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Context: Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets 

and investment analyses. 

Objective & method: This paper introduces, motivates and illustrates two principles on how to evaluate the accu- 

racy and other performance criteria of probabilistic effort estimates in software development contexts. 

Results: The first principle emphasizes a consistency between the estimation error measure and the loss function 

of the chosen type of probabilistic single point effort estimates. The second principle points at the importance of 

not just measuring calibration, but also informativeness of estimated prediction intervals and distributions. The 

relevance of the evaluation principles is illustrated by a performance evaluation of estimates from twenty-eight 

software professionals using two different uncertainty assessment methods to estimate the effort of the same 

thirty software maintenance tasks. 
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. Introduction 

The results in [1] document a large variation in what software profes-

ionals mean with an “effort estimate ” and that, typically, the meaning

s neither communicated nor requested. This makes the situation in soft-

are contexts similar to what has been found in other estimation (fore-

asting) contexts where “…the common practice of requesting “some ”

oint forecast, and then evaluating the forecasters by using “some ” (set

f) scoring function(s), is not a meaningful endeavor ” [2] . This paper

rgues that a probabilistic framework enables more precise communi-

ation of effort estimates and aims at giving support on how to evaluate

robabilistic effort estimates. 

. Evaluating single point, probabilistic effort estimates 

A single point probabilistic effort estimate ( est ) is an effort value

iven probabilistic interpretation through reference to an estimated dis-

ribution of effort (F). Examples of such estimates are the most likely use

f effort (the mode of F), the P50-estimate (the median of F), the P85-

stimate (the 85% percentile of F) and the expected value (the mean

f F). The effort estimates are given for a purpose, e.g., input to plan-

ing or cost-benefit analyses, with a connected loss function (L), e.g.,

he deviation between the estimated and the actual effort, which we

ry to minimize. Formally, the optimal single point estimate ( ̂𝑒𝑠𝑡 ) from

 distribution F is the one that minimizes the expected ( 𝔼 ) loss, i.e.,

�̂�𝑡 = arg 𝑚𝑖 𝑛 𝔼 𝐿 ( 𝑒𝑠𝑡, 𝐺 ) , where G is the actual distribution of effort
𝑒𝑠𝑡 𝐹 
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sage (the inherent uncertainty in use of effort). We apply this connec-

ion to propose the first evaluation principle. 

Principle 1 : There should be a match (consistency) between the 
selected estimation error measure and the loss function of the type 
of probabilistic, single point effort estimate to be evaluated. 

This principle has been suggested in earlier papers on evaluation of

ingle point probabilistic estimates, see for example [2] , and implies

hat proper estimation performance evaluation should be based on that:

) We know or assume the loss function for the estimation, ii) The loss

unction is represented by our estimation error measure, and iii) The

ype of effort estimates we request and evaluate is one that minimizes

he expected loss when F = G . What is emphasized in the above principle

s consequently not that the estimate actually minimizes the expected

alue of the loss function, only that we should evaluate the estimation

erformance relative to a match between what the estimator believes

s the effort distribution and the loss function. An evaluation in accor-

ance with the proposed principle rewards honest effort estimates, i.e.,

stimates that minimizes the loss function relative to what the estimator

elieves is the actual effort distribution G and not something else, and

nables a rational evaluation of the estimation performance. Sometimes

here may be practical problems related to following the principle. It

ay, for example, be difficult to formulate the loss function or more
2019 
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Table 1 

Matching error measure, loss function and types of probabilistic single point estimate. 

Error measure Loss function L Type of single point effort estimates minimizing the loss function 

Absolute Error ( AE ) L (est,act) = |𝑎𝑐𝑡 − 𝑒𝑠𝑡 | ∗ Judgment-based estimates reflecting “just as likely to spend more as to spend less ” (median) 

effort than estimated. 
∗ Analogy-based estimates using the median value of a larger set of similar projects. 
∗ The output of linear regression-based models constructed from log-transformed values of est 

and act of historical projects (assuming log-normal distributions of est and act ). 

Inaccurate effort 

estimates (the 

inverse of 

PRED -types of 

measures) 

L c (est,act) = 
{ 

1 , |𝑎𝑐𝑡 − 𝑒𝑠𝑡 | > 𝑐, 
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where 

c is a constant 

∗ Judgment-based estimates reflecting “most likely effort ” (mode). 
∗ Analogy-based estimation models selecting the closest analogy of historical projects. 

Squared Error ( SE ) L (est,act) = ( 𝑎𝑐𝑡 − 𝑒𝑠𝑡 ) 2 ∗ Analogy-based estimates using the mean value of a larger set of analogies. 
∗ The output of linear regression-based models constructed from historical values of est and act . 

Mean Squared 

Error ( MSE ) of the 

sum of a set of 

estimates. 

L ( 
∑𝑛 

1 𝑒𝑠 𝑡 𝑖 , 
∑𝑛 

1 𝑎𝑐 𝑡 𝑖 ) = ( 
∑𝑛 

1 𝑒𝑠 𝑡 𝑖 − 
∑𝑛 

1 𝑎𝑐 𝑡 𝑖 ) 
2 ∗ Task estimates added to find the total effort of a project (linearity of mean values). 

∗ Project estimates added to find the total effort of a portfolio. 

Magnitude of 

relative error 

( MRE ) 

| 𝑎𝑐𝑡 − 𝑒𝑠𝑡 
𝑎𝑐𝑡 

| ∗ Median of a random variable whose density if proportional to f ( act )/ act , where f is the density 

function of F (the median functional), see [2] , i.e., a value not connected to any intuitive or 

commonly used interpretation of effort estimates. 

Symmetric 

magnitude of 

relative error 

𝐿 ( 𝑒𝑠𝑡, 𝑎𝑐𝑡 ) = |ln ( 𝑒𝑠𝑡 
𝑎𝑐𝑡 

) |= |ln ( 𝑒𝑠𝑡 ) − ln ( 𝑎𝑐𝑡 ) |= |ln ( 𝑎𝑐𝑡 
𝑒𝑠𝑡 

) |
∗ Estimates aiming at minimizing the median of the expected percentage error, with symmetric 

penalty for effort over and under-runs. 

(The back-transformed measure 𝜻 = 𝑒 𝑀𝑑( |ln ( 𝑒𝑠 𝑡 𝑖 
𝑎𝑐 𝑡 𝑖 

) |) − 1 gives the median, symmetric magnitude of 

relative estimation error, see [3] ) 
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1 The data we use for illustrative purpose are the same used for a different 

purpose in [7] . 
han one loss function that matters. The evaluation principle may nev-

rtheless be useful to guide the estimation work and the performance

valuation. In particular it may be useful to avoid clear mismatch be-

ween what the estimates are meant reflect, e.g., the most likely use of

ffort, and how their performances are evaluated. 

Table 1 displays a selection of effort estimation error measures with

atching loss functions and single point estimates. 

. Evaluating effort prediction intervals and estimated effort 

istributions 

The second evaluation principle, motivated below, is as follows: 

Principle 2 : Effort prediction intervals and estimated effort dis- 
tributions should be evaluated both regarding calibration with the 
actual effort distribution and the informativeness of the intervals 
and distributions. 

This principle may be seen as an extension of the evaluation princi-

le formulated in [4] , i.e., that the goal to be evaluated against is that

f: “Maximizing the sharpness of the predictive distributions subject to

alibration ”. Our informativeness criterion is, however, wider (but also

ess precise) than the sharpness (i.e., narrowness of intervals or concen-

ration of distribution) criterion. Our motivation for this extension is

o include performance measures not clearly connected with sharpness,

ut still providing useful information. This is in particular the case for

easures on how well an estimator separates high and low effort un-

ertainty situations. Frequently, both in experimental and in real-world

ontexts, see for example [5] , the performance of probabilistic effort

nd cost estimates has been evaluated based on their calibration alone.

erfect calibration is, however, not sufficient for a good probabilistic

ffort estimate. It is for example possible to have properly calibrated

90-estimates of effort, without performing well on informativeness,

.g., when knowing that, historically, 90% of a certain types of software

rojects cost less than 1.000 work-hours and use 1.000 work-hours as

he P90-estimate for all projects. 
94 
Table 2 suggests measures that cover both calibration and informa-

iveness of effort prediction intervals and estimated distributions. 

. Illustration of the use of the estimation performance 

valuation principles and measures 

.1. The data set 1 

Twenty-eight software professionals of a Norwegian software devel-

pment organizations were invited to participate in a study on effort

stimation. The participants were randomly divided into two groups:

RAD (traditional) and ALT (alternative). All of them were asked to

stimate the most likely effort of the same set of thirty software mainte-

ance tasks, previously completed in a Norwegian telecom organization.

hose in the TRAD group were asked to estimate a 90% effort predic-

ion interval (PI 90 ), while those in the ALT group were asked to estimate

he probability ( X -value of PI X ) to include the actual effort in the effort

nterval [0.5 × most likely effort; 2 × most likely effort]. After each task

stimate and uncertainty assessment the participants received informa-

ion about the actual effort used by the company, how much their esti-

ate of most likely effort deviated and whether their effort prediction

nterval included the actual effort or not. 

.2. Evaluating single point estimates 

In accordance with the first evaluation principle, the estimation per-

ormance measures should match a reasonable loss function of the type

f estimate requested. Asking for the most likely effort matches a loss

unction minimizing the expected value of the proportion of inaccurate

stimates, which may be represented by a PRED-type of error measure.

e use PRED(25), defined as the proportion of projects with actual ef-

ort within ± 25% of the estimated effort, for this purpose. Possibly, the

articipants were unaware of the loss function implications of request-

ng the most likely effort (or did not reflect on loss functions at all), and

ctually tried to minimize the distance between the estimated and the

ctual effort or the percentage error with equal emphasis on under- and
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Table 2 

Measures for the evaluation of effort prediction intervals and distributions. 

HitRate X 
1 
𝑛 

∑
𝑖 ℎ 𝑖 , ℎ 𝑖 = 

{ 

1 , 𝑚𝑖𝑛𝑖𝑚𝑢 𝑚 𝑖 ≤ 𝑎𝑐 𝑡 𝑖 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢 𝑚 𝑖 
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

, i.e., the proportion of observations where the actual effort is included in the PI X (the X% effort 

prediction interval). It may be used on both centralized effort prediction intervals (minimum-maximum intervals) and PX-estimates of effort 

(i.e., X % confidence intervals with minimum 0 and maximum PX). 

PI X Calib 𝐻𝑖𝑡𝑅𝑎𝑡 𝑒 𝑋 − 𝑋, i.e., the difference between the actual frequency (HitRate X ) and the estimated probability (confidence level X ) of including the 

actual effort in the effort prediction interval. 

RWidth X 
𝑃 𝐼 𝑋 

1 
2 ( 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 + 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ) 

, i.e., the prediction interval divided by its mid-point. A lower value means higher informativeness, of the effort prediction 

interval or PX-estimate. 

r RWidthX,err Correlation between the relative width of effort prediction intervals and the estimation error. Very low, zero or negative values indicate low or 

no ability to separate high and low uncertainty situations. Notice that, given the random nature of use of effort, we cannot expect very high 

correlations even when F = G (i.e., when we have perfect estimates of the outcome distribution). 

CRPS Continuous Ranked Probability Score. CRPS ( 𝐹 , act ) = ∫ℝ ( F( 𝑧 ) − 𝕀 ( act ≤ 𝑧 ) ) 
2 d 𝑧, where 𝕀 ( act ≤ 𝑧 ) is the identification function with value 1 when 

act ≤ z , otherwise 0. The value of CRPS (the integral) is minimized when F equals G. CRPS combines calibration and sharpness. A lower 

expected CRPS, for the same estimation tasks, indicates better estimation performance. 

PIT Probability Integral Transform: F( act ), i.e., the probability value we get when giving the actual effort as input to our estimated (cumulative) 

effort distribution. Given perfectly calibrated estimated effort distributions, the distribution of PIT-values will be uniform, a ∩-shape indicates 

too wide (dispersed) and a ∪-shape a too narrow estimated effort distribution. 

PIT-uniformity Uniformity of a PIT-distribution. We suggest the use of PIT-histograms for this purpose, i.e., we count and display the number of observed 

PIT-values for categories of probabilities, as recommended in for example [6] . 

Table 3 

Performance measurement of probabilistic effort estimates. 

Person 

Id 

Single point estimate accuracy Prediction interval and distribution calibration and informativeness 

Pred(25) Mean MAE 𝜁 P 90 Calib Mean RWidth 90 Corr RWidth90, 𝜁 Mean CRPS 

id01 (T) 0.20 6.20 0.30 − 0.07 1.36 − 0.16 4.75 

id02 (T) 0.33 ∗ 4.75 0.16 ∗ − 0.07 1.31 − 0.09 3.96 

id03 (T) 0.27 4.66 0.22 − 0.20 1.14 − 0.09 3.87 

id04 (A) 0.27 4.58 0.30 0.01 ∗ 1.42 − 0.19 3.55 

id05 (A) 0.33 4.83 0.28 0.00 ∗ 1.34 0.05 4.19 

id06 (T) 0.23 4.98 0.27 − 0.37 0.95 ∗ − 0.14 4.33 

id07 (T) 0.27 4.38 0.29 − 0.17 1.14 − 0.06 3.74 

id08 (T) 0.27 4.76 0.26 − 0.17 1.26 − 0.27 4.15 

id09 (A) 0.23 5.50 0.30 0.11 1.61 0.03 4.12 

id10 (A) 0.27 5.40 0.30 − 0.27 1.09 ∗ − 0.31 4.87 

id11 (T) 0.27 6.17 0.17 ∗ − 0.33 1.17 0.20 ∗ 6.02 

id12 (T) 0.33 ∗ 7.02 0.30 − 0.23 1.24 − 0.08 6.54 

id13 (T) 0.27 4.11 0.18 ∗ − 0.80 0.20 ∗ 0.03 3.90 

id14 (T) 0.23 5.03 0.30 − 0.03 ∗ 1.62 − 0.12 4.25 

id15 (T) 0.27 4.32 0.28 − 0.23 1.18 − 0.12 3.56 

id16 (T) 0.33 ∗ 3.73 ∗ 0.18 ∗ − 0.13 0.96 − 0.30 3.05 ∗ 

id17 (A) 0.30 5.38 0.23 − 0.27 1.00 ∗ − 0.24 4.94 

id18 (T) 0.27 5.36 0.30 − 0.33 0.98 ∗ − 0.01 4.64 

id19 (T) 0.17 4.00 0.23 − 0.20 1.21 0.11 3.13 ∗ 

id20 (A) 0.17 6.52 0.30 − 0.09 1.42 − 0.33 5.21 

id21 (A) 0.37 ∗ 3.57 ∗ 0.21 − 0.05 1.27 − 0.31 3.01 ∗ 

id22 (A) 0.33 ∗ 4.67 0.20 0.02 ∗ 1.32 − 0.13 3.96 

id23 (A) 0.27 4.07 ∗ 0.28 0.03 ∗ 1.44 0.28 ∗ 3.18 ∗ 

id24 (A) 0.37 ∗ 4.07 ∗ 0.21 − 0.04 1.35 0.18 ∗ 3.24 

id25 (A) 0.27 5.18 0.30 − 0.04 1.49 − 0.25 3.94 

id26 (A) 0.33 ∗ 3.63 ∗ 0.17 ∗ 0.25 1.62 0.30 ∗ 2.70 ∗ 

id27 (A) 0.23 5.58 0.30 − 0.03 ∗ 1.43 0.41 ∗ 4.22 

id28 (A) 0.27 4.93 0.22 0.10 1.51 − 0.21 3.71 

Group 

TRAD 0.26 4.96 0.22 − 0.24 1.12 − 0.08 4.28 

ALT 0.29 4.85 0.26 − 0.02 1.38 − 0.05 3.92 
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ver-run. In this case, error measures with a fairer evaluation and better

atch with the loss function would be the mean MAE and the median

elative error ( 𝜁). We include these three error measures in Table 3 ,

here the participants with ( ∗ ) are those with the five most accurate

with ties included) single point estimates for each measure. As can be

een, it would be misleading to make claims about who gave more ac-

urate estimates without stating which loss function the effort estimates

ere meant to minimize. 
95 
.3. Evaluating effort prediction intervals and estimated distributions 

In accordance with our second principle, we aimed at evaluating

oth calibration (P 90 Calib) and informativeness (mean RWidth 90 and

orr RWidth90, 𝜁) of the effort prediction intervals. We also included the

ontinuous Ranking Probability Score (CRPS), which combines cali-

ration and informativeness in one measure. All values are displayed

n Table 3 . To illustrate the use of PIT-histograms as a measure of
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Fig. 1. Uniformity of the PIT-value distributions. 
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alibration, we display in Fig. 1 the histogram of the PIT-values of the

wo uncertainty elicitation groups. To identify the 90% effort prediction

ntervals of those in the ALT-group, and the estimated functions for the

RPS-values and the PIT-values we assumed a log-normal distribution

nd fitted this to the participants effort prediction intervals. 

Table 3 and Fig. 1 show that the ALT group’s effort prediction in-

ervals were better calibrated , i.e., had P 90 Calib closer to zero and more

niform PIT-values. When including measures of informativeness, how-

ver, the benefits of the alternative uncertainty elicitation method be-

ome less obvious. Those using the alternative method gave less infor-

ative effort intervals (wider mean RWidth 90 ) and were similarly poor

t separating low and high uncertainty situations (low Corr RWidth, 𝜁).

tatements about which was the best uncertainty assessment method
96 
hould consequently also include how much we emphasize calibration

ompared to different types of informativeness. 

Who of the participants were in total the best estimator? Not sur-

risingly, this depends on our loss function of the single-point estimates

nd how much we value calibration compared to informativeness for the

rediction intervals. If we look at the number of times a participant had

mong the five best scores on a performance measures, it may be par-

icipant with id26. This participant scored well on all three single point

stimation error measures, had uncertainty analysis that separated tasks

ith low and high uncertainty and had the best score on the combined

nformativeness and calibration measure CRPS. Even this participant,

owever, did not score well on all performance measures. An evaluation

mphasizing the calibration only, which is what we did in [7] , would

ank him as just average. 
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