+1

∫ ∞

0+
dη e−η = 1

n̄!
(−1)n̄+1τ n̄

0 . (B12)
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To obtain the next-order correction, we evaluate the limit

l2 = lim
u→0

1

un̄

{∫ ∞

0
ψ (τ )

[
e−uτ −

n̄−1∑
n=0

(−uτ )n

n!

]
dτ − τ n̄

0

n̄!
(−1)n̄+1un̄ ln(u)

}
. (B13)

We use l’Hôpital’s rule n̄ times to get

l2 = (−1)n̄

n̄!
lim
u→0

{∫ ∞

0
dτ ψ (τ )τ n̄e−uτ + τ n̄

0 [ln(u) + Hn̄]

}
. (B14)

Splitting the integral at τ = τ0 yields

l2 = (−1)n̄

n̄!
lim
u→0

{∫ τ0

0
dτ ψ (τ )τ n̄e−uτ +

∫ ∞

τ0

dτ ψ (τ )τ n̄e−uτ + τ n̄
0 [ln(u) + Hn̄]

}
. (B15)

We now add and subtract the term τ n̄
0 /τ n̄+1 from ψ (τ ) in the second integral in Eq. (B15),

l2 = (−1)n̄

n̄!
lim
u→0

{∫ τ0

0
dτ ψ (τ )τ n̄e−uτ +

∫ ∞

τ0

dτ

[
ψ (τ ) − τ n̄

0

τ n̄+1

]
τ n̄e−uτ +

∫ ∞

τ0

dτ
τ n̄

0

τ
e−uτ + τ n̄

0 [ln(u) + Hn̄]

}
. (B16)

Note that, due to the asymptotics (B1), the middle integral above is finite when u → 0. The right integral in Eq. (B16) can be
computed explicitly, after which the limit can be evaluated. Finally, we find

l2 = 1

n̄!
(−1)n̄+1τ n̄

0 ln(Cn̄τ0), (B17)

where

Cn̄[ψ (τ )] = exp

{
γ − Hn̄ −

∫ τ0

0
dτ ψ (τ )

(τ0

τ

)n̄
−
∫ ∞

τ0

dτ

[
ψ (τ )

(τ0

τ

)n̄
− 1

τ

]}
(B18)

is a finite constant, which concludes the second line of Eq. (B3). Plugging n̄ = 2 into Eq. (B18) results in Eq. (18).

APPENDIX C: ADDITIONAL STEPS IN THE DERIVATION OF LAMBERT SCALING FOR THE LÉVY WALK MODEL

Here we portray the additional steps which were omitted in Sec. III. Starting from Eq. (17), we expand ψ̂ (u − ik · v) for small
arguments

ψ̂ (u − ik · v) � 1 − 〈τ 〉(u − ik · v) − 1
2τ 2

0 (u − ik · v)2 ln[Cψτ0(u − ik · v)] (C1)

and apply this expansion to the Montroll-Weiss equation (14),

�d (k, u) �
{

1 +
〈

τ 2
0

2〈τ 〉 (u − ik · v) ln[Cψτ0(u − ik · v)]

〉}{
u +

〈
τ 2

0

2〈τ 〉 (u − ik · v)2 ln[Cψτ0(u − ik · v)]

〉}−1

. (C2)

We use the identity

ln(a ± ib) = 1

2
ln(a2 + b2) ± i tan−1

(
b

a

)
(C3)

and the assumed symmetry of F (v) in order to simplify Eq. (C2),

�d (k, u) �
{

1 + uτ 2
0

4〈τ 〉
〈
ln
{
C2

ψτ 2
0 [u2 + (k · v)2]

}〉− τ 2
0

2〈τ 〉
〈
(k · v) tan−1

(
k · v

u

)〉}

×
{

u + u2τ 2
0

4〈τ 〉
〈
ln
{
C2

ψτ 2
0 [u2 + (k · v)2]

}〉− τ 2
0

4〈τ 〉
〈
(k · v)2 ln

{
C2

ψτ 2
0 [u2 + (k · v)2]

}〉

+ uτ 2
0

〈τ 〉
〈
(k · v) tan−1

(
k · v

u

)〉}−1

. (C4)

Using ln(1 + ε2) � ε2 and tan−1(1/ε) � (π/2)sgn(ε) − ε for ε → 0, we discard irrelevant terms with respect to ε ∼ u/kv, so
we have

�d (k, u) �
{

u − τ 2
0

4〈τ 〉
〈
(k · v)2 ln

[
C2

ψτ 2
0 (k · v)2

]〉}−1

. (C5)

One may argue that this expansion breaks down when v = 0 or alternatively when k · v = 0, but actually there is no problem. The
former case is ruled out since our physical models have a positive constant for the speed v = V = 1 and as such we demand that
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Fd (v �= 1) = 0. The latter case is ruled out since Fd (v) covers all velocity directions of the d-dimensional space, by construction.
Therefore, it will always contain a part parallel to k, regardless of k’s direction. Returning to the time domain, we obtain

P̃d (k, t ) � exp

{
tτ 2

0

4〈τ 〉
〈
(k · v)2 ln

[
C2

ψτ 2
0 (k · v)2]〉}. (C6)

Substituting κ = k
√

τ 2
0 〈v2〉t�d (t )/4d〈τ 〉, where �d (t ) is a scaling function, leads to

P̃d (κ, t ) �
[

4d〈τ 〉
τ 2

0 〈v2〉t�d (t )

]d/2

exp

{
1

�d (t )

〈
(κ · v)2

〈v2〉/d
ln

[
4dC2

ψ 〈τ 〉
t�d (t )

(κ · v)2

〈v2〉

]〉}
. (C7)

We determine the slowly varying scaling function �d (t ) by demanding that ln[t�d (t )/4dC2
ψ 〈τ 〉] = �d (t ), obtaining Eq. (21).

Thus, Eq. (C7) becomes

P̃d (κ, t ) �
[

2

ξd (t )

]d

exp

[
−
〈

(κ · v)2

〈v2〉/d

〉]
exp

{
1

�d (t )

〈
(κ · v)2

〈v2〉/d
ln

[
(κ · v)2

〈v2〉
]〉}

�
[

2

ξd (t )

]d

exp

[
−
〈

(κ · v)2

〈v2〉/d

〉]{
1 + 1

�d (t )

〈
(κ · v)2

〈v2〉/d
ln

[
(κ · v)2

〈v2〉
]〉}

, (C8)

where we expanded the exponential term in the second line due to the assumption of large t , which leads to large �d (t ). Equations
(20) and (25) then follow from Eqs. (19) and (24), respectively, when combined with Eq. (C8).

APPENDIX D: DERIVATION OF THE INTEGRATION
BOUNDARIES

1. Lorentz gas model

We denote by (x0, y0) the starting point on the (0,0) scat-
terer from which we assume the particle has originated. The
pair {b, β} and the trio {x0, y0, β} are related by a simple
transformation. To obtain it, we define the two vectors

R = x0x̂ + y0ŷ, B = −b sin(β )x̂ + b cos(β )ŷ, (D1)

where B can be seen as the red arrow in Fig. 6(a). Solving
the equation B · (R − B) = 0 and x0(0, 0, R) = R, we get the
expressions

x0(b, β, R) =
√

R2 − b2 cos(β ) − b sin(β ),

y0(b, β, R) =
√

R2 − b2 sin(β ) + b cos(β ). (D2)

By solving

[x0(b, β, R) + τ ∗
n,m(b, β, R) cos(β ) − n]2

+[y0(b, β, R) + τ ∗
n,m(b, β, R) sin(β ) − m]2 = R2, (D3)

together with τ ∗
1,0(0, 0, R) = 1 − 2R, we obtain Eqs. (27)

and (29). In order to extract the IBs of β and b from the
inequalities (30)–(32), we notice that there are two classes
of trajectories which reach the (n, 1) scatterer, where n � 0.
The first class’s IBs are dictated by the origin and target
scatterers. The second class’s IBs are governed by the (1,0)
and (n − 1, 1) scatterers [this class does not exist for the (0,1)
circle]. We split the β domain into two parts, which we label
I and II, each corresponding to a class of trajectories, and
denote the separator angle between them by β

sep
n,1 (R). Each of

β’s subdomains is associated with a different expression for
b’s IBs, which we denote by (i) and (ii). However, when β =
β

sep
n,1 (R) the two expressions coincide. Therefore, β

sep
n,1 (R) can

be found by comparing the lower (or upper) IB of (i) to that
of (ii). Finding the top and bottom IBs of β relies on a similar
idea, namely, using the expressions for b’s IBs. When β =

βmin
n,1 (R), the associated b subdomain (i) shrinks to zero. Thus,

βmin
n,1 (R) can be found by setting bmin

n,1 (β, R) = bmax
n,1 (β, R) in

the (i) expression. Identically, βmax
n,1 (R) is found by setting

bmin
n,1 (β, R) = bmax

n,1 (β, R) in the (ii) expression. Starting with
n = 0, the upper IB of β is set to π/2, which is possible due
to symmetry. This is done in order to balance out the excess
of distant-neighbor groups over nearest- and next-nearest-
neighbor groups across the lattice, which is demonstrated in
Fig. 7(a). Writing Eq. (30) in its explicit form, we get, for
subdomain (i),

cos(β ) − R � b � cos(β ) + R. (D4)

Since β � π/2 and |b| � R, the upper IB in Eq. (D4) is set
to R. For β’s lower IB, we equate b’s IBs, cos(β ) − R = R,
getting cos−1(2R). Thus, we obtain, for n = 0,

π

2
− sin−1(2R) � β � π

2
, cos(β ) − R � b � R. (D5)

We continue with n = 1. Again, due to symmetry we can
truncate β’s upper IB to π/4. Equation (31) in its explicit form
combined with |b| � R then yields

cos(β ) − sin(β ) − R � b � R for (i),

R − sin(β ) � b � cos(β ) − R for (ii). (D6)

Here the β domain is sectioned into two parts, as said before:
I, for which the (ii) inequality in Eq. (D6) is trivially fulfilled,
and II, in which it needs to be upheld. Equating the IBs of (i)
in Eq. (D6) yields the lower IB of β. We obtain

π

4
− sin−1(

√
2R) � β � π

4
. (D7)

The separator angle between I and II can be found by com-
paring the lower (or upper) b IB of (i) to that of (ii), yielding
β = cos−1(2R). Therefore, we find, for n = 1,

π

4
− sin−1(

√
2R) � β � cos−1(2R) for I,

cos(β ) − sin(β ) − R � b � R for (i) (D8)
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and

cos−1(2R) � β � π

4
for II,

R − sin(β ) � b � cos(β ) − R for (ii). (D9)

Finally, Eq. (32), in its explicit form, provides

cos(β ) − n sin(β ) − R � b � R for (i),

R − sin(β ) � b � cos(β )−(n − 1) sin(β ) − R for (ii),

(D10)

where we already implemented |b| � R to (i)’s top IB. This
time, there is no need to set the upper IB of β manually. For
the bottom IB of β’s subdomain I, one equates the IBs of (i)
in Eq. (D10), namely, cos(β ) − n sin(β ) = 2R. By dividing
this equality by

√
n2 + 1 and using basic trigonometry, we

have a general form of the lower IB of β [Eq. (33)]. The
same is done for the upper IB of β’s subdomain II, where (ii)
of Eq. (D10) is used, yielding cos(β ) − (n − 2) sin(β ) = 2R,
which results in Eq. (34). The separator angle can be found
by equating the top or bottom IBs of (i) to (ii), producing
cos(β ) − (n − 1) sin(β ) = 2R and Eq. (36).

We finish this subsection with the case of R = 0.3, namely,
four open corridors. As said in Sec. IV, the scatterer (2,1) is
now shared by the horizontal and diagonal directions; thus
we adjust its upper β IB. When β achieves its maximal value
for the horizontal direction stripe, b’s lower IB must be equal
to −R. Thus we set bmin

2,1 (β, R) = −R in Eq. (35) and obtain
Eq. (39). Similarly to the horizontal case, there are two classes
of trajectories to reach the (m + 1, m) scatterer. The first
class’s IBs are governed by the origin and target scatterers and
the second class’s IBs are dictated by the (1,1) and (m, m − 1)
circles [this class does not exist for the (2,1) target scatterer].
Again, we split β’s domain into two subdomains I and II;
however, this time they switch places, i.e., the I part is of
higher β values than the II part. Equation (40), in its explicit
form, reads

−R � b � cos(β ) − 2 sin(β ) + R for (i), (D11)

where we set the lower b IB to −R since β � sin−1(2R) and
|b| � R. For the upper IB of β we equate the IBs of b in
Eq. (D11) to each other, namely, −R = cos(β ) − 2 sin(β ) +
R. Thus we obtain, for m = 1,

sin−1(2R) � β � sin−1

(
4R

5
+ 1

5

√
5 − 4R2

)
. (D12)

For m > 1, we write Eq. (41) in its explicit form

−R � b � m cos(β ) − (m + 1) sin(β ) + R for (i),

(m − 1) cos(β ) − m sin(β ) + R � b � cos(β )

− sin(β ) − R for (ii), (D13)

where we set the bottom IB of (i) to −R, as before. The
upper β IB is found by equating the top IB of (i) to −R in
Eq. (D13) and the bottom β IB is found by equating the top
and bottom IBs of (ii) to each other. The separator angle is
found in the same manner as for the horizontal case. Dividing
the resulted expressions by

√
m2 + (m + 1)2 and using basic

trigonometry, we obtain Eqs. (42)–(45).

2. Stadium channel model

We denote by (x0, y0) the starting point on the (0,0) stadium
from which we assume the particle has originated. The pair
{a, α} and the trio {x0, y0, α} are related by a simple transfor-
mation. To obtain it, we define the two vectors

R = x0x̂ + y0ŷ, A = −a sin(α)x̂ + a cos(α)ŷ, (D14)

where A can be seen as the red arrow in Fig. 6(b). Solving
the equation A · (R − A) = 0 and y0(0, 0) = −1, we get the
expressions

x0(a, α) =
√

1 − a2 cos(α) − a sin(α),

y0(a, α) =
√

1 − a2 sin(α) + a cos(α). (D15)

By solving

[x0(a, α) + τ ∗
2n,m(a, α) cos(α) − 2n]2

+ [y0(a, α) + τ ∗
2n,m(a, α) sin(α) − m]2 = 1, (D16)

together with τ ∗
0,0(0, 0) = 2, we obtain Eqs. (48) and (50).

Simplifying Eq. (51) and using −π/2 � α � π/2, we get
Eq. (54). In order to extract α’s lower IB from the inequalities
(52), we notice that, as with the Lorentz gas model, when
α hits its bottom IB, the a domain vanishes. Simplifying
Eq. (52), we have

D cos(α) − sin(α) � a � sin(α), (D17)

and thus we have D cos(α) − sin(α) = sin(α) for α’s lower
IB, which is solved to obtain αmin

0,D = tan−1(D/2). Finally, we
notice that there are two classes of trajectories which reach
the target stadiums of n > 0, as with the Lorentz gas case.
The first class’s IBs are dictated by the origin and target
semicircles. The second class’s IBs are governed by the origin
and (2n − 2, D) stadium walls [this class does not exist for
the trajectories ending with the origin or (0, D) semicircles].
We split the α domain into two parts, referred to as I and II,
each corresponding to a class of trajectories, and denote the
separator angle between them by α

sep
2n,D. Each of α’s subdo-

mains is associated with a different expression for a’s IBs,
which we denote by (i) and (ii). However, when α = α

sep
2n,D

the two expressions coincide. Therefore, α
sep
2n,D can be found

by comparing the lower (or upper) IB of (i) to that of (ii).
Finding the top and bottom IBs of α relies on a similar idea,
namely, using the expressions for a’s IBs. When α = αmin

2n,D,
the associated a subdomain (i) shrinks to zero. Thus, αmin

2n,D can
be found by setting amin

2n,D(α) = amax
2n,D(α) in the (i) expression.

Identically, αmax
2n,D is found by setting amin

2n,D(α) = amax
2n,D(α) in

the (ii) expression. Simplifying the first line of Eq. (53), we
get

− sin(α) � a � sin(α), D cos(α) − (2n + 1) sin(α)

� a � D cos(α) − (2n − 1) sin(α) for (i). (D18)

This class of trajectories has its upper (lower) a IB dominated
by the origin (target) stadium, and thus the top (bottom) IB
for this class is taken from the first (second) inequality in
Eq. (D18) such that

D cos(α) − (2n + 1) sin(α) � a � sin(α) for (i). (D19)
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For the inequalities in the second line in Eq. (53) we get, after
simplification,

− sin(α) � a � sin(α), |a − D cos(α)

+ (2n − 2) sin(α)| � sin(α) for (ii). (D20)

This class of trajectories has its lower (upper) a IB dominated
by the origin [(2n − 2, D)] stadium, and thus the bottom (top)

IB for this class is taken from the first (second) inequality in
Eq. (D18) such that

− sin(α) � a � D cos(α) − (2n − 1) sin(α) for (ii).

(D21)

Using the IBs of a in (i) and (ii) to extract the IBs of α in the
way described above, we obtain Eqs. (55)–(58).

APPENDIX E: CALCULATIONS OF τ0, 〈τ〉, AND Cψ

1. Lorentz gas model

Using Eq. (28) together with the integration boundaries (33)–(36), one can calculate ψ (τ ) using a computational program
like Mathematica and extract the constants τ0, 〈τ 〉, and Cψ from it. However, we found that an analytical expression for τ0 can
be calculated. It follows from its definition (1) that

τ 2
0 = lim

T →∞
1

T

∫ T

0
dτ τ 3 ψ (τ ). (E1)

Plugging Eq. (28) with two infinite corridors (i.e., q = 0) into Eq. (E1), we get

τ 2
0 = 8 lim

T →∞
1

T

∞∑
n=0

∫ βmax
n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R
τ ∗3

n,1(b, β, R)θ [T − τ ∗
n,1(b, β, R)], (E2)

where θ (· · · ) is the Heaviside step function and the factor of 8 arises from symmetry (see Fig. 7). Since τ ∗
n,m(b, β, R) is the

traveling distance to the (n, m) scatterer, it obeys τ ∗
n,1(b, β, R) �

√
n2 + (1 − 2R)2 � n when n is large; thus the Heaviside

function truncates the sum in Eq. (E2) at n = T , and we have

τ 2
0 = 8 lim

T →∞
1

T

T∑
n=0

∫ βmax
n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R
τ ∗3

n,1(b, β, R). (E3)

Equation (E1) suggests that the integral over τ 3ψ (τ ) grows linearly with T , and as such we expect that the sum in Eq. (E3) will
behave similarly with T . We therefore write

τ 2
0 = 8 lim

T →∞

∫ βmax
T,1 (R)

βmin
T,1 (R)

dβ

2π

∫ bmax
T,1 (β,R)

bmin
T,1 (β,R)

db

2R
[
√

T 2 + (1 − 2R)2]3. (E4)

Now the integrals can be easily performed. After evaluating the limit we get a closed expression for τ0 [Eq. (37)]. The remaining
constants 〈τ 〉 and Cψ are defined via integrals over ψ (τ ) rather than by a limit operation, and as such they cannot be obtained
using end terms as we just did. Nevertheless, one is not required to calculate ψ (τ ), but can use a simpler tactic. To calculate the
mean time between collisions, we use its definition and plug into Eq. (28),

〈τ 〉 = 8
∞∑

n=0

∫ βmax
n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R
τ ∗

n,1(b, β, R). (E5)

To achieve a designated precision, one can simply truncate the sum at a large enough T . For T = 500 we obtain 〈τ 〉 ≈ 0.62155.
For Cψ we find the following formula from Eq. (18):

Cψ = lim
T →∞

exp

[
γ − 3

2
+ ln

(
T

τ0

)
−
∫ T

0
dτ ψ (τ )

(
τ

τ0

)2
]
. (E6)

Plugging Eq. (28) into this expression and allowing the Heaviside function to truncate the sum at n = T yields

Cψ = lim
T →∞

exp

[
γ − 3

2
+ ln

(
T

τ0

)
− 8

T∑
n=0

∫ βmax
n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R

τ ∗2
n,1(b, β, R)

τ 2
0

]
. (E7)

This equation converges rather slowly due to the logarithmic term; hence we need to accelerate its convergence rate. To do that,
we use the identity

lim
T →∞

[
ln(T ) −

T∑
n=1

1

n

]
= −γ (E8)
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and write, taking the n = 0 summand out of the sum,

Cψ = lim
T →∞

exp

{
−3

2
− ln(τ0) − 8

∫ βmax
0,1 (R)

βmin
0,1 (R)

dβ

2π

∫ bmax
0,1 (β,R)

bmin
0,1 (β,R)

db

2R

τ ∗2
0,1(b, β, R)

τ 2
0

−
T∑

n=1

[
8
∫ βmax

n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R

τ ∗2
n,1(b, β, R)

τ 2
0

− 1

n

]}
. (E9)

We approximate τ ∗
n,1(b, β, R) for large n as before and see, after performing the integrals, that the summands behave for n � 1

as

sn � 8
∫ βmax

n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R

n2 + (1 − 2R)2

τ 2
0

− 1

n
� B1

n2
+ B2

n3
+ B3

n4
, (E10)

where B1, B2, and B3 are some R-dependent coefficients. This behavior suggests that the partial sum ST goes like

ST =
T∑

n=1

sn � lR + B̃1

T
+ B̃2

T 2
+ B̃3

T 3
(E11)

for large T , where lR is the desired limit. This implies that the Richardson extrapolation method can be used [see Eq. (8.1.16)
in Ref. [34]]. For T = 40, we get Cψ ≈ 4.4802 × 10−4 by summing terms up to n = T and extrapolating over the S37, S38, S39,
and S40 partial sums.

Extracting the needed constants for four open horizons, namely, q > 0, is done in a similar fashion, but this time we have
1/

√
20 � R < 1/

√
8. Plugging Eq. (28) into Eq. (E1) gives

τ 2
0 = 2

πR
(1 − 2R)2 + 8 lim

T →∞
1

T

∞∑
m=1

∫ βmax
m+1,m (R)

βmin
m+1,m (R)

dβ

2π

∫ bmax
m+1,m (β,R)

bmin
m+1,m (β,R)

db

2R
τ ∗3

m+1,m(b, β, R)θ [T − τ ∗
m+1,m(b, β, R)]. (E12)

Using geometrical considerations, this time we have τ ∗
m+1,m(b, β, R) � [2(m + 1/2)2 + (1/

√
2 − 2R)2]1/2 � √

2m for large m,

so the sum in Eq. (E12) is truncated at (the closest integer to) T/
√

2,

τ 2
0 = 2

πR
(1 − 2R)2 + 8√

2
lim

T →∞

√
2

T

T/
√

2∑
m=1

∫ βmax
m+1,m (R)

βmin
m+1,m (R)

dβ

2π

∫ bmax
m+1,m (β,R)

bmin
m+1,m (β,R)

db

2R
τ ∗3

m+1,m(b, β, R). (E13)

After omitting the sum as was done for the case of two open horizons, Eq. (E13) becomes

τ 2
0 = 2

πR
(1 − 2R)2 + 8√

2
lim

T →∞

∫ βmax
T +1,T (R)

βmin
T +1,T (R)

dβ

2π

∫ bmax
T +1,T (β,R)

bmin
T +1,T (β,R)

db

2R

[
2

(
T + 1

2

)2

+
(

1√
2

− 2R

)2
]3/2

, (E14)

which then yields Eq. (46). We are left with calculating the remaining parameters for the British flag case. For the mean time
between collisions we have

〈τ 〉 = 8
∞∑

n=0

∫ βmax
n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R
τ ∗

n,1(b, β, R) + 8
∞∑

m=1

∫ βmax
m+1,m (R)

βmin
m+1,m (R)

dβ

2π

∫ bmax
m+1,m (β,R)

bmin
m+1,m (β,R)

db

2R
τ ∗

m+1,m(b, β, R). (E15)

Note that if one truncates the first sum in Eq. (E15) at T , one then needs to truncate the second sum at T/
√

2. Using T = 500,
we obtain 〈τ 〉 ≈ 1.1947. For Cψ we write

ln(T ) = (1 − q) ln(T ) + q ln

(
T√

2

)
+ 1

2
ln(2)q ⇒ lim

T →∞

⎧⎨
⎩ln(T ) − (1 − q)

T∑
n=1

1

n
− q

T/
√

2∑
m=1

1

m

⎫⎬
⎭ = 1

2
ln(2)q − γ , (E16)

and consequently

Cψ = lim
T →∞

exp

⎧⎨
⎩1

2
ln(2)q − 3

2
− ln(τ0) − 8

∫ βmax
0,1 (R)

βmin
0,1 (R)

dβ

2π

∫ bmax
0,1 (β,R)

bmin
0,1 (β,R)

db

2R

τ ∗2
0,1(b, β, R)

τ 2
0

−
T∑

n=1

[
8
∫ βmax

n,1 (R)

βmin
n,1 (R)

dβ

2π

∫ bmax
n,1 (β,R)

bmin
n,1 (β,R)

db

2R

τ ∗2
n,1(b, β, R)

τ 2
0

− 1 − q

n

]

−
T/

√
2∑

m=1

[
8
∫ βmax

m+1,m (R)

βmin
m+1,m (R)

dβ

2π

∫ bmax
m+1,m (β,R)

bmin
m+1,m (β,R)

db

2R

τ ∗2
m+1,m(b, β, R)

τ 2
0

− q

m

]⎫⎬
⎭. (E17)
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The behavior displayed in Eq. (E11) was checked to be valid for both sums in Eq. (E17). Thus, we take T = 40 and use
Richardson extrapolation for each sum separately by extrapolating over the last four partial sums (for the second sum we use
terms for which m � 28 ≈ T/

√
2), and obtain Cψ ≈ 1.5250 × 10−2.

2. Stadium channel model

We use an identical way as for the Lorentz gas to compute τ0 analytically. Since τ ∗
2n,D(a, α) is the traveling distance to the nth

upper semicircle, it is clear that τ ∗
2n,D(a, α) �

√
(2n + 2)2 + D2 when n is large. Plugging Eq. (49) into Eq. (E1) and employing

similar manipulations as before, we have

τ 2
0 = 4 lim

T →∞
1

T

∞∑
n=0

∫ αmax
2n,D

αmin
2n,D

dα

2π

∫ amax
2n,D (α)

amin
2n,D (α)

da

2
τ ∗3

2n,D(a, α)θ [T − τ ∗
2n,D(a, α)]. (E18)

Since
√

(2n + 2)2 + D2 � 2n for large n, the Heaviside function truncates the sum in Eq. (E18) at n = T/2. Thus

τ 2
0 = 2 lim

T →∞
2

T

T/2∑
n=0

∫ αmax
2n,D

αmin
2n,D

dα

2π

∫ amax
2n,D (α)

amin
2n,D (α)

da

2
τ ∗3

2n,D(a, α), (E19)

and consequently

τ 2
0 = 2 lim

T →∞

∫ αmax
2T,D

αmin
2T,D

dα

2π

∫ amax
2T,D (α)

amin
2T,D (α)

da

2
[
√

(2T + 2)2 + D2]3. (E20)

Now the integrals can be easily performed. After evaluating the limit we get a closed expression for τ0 [Eq. (59)]. For the mean
time between collisions we write

〈τ 〉 = 4
∫ αmax

0,0

αmin
0,0

dα

2π

∫ amax
0,0 (α)

amin
0,0 (α)

da

2
τ ∗

0,0(a, α) + 4
∞∑

n=0

∫ αmax
2n,D

αmin
2n,D

dα

2π

∫ amax
2n,D (α)

amin
2n,D (α)

da

2
τ ∗

2n,D(a, α). (E21)

We truncate the sum at T = 500, and obtain 〈τ 〉 ≈ 2.57016. For Cψ we have

Cψ = lim
T →∞

exp

{
ln

(
2

τ0

)
− 3

2
− 4

∫ αmax
0,0

αmin
0,0

dα

2π

∫ amax
0,0 (α)

amin
0,0 (α)

da

2

τ ∗2
0,0(a, α)

τ 2
0

− 4
∫ αmax

0,D

αmin
0,D

dα

2π

∫ amax
0,D (α)

amin
0,D (α)

da

2

τ ∗2
0,D(a, α)

τ 2
0

−
T/2∑
n=1

[
4
∫ αmax

2n,D

αmin
2n,D

dα

2π

∫ amax
2n,D (α)

amin
2n,D (α)

da

2

τ ∗2
2n,D(a, α)

τ 2
0

− 1

n

]}
. (E22)

Substituting τ ∗
2n,D(a, α) �

√
(2n + 2)2 + D2 for n � 1 and evaluating the integrals, we observe the behavior

sn � 4
∫ αmax

2n,D

αmin
2n,D

dα

2π

∫ amax
2n,D (α)

amin
2n,D (α)

da

2

(2n + 2)2 + D2

τ 2
0

− 1

n
� A1

n2
+ A2

n3
+ A3

n4
, (E23)

where A1, A2, and A3 are some D-dependent coefficients. This behavior suggests that the partial sum ST goes like

ST =
T∑

n=1

sn � lD + Ã1

T
+ Ã2

T 2
+ Ã3

T 3
(E24)

for large T , where lD is the desired limit. Once again, we employ the Richardson extrapolation method. For T = 60, we get
Cψ ≈ 1.0903 × 10−5 by summing terms up to n = T/2 and extrapolating over the S27, S28, S29, and S30 partial sums.
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