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Abstract
Nonlinear dynamics makes use of attactors to describe

asymptotic behavior of complex systems. However, in
real life can be unattainable, as achieving them might
require time much exceeding all relevant timescales of
a system. Therefore, there is an increasing interest in
quasi-stationary states, where the system rapidly con-
verges to and remains for a long time, before getting into
an absorbing (asymptotic) state. Exemplifying in the fa-
mous Dawkins‘ Battle of the Sexes game, we demon-
strate that quasi-stationary distributions can produce not
simply different, but a much more complex behavior,
then the asymptotic ones, that is transient self-sustained
oscillations of player numbers and the corresponding
non-unimodal probability distribution. We find that pa-
rameters of the quasi-stationary limit cycle depend on
the population size.
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1 Introduction
Nonlinear dynamics offers powerful tools to describe

behavior of complex physical, biological, chemical or
socio-ecological systems. If a system is dissipative, typ-
ically, one or another asymptotic regime, a stationary
state, limit cycle or chaotic attractor is reached after a
transient process. At the same time, in certain cases the
transient process itself can take a substantial time. Some-
times, an asymptotic state may not be reached during a
relevant timescale, for example, the coherence time of
a quantum system, or a population lifetime [Biroli and
Kurchan, 2001; Rose et al., 2016; Assaf and Mobilia,
2012]. In this case, one speaks about metastable or qua-
sistationary states, rapidly converged on by a trajectory

from generic initial conditions, and resided at for a long
time [Rabinovich et al., 2008; Macieszczak et al., 2016].
Whether such states can be even more complex than an
attractor, remains a challenging problem.

As a particular complex system we take an evolution-
ary “Battle of Sexes” game of populations that models
the gender conflict over parental care [Dawkins, 1976].
In this game males and females have two alternative be-
havioral strategies, which stem from various expecta-
tions for courtship and different assistance in raising an
offspring. On each step of the game a random player
dies and a random player replicates itself, so that the
population size remains constant. When all offsprings
inherit a strategy from a parent of the same gender, an
extinct strategy cannot return. We find that although
such a state is absorbing, it can be unattainable over a
very long time, if the population size is large. Employ-
ing the concept of the quasi-stationary distribution in ab-
sorbing Markov chains [Darroch et al., 1965; Collet et
al., 2012], we find that the metastable dynamics is oscil-
latory. The paper is structured as follows. In Section 2
we introduce the model. In Section 3 and 4 its Moran
process formulation and Markov chain model. In Sec-
tion 5 we introduce the nonlinear dynamical model for
the mean-field approximation. Section 6 outlines differ-
ent numerical approaches to find quasistationary states.
Section 7 makes the statement of the results and Section
8 concludes the paper.

2 Model
We consider two-player game “Battle of Sexes” (BoS)

with finite size populations. Players A (males) have two
available strategies s ∈ {1, 2} for reproduction. Sim-
ilarly players B (females) have strategies s′ ∈ {1, 2}.
Interaction between males and females is determined by
some payoffs. The payoff matrix quantifies the reward
received by a player after it has played against a member
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of opposite-sex population. The payoffs differ for males
and females, as well as for combination of strategies, see
Table 1.

Table 1. The payoff matrix for BoS game. The payoff for the male
(female) is denoted by ass′(bs′s), depending on the male (female)
strategy s(s′).

B(s′ = 1) B(s′ = 2)

A(s = 1) [a11, b11] [a12, b21]

A(s = 2) [a21, b12] [a22, b22]

Here ass′ is the payoff for the male with strategy s ∈
{1, 2}, who plays against the female, who use strategy
s′ ∈ {1, 2}. Similarly payoffs for the female bs′s are de-
fined. After them-th game round the state of the popula-
tions is fully specified by the number of players using the
first strategy: i (males) and j (females), 0 ≤ i, j ≤ N ,
where N is the size of populations.

The population split can be described by the number of
players that stick to the first strategy: i (males) and j (fe-
males). Thus the state of the system can be expressed as
anN×N matrix p, which elements pi,j are the probabil-
ities to find the system in the states i and j, respectively:

p =


p00 p01 . . . p0N
p10 p11 . . . p1N

...
...

. . .
...

pN0 pN1 . . . pNN

 (1)

The four states i ∈ {0, N}, j ∈ {0, N} are impossible
to leave, and are called absorbing. Getting into one of it
means that a populational strategy has degenerated and
respective players have got extinct. The absorbing states
are attractors of the evolutionary dynamics for any finite
N, and the finite-size fluctuations will eventually lead a
population to one of them. Ultimately, only one strategy
survive in each of populations.

The states i ∈ {0, N}, j ∈ {1, . . . , N − 1} and
i ∈ {1, . . . , N − 1}, j ∈ {0, N} are absorbing boundary
states, a step to absorbing points. As soon as the popula-
tion gets to the boundary, it will move in the direction of
one of the two nearest absorbing states.

Other states are transient.

3 Moran Process
We use the Moran process to describe evolution of

finite male and female populations in the BoS game
[Moran, 1962; Nowak et al., 2004; Nowak, 2006]. The
Moran process is a microscopic description of a birth-
death process. The average payoffs for males playing
strategies s ∈ {1, 2} are

πA
s (j) = as1

j

N
+ as2

N − j
N

. (2)

Simirlarly, for females playing strategies s′ it follows

πB
s′ (i) = bs′1

i

N
+ bs′2

N − i
N

. (3)

Payoffs define the probabilities for members to be cho-
sen for reproduction. For example, for the male popula-
tions these probabilities are

PA
s (i, j) =

1

N
· 1− ω + ωπA

s (j)

1− ω + ωπ̄A(i, j)
, (4)

where π̄A(i, j) = [iπA
1 (j) + (N − i)πA

2 (j)]/N is the
average payoff for males, and ω ∈ [0, 1] is a baseline
fitness. When ω = 0, the probability PA

s (i, j) = 1/N
is uniform across the population and does not depend
on players. For the female population PB

s′ (i, j) is deter-
mined in the similar way.

Essentially, the dynamics described by the Moran pro-
cess consists of three steps: (i) an individual is selected
for reproduction in accordance with probability (4), (ii)
the selected player produces one identical offspring; (iii)
the offspring replaces a randomly chosen member. This
evolutionary mechanism acts in both populations, males
and females, at the same time. An individual can not
change its strategy and an offspring inherits the strategy
of its parent. Therefore, the population size N is con-
stant over time.

4 Markov Chain
At each time step the number i of males or j of females

with first strategy can increase or decrease only by one
or stay constant. Transition rates from the state i to states
i+ 1, i− 1 and i for male population A are expressed as
[Traulsen et al., 2005]

T+
A (i, j) =

1− ω + ωπA
1 (j)

1− ω + ωπ̄A(i, j)
· i
N
· N − i

N
, (5)

T−A (i, j) =
1− ω + ωπA

2 (j)

1− ω + ωπ̄A(i, j)
· N − i

N
· i
N
, (6)

TA(i, j) = 1− T+
A (i, j)− T−A (i, j). (7)

All other transitions are forbidden, therefore, the corre-
sponding transition probabilities are equal to zero. Tran-
sition rates for female population B are defined analo-
gously.

The BoS game can be described by the Markov chain,
that is stochastic transitions between states of the system
[Behrends, 2000]. In our case the game dynamics can be
evaluated by multiplying the state p with the transition
fourth-order tensor S, with elements S(i, j, i′, j′), where
(i, j) is the current state and (i′, j′) is a new one after
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a round of the Markov process. By using the bijections
k = (N+1)i+j and l = (N+1)i′+j′, we can unfold the
probability matrix p(i, j) into the vector p̃(k), and the
fourth-order tensor S(i, j, i′, j′) into the matrix S̃(k, l).
This reduces the problem to a Markov chain p̃m+1 =
S̃p̃m, where m is the number of the game round. The
elements of the transition matrix S̃ are determined using
T+
A , T

−
A , TA, T

+
B , T−B and TB .

5 Mean Field Model
The dynamics of infinite size populations can be de-

scribed by a deterministic model that is written in terms
of frequencies of the two (or more) strategies. In the con-
tinuous (mean-field) limit N → ∞ the dynamics of the
variables x = i

N and y = j
N is defined by the adjusted

replicator equations [Smith, 1982]

ẋ = x(1− x)(∆A + yΣA)
1

Γ + π̄A
,

ẏ = y(1− y)(∆B + xΣB)
1

Γ + π̄B
,

(8)

where ∆A = a12 − a22, ∆B = b12 − b22, ΣA = a11 +
a22 − a12 − a21, ΣB = b11 + b22 − b12 − b21, Γ =
(1− ω)/ω.

In the asymptotic regime populations reach Nash equi-
librium [Nash, 1950] of the game (x = 0.5, y = 0.5),
that is, (i = N

2 , j = N
2 ), see Fig. 1.

Figure 1. Dynamics of the mean-field model (8). The trajectory spi-
rals towards the equilibrium state (x = 0.5, y = 0.5).

For finite size populations the mean-field model is only
an approximation. The most drastic distinction is that
absorbing states become asymptotically stable, and Nash
equilibrium gets unstable. To take into account stochas-
tic effects, one can intorduce noice and study Langevin
Equations (10).

6 Finding the Quasi-stationary State
According to the definition in the above, by the quasi-

stationary state q we will call the state, the system rapidly

converges to and remains in for a long time, before get-
ting into an absorbing state.

Below we describe three methods that we used to find
and independently confirm the quasi-stationary state in
the BoS game.

6.1 Darroch and Seneta approach
Following the method proposed in [Darroch et al.,

1965], the quasi-stationary state q (9) can be found as
the normalized right eigenvector that corresponds to the
maximum eigenvalue λ of the reduced transition matrix
R, that is obtained by striking out the rows and columns
corresponding to absorbing boundaries:

Rq = λq. (9)

By inverse bijection, the vector q can be transformed
into a two-dimensional probability density function (pdf)
pQS . The resulting distribution pQS can be represented
as a color 3D histogram.

The advange of this method is that it returns the “nu-
merically exact” solution (potentially, up to machine pre-
cision). However, it becomes unfeasible for large popu-
lations, because the algorithm implies the diagonaliza-
tion of (N − 1)2 × (N − 1)2 matrix, and a computer
quickly runs out of memory.

The two following methods allow to circumvent the
problem and to approximate the quasi-stationary distri-
bution by sampling it from random ensembles.

6.2 Numerical Simulation of the Moran Process
The simulation of the Moran process was performed

by launching a random process many times from a ran-
dom initial point (i, j), i, j ∈ {1, N − 1} and following
the changes in the population structure over many rounds
M . If the state remains unabsorbed after M rounds, it is
sampled for the probability density function.

6.3 Langevin Equations
Another way to approximate a quasistationary state is

to numerically solve the Langevin equations [Lemons et
al., 1997; Gardiner, 2004]. The Langevin equation (10)
is a stochastic differential equation

ẋ(t) = νA(x, y) +
∑

l=A,B

gAl · ξl(t),

ẏ(t) = νB(x, y) +
∑

l=A,B

gBl · ξl(t).
(10)

Here x = i
N , y = j

N are continuous variables, ξ(t)
represents uncorrelated Gaussian white noise.

The coefficients g can be represented by the 2× 2 ma-
trix

G(x, y) =

(
gAA gAB

gBA gBB

)
. (11)
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Figure 2. The probability density function (pdf) for the quasi-
stationary state of the “Battle of Sexes” game for N = 200. The
stochastic evolution is governed by the metastable limit cycle located
on the crater ridge on the pdf.

The matrixG can be expressed in terms of the diffusion
matrix

D(x, y) =

(
dAA dAB

dBA dBB

)
(12)

via GTG = D.
Variables in (10) and (12) are defined using

T+
A , T

−
A , T

+
B and T−B [Kampen, 2007; Risken et al.,

1996]

νK(x, y) = T+
K (x, y)− T−K (x, y), (13)

dKK(x, y) =
T+
K (x, y) + T−K (x, y)

N
, (14)

dKL(x, y) =
νK(x, y)νL(x, y)

N
,K 6= L, (15)

where K,L ∈ {A,B}.
In order to obtain the matrix G we use the method out-

lined in [Traulsen et al., 2012]. We diagonalize the ma-
trix D = UΛUT and obtain the matrix G as

G = U
√

ΛUT , (16)

where U is an eigenvectors matrix, Λ is an eigenvalues
matrix of the matrix D.

Langevin equations numerically solved using the
Euler-Maruyama method [Kloeden et al., 1992].

Note that in the infinite population size limit, N →
∞, the stochastic terms in Eq.(10) vanish, and Langevin
equations reduce to the mean-field equations Eq.(7).

7 Results
We consider the BoS game with the following pay-

offs: a11 = a22 = b12 = b21 = 1 and a12 = a21 =
b11 = b22 = −1. The baseline fitness is taken ω = 0.3.

The choice of symmetric payoff matrixes is convenient
to keep all transition probabilities symmetric. We will
see that this results in symmetric quasi-stationary distri-
bution. The results for these specific payoff matrices are
applicable to other payoff matrices if they have a similar
structure.

We make use of the Darroch and Seneta approach
to find the quasi-stationary distribution. The main re-
sult of the paper is that the found distributions are not
unimodal, but they have a minimum in the center and
a maximum around the it. An example of the quasi-
stationary state for N = 200 is shown in Fig. 2. It
suggests that the actual stochastic dynamics is governed
by the metastable limit cycle about the Nash equilib-
rium (i∗, j∗) = (i = N

2 , j = N
2 ). We perfomed the

Figure 3. Microscopic population dynamics of the “Battle of Sexes”
game for N = 200. The color indicates pQS (view from above).
The white line indicates a trajectory obtained numerically for the
Moran process.

Figure 4. Microscopic population dynamics of the “Battle of Sexes”
game for N = 200. The trajectories are obtained by the numerical
simulation of the Moran process. Here i (j) is number of male (female)
adopting the first strategy,m is the number of the game round.
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Moran process and Langeven simulations for an inde-
pendent validation, and found that approximate solutions
give a good agreement with the numerically exact quasi-
stationary state.

Fig. 3 and Fig. 4 show the results of numerical sim-
ulations of the Moran process, unraveling dynamics on
the quasistationary solution. It demonstrates oscillations
in the number of players in both populations, the Nash
equilibrium state being the center. In constast to the
nonlinear mean-field solution (Fig.1), the trajectories di-
verge from the center. Notably, the trajectory makes
many rotations on the metastable “limit cycle” before
getting into the absorbing state, illustrating the nature of
quasi-stationary dynamics.

Langevin simulations for a range of system sizes, N ,
reveal the size dependence of the metastable cycle ra-
dius RMC . It agrees with the theoretical expectation
that as N → ∞, the mean-field model must be recov-
ered, so that the distribution should become unimodal
with the maximum in the Nash equilibrium, (i∗, j∗), that
is, (x = 1

2 , y = 1
2 ). Precisely, we find that the radius

decreases with the increase of N , and scales to zero at
RMC ∼ N−1/2. In terms of the Langevin-oriented ap-
proach to the dynamics of finite populations, the emer-
gence of the metastable limit cycle and its disappearance
with N → ∞ can be viewed as a stochastic Hopf bifur-
cation [Arnold, 2003].

8 Conclusion
We studied quasi-stationary stats in the “Battle of

Sexes” evolutionary game. We showed that under cer-
tain parameters the quasi-stationary distribution is non-
unimodal, that corresponds to a metastable limit cy-
cle, whereas the nonlinear mean-field approximation dis-
plays a stable equilibrium point. The radius of this cycle
depends on the size of the populationN . With increasing
N , the cycle radius decreases and metastable state de-
generates to a point, that is Nash equilibrium. This tran-
sition can be interpreted as a stochastic Hopf bifurcation.
The results provide an insight into the quasi-stationary
dynamics of finite-size populations, much more complex
than either absorbing states or the mean field attractors.
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