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ABSTRACT We present a comprehensive study of state-of-the-art algorithms for the prediction of sensor
events and activities of daily living in smart homes. Data have been collected from eight smart homes
with real users and 13-17 binary sensors each – including motion, magnetic, and power sensors. We apply
two probabilistic methods, namely Sequence Prediction via Enhanced Episode Discovery and Active LeZi,
as well as Long Short-Term Memory Recurrent Neural Network, in order to predict the next sensor
event in a sequence. We compare these with respect to the required number of preceding sensor events
to predict the next, the necessary amount of data to achieve good accuracy and convergence, as well as
varying the number of sensors in the dataset. The best-performing method is further improved by including
information on the time of occurrence to predict the next sensor event only, and in addition to predict both
the next sensor event and the mean time of occurrence in the same model. Subsequently, we apply transfer
learning across apartments to investigate its applicability, advantages, and limitations for this setup. Our
best implementation achieved an accuracy of 77-87% for predicting the next sensor event, and an accuracy
of 73-83% when predicting both the next sensor event and the mean time elapsed to the next sensor event.
Finally, we investigate the performance of predicting daily living activities derived from the sensor events.
We can predict activities with an accuracy of 61-90%, depending on the apartment.

INDEX TERMS Binary sensor, probabilistic method, recurrent neural network, sequence and time
prediction, transfer learning.

I. INTRODUCTION
Activity recognition and prediction are a prerequisite for the
realisation of intelligent support functions in smart homes,
including functions that support older adults with mild cog-
nitive impairment or dementia (MCI/D) live a safe and inde-
pendent life at home. MCI/D is a cognitive decline that can
affect attention, concentration, memory, comprehension, rea-
soning, and problem solving [1]. A fair amount of research
on smart home functions has aimed at assisting older adults
with MCI/D in their everyday life [2]. Examples are prompt-
ing with reminders or encouragement [3], [4], diagnosis
tools [5], [6], as well as prediction, anticipation, and preven-
tion of hazardous situations [7], [8].

A number of algorithms for activity recognition and pre-
diction have been reported in the literature. However, most of
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the work in the literature uses data collected in the lab or in
testbeds based on scripted activities. In addition, there is no
comparative study investigating state-of-the-art algorithms
applied to data collected from real homes, different configu-
rations for input of data, limitations, and suitable applications.
This is the focus of this work, where we use data collected
from real homes, analyze, and compare the performance of
state-of-the-art prediction algorithms. The work has been
carried out in an interdisciplinary project, the Assisted Living
Project (ALP), that involves experts in health, technology, and
ethics [9]. The aim of the project is to develop assisted living
technology (ALT) to support older adults with MCI/D live a
safe and independent life at home.

In this paper, we start our analysis by comparing the per-
formance of state-of-the-art prediction algorithms – proba-
bilistic methods and neural networks – for the prediction
of the next sensor event based on previous sensor events.
Their performance is assessed with regard to a number of
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FIGURE 1. Content of results and discussion sections in the paper.

factors: the required number of preceding events to predict
the next event from (which we refer to as ‘‘memory length’’),
the necessary amount of data to achieve good accuracy and
convergence, and the number of sensors in the dataset. The
best-performing algorithm is further improved by including
the time of occurrence information in several ways. Part of
this work has been previously published [10]–[13], however,
using data from one apartment only. We have also examined
the prediction accuracy across some of the apartments and the
performance when using transfer learning [14]. In the current
paper, we expand the analysis to include all eight apartments
in the field trial in order to analyze the variability of the
prediction accuracy across residents. In addition, we analyze
the feasibility of extracting daily living activities from the
sensor events and predicting the next activity rather than the
next sensor, as well as its time of occurrence.

The paper is organized as follows. Section II gives an
overview of algorithms used for sequential sensor event and
activity prediction in the literature, of work related to pre-
diction of the time of occurrence, and of transfer learning.
Section III presents our field trial, the sensor system in the
apartments, and the format of the collected data. Section IV
describes the prediction methods, followed by the description
of data preprocessing in Section V. Sections VI, VII, and VIII
present the results and discussion for the prediction of the next
sensor event and its mean time of occurrence, transfer learn-
ing, and activity prediction, respectively. These are illustrated
in Fig. 1, for better understanding. Finally, in Section IX,
we discuss our findings and conclude the paper.

II. RELATED WORK
Activity prediction includes mainly two tasks: sequence pre-
diction and time prediction. Such algorithms can for instance
lead to an improved operation of automation functions
(e.g. adjust the temperature sufficient time prior to the
person waking up); enable the realization of prompt-
ing systems (e.g. prompt the resident if the predicted

activity has not been performed) [15]; or identify
changes and anomalies in certain behaviour patterns
(e.g. movement, everyday habits, etc.) and thus indicate the
onset or the progress of a condition [16].

A number of algorithms for sequence prediction have been
studied in the past years [17]. These algorithms usually train
a model based on a sequence of symbols to predict the next
symbol. The Active LeZi (ALZ) is a probabilistic method that
has been extensively employed for prediction of sequential
data [18]. It achieved a peak accuracy of 47% when applied
on the Mavlab testbed dataset, that includes 50 binary sen-
sors [18]. The Sequence Prediction via Enhanced Episode
Discovery (SPEED) algorithm has been implemented based
on ALZ [19]. SPEED was applied on the Mavlab dataset
and reached an accuracy of 88.3% when the same dataset
was used both for training and for testing. Both algorithms
convert the data of binary sensors to a sequence of letters and
build a tree based on the observed patterns and corresponding
frequency of occurrence. Neural networks have also been
used for sensor event prediction with notable performance,
typically recurrent neural networks (RNN) [11], [20]–[22].
Three RNN models – Echo State Network (ESN), Back
Propagation Through Time (BPTT), and Real TimeRecurrent
Learning (RTRL) – were applied on a fourteen-day dataset
with only six binary sensors (four motion and two magnetic).
The ESN performed better with a root square mean error
(RMSE) of 0.06 [20]. In these networks, the number of input
and output values corresponded to the number of sensors in
the dataset, and each assumed value ‘‘0’’ or ‘‘1’’ for being
‘‘off’’ or ‘‘on’’ at a certain time slot. The prediction in this
case was computed for the next six hours. A similar study
was carried out for a 16-room office environment [21]. The
dataset in this case was collected through an app installed on
the personal data assistant (PDA) of participating employees
that had to register manually whenever they entered/left a
certain room. An Elman network and a multilayer perceptron
network were applied to predict the next room a person
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would go to. There were four participants in the study and
the Elman network attained the best results, ranging from
70% to 91% accuracy, depending on the user. Each room
was codified in four bits, as there were 16 rooms in total.
The input corresponded to two rooms and the output to the
predicted next room. This work also applied other methods –
Bayesian network, state prediction, and Markov predictor –
where comparable results were achieved [22].

In addition to sequence prediction, these algorithms should
also be able to predict when the next symbol (representing
either a sensor or an activity) will occur. The time series meth-
ods Autoregressive Moving Average (ARMA) and Autore-
gressive Integrated Moving Average (ARIMA) have been
extensively applied in the literature [23]. Nevertheless, they
assume the time series to be linear, which is not applicable
to activities in a home [24]. Rule-based algorithms have been
developed for time forecasting as well [15], [25]. They are
quite useful, however they do not account for more complex
activities. Non-linear time series models would be more suit-
able to time prediction in smart homes, e.g. artificial neural
networks. A Non-linear Autoregressive Network (NARX)
was compared to an Elman network to predict a sensor acti-
vation’s start and end time [26]. In this study, each sensor had
its own network trained and tested on a twenty-day dataset
with six binary sensors. The NARX performed better, with a
RMSE ranging from 0.06 to 0.09, depending on the sensor.
Decision trees have been used to predict the time a certain
activity would happen [24]. This method relies on several fea-
tures extracted from sensor events sequences. It was applied
on a dataset with 51 both binary and sampling sensors and
achieved an average normalized RMSE of 0.01. Bayesian
networks have been used to predict the next location, time
of day, and day of the week a person would execute an
activity [27]. This algorithmwas employed in two apartments
with about 30 binary sensors each, where the next location
was predicted with 47% and 61%. Poisson process has also
been applied to predict the time an observed activity would
occur [28]. An RMSE of 3.9431 seconds was achieved in this
work.

Taking into account that each individual has their unique
habits, and smart homes may have different layouts and
limitations for deployment of sensors, it is important that
the prediction algorithm is able to adapt to each home and
resident. Transfer learning can reveal whether the algorithm
can adapt. This technique consists of training and learning
parameters from a source dataset that is different yet related
to a target dataset (e.g. different labels and data distribu-
tions [29]). Transfer learning has been used in several fields,
e.g. image and language classification, computer networks,
automated planning, mathematical problems, and activity
recognition [29], [30]. This method has proved to provide
many advantages. For instance, it allows that datasets with
different feature spaces can transfer the knowledge between
each other [31], [32]. In addition, transfer learning can dra-
matically decrease the required amount of data in the target
dataset, as proved for a mortality prediction algorithm [33]

and for activity recognition [32], [34]. Besides, it can be
applied in combination with several algorithms: RNNs [35],
Hidden Markov Models [36], statistical inference [33], sup-
port vector machine [34]. In smart homes, a cross-domain
activity recognition algorithm combined with transfer learn-
ing and a similarity function between different activities was
proposed [34]. In that work, three different datasets were
used, where one was collected over 28 days from a real
home of a 26-year-old man. A peak accuracy of 65% was
achieved with seven activities. Another work transferred the
knowledge of activities from multiple physical source spaces
to a different target physical space [32]. The authors propose
an algorithm that maps automatically activities from source
to target environment and classifies the activity based on
a weighted majority vote method. The data contained 5 to
11 activities, and were collected from six testbeds where
volunteers lived for 2-3 months. A peak accuracy of about
80%was reported. HiddenMarkovModels and transfer learn-
ing have also been combined and used across three apart-
ments with five recorded activities and achieved a F1-score
of 0.65 in the best case [37]. Transfer learning has its limita-
tions. It has been shown that it can either improve or degrade
the prediction accuracy of models depending on the dataset
used for transfer, which is known as negative learning [29].
In these cases, it is important to detect which is the best
source dataset to a problem, for example usingDynamic Time
Warping to measure inter-dataset similarities [38].

Most datasets in the cited works were collected through
scripted activities primarily in lab environments, whereas our
dataset has been collected in real homes. It contains events
from 13-17 binary sensors, i.e. twice as many as used in [20],
[26], and less than one third of the number of sensors used in
the Mavlab testbed [18]. The number of sensors is compara-
ble to the work in [22] (16 rooms), however in that study the
events were inserted by each user in their PDA rather than
being generated using sensors, which may lead to a dataset
with less artifacts. To our knowledge, no previous work has
carried out a comparison of the performance of state-of-the-
art sequence prediction algorithms, moreover applied to real
data, nor have LSTM networks been previously used for the
prediction of sequential sensor events, including the use of
transfer learning. In addition, we predict both the next sensor
and the mean elapsed time of occurrence within the same
model. From the works cited above, [27] is the closest to
ours in the sense that it predicts both the next event and its
time information in the same model. That work predicts the
next location, time of day (slots of 3 hours through the day),
and day of the week using a Bayesian network with reported
accuracy of 46-60%, 66-87% and 89-97%. Subsequently,
the activity is predicted with an accuracy of 61-64% based on
a combination of these features. The authors use data from
testbeds collected over 6 and 4 months, and take into account
10 locations and 11 activities. Our work predicts the next
sensor event and the time of occurrence for a set with about
15 sensors with better overall accuracy. In addition, activities
are predicted with considerably higher accuracy.
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FIGURE 2. Proposed sensors system for field trial apartments.

III. FIELD TRIAL
Our field trial includes eight residents over 70 years old
in a community care facility. The apartments have similar
layouts – comprising a bedroom, a living room, an open
kitchen area, a bathroom, and an entrance hall (Fig. 2). The
purpose of the trial and the sensor system to be deployed
have been decided upon in close collaboration with the resi-
dents [9]. A minimal number of binary sensors was installed
in the apartments to minimize surveillance of the residents
and comply with the technical and economical constraints
imposed by the project. The set of sensors has been chosen
so that it can potentially identify daily activities and possibly
enable the realization of useful functions for older adults
with MCI/D as these were indicated at dialogue cafés with
the users [9]. Hence, our set of sensors contains motion,
magnetic, and power sensors. These generate events that are
able to indicate occupancy patterns (movement around the
apartment), daily activities – kitchen related activities, dress-
ing, being in bed –, and leisure activities – reading, watching
TV, listening to radio. Motion sensors (Pyroelectric/Passive
Infrared – PIR) detect motion through the change of the
infrared radiation in its field of view. It generates an event
with message ‘‘1’’ every time a motion is detected, otherwise
it sends no event. In our dataset, we had to insert the ‘‘off’’
events (‘‘0’’ message) so that the data are consistent for all
sensors. Magnetic sensors indicate whether doors, windows,
and drawers are open or closed, by generating events with
messages ‘‘1’’ and ‘‘0’’, respectively. Power sensors measure
the electricity usage of a certain appliance, and can therefore
indicate whether it is turned on or off, and generate events
with messages ‘‘1’’ and ‘‘0’’, respectively.

TABLE 1. Set of Sensors in each Apartment (complementing the standard
set of motion sensors).

TABLE 2. Sample of Binary Sensors Data.

Not all apartments could have the exact same set of sensors
due to physical limitations (e.g. fridge door with too big
gap to enable the use of a magnetic sensor) and/or different
equipment (e.g. some residents have a coffee machine, others
have a kettle). However, all the participants had the same
initial proposal of set of sensors, as shown in Fig. 2. The eight
apartments that provided data to this work have installed all
the motion sensors, while the rest of the sensors vary between
apartments, as summarized in Table 1.
The sensors are connected wirelessly through Z-Wave and

xComfort protocols to a Raspberry Pi 3, which transfers the
data for storage in a secure server. The data comprise times-
tamp (date and time with precision of seconds), sensor ID,
and sensor message (binary). Table 2 shows a sample of the
data collected.

IV. PREDICTION METHODS
This section describes the prediction methods applied in
this work, probabilistic methods – Active LeZi (ALZ)
and Sequence Prediction via Enhanced Episode Discovery
(SPEED) – and recurrent neural network (RNN) with long
short-term memory (LSTM). The probabilistic methods con-
vert the data acquired from the sensors into a sequence of
letters and identify sequence patterns. The patterns and their
frequency of occurrence are used to generate a tree, which is
then used to calculate the next most probable event to occur.
This last step is performed by the Prediction Partial Matching
algorithm (PPM) [39], [40]. The same converted data is used
as input for the LSTM networks that are configured as text
generation networks in this case.

Table 3 presents a possible scenario in our smart home
with actions performed by the resident and the corresponding
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TABLE 3. Actions scenario.

TABLE 4. Assignment of letters to sensors.

sensors triggered. As dictated by ALZ and SPEED, each
sensor is assigned with a letter, as shown in Table 4.

A. ACTIVE LEZI
ALZ is a sequence prediction algorithm based on a text
compression algorithm [18]. The input in ALZ consists of
a sequence of lower-case letters, where each letter repre-
sents event from one sensor. For example, the sequence
corresponding to the scenario described in Table 3 would
be ‘‘abcdebdb’’. ALZ uses the procedure dictated by the
LZ78 text compression algorithm to generate patterns that
occur in a sequence and create a tree with these and their
frequencies [41].

A given sequence x1, x2, . . . , xi is parsed into ni subse-
quences w1,w2, . . . ,wni such that for all j > 0 the prefix
of the subsequence wj is equal to some wi for 1 < i < j.
For example, if we have the sequence ‘‘abcdebdb’’, the pat-
terns found by LZ78 would be ‘‘a’’, ‘‘b’’, ‘‘c’’, ‘‘d’’, ‘‘e’’,
‘‘bd’’. In addition, ALZ generates more patterns from their
suffixes, if possible. For example, ‘‘bd’’ would also gener-
ate ‘‘d’’. This accounts for patterns that were not perceived
by the LZ78 algorithm and that are possibilities in a smart
home environment. This increases the convergence rate of the
model [18].

When the sequence is parsed completely and the patterns
are derived from it, their frequency of occurrence is counted.
An order-k-1 Markov tree is then constructed based on the
patterns and their frequencies, where k corresponds to the
longest pattern found in a training sequence. Then PPM is
used to calculate the next most probable event. The generated
tree for the example scenario with sequence ‘‘abcdebdb’’ is
shown in Fig. 3.

B. SEQUENCE PREDICTION VIA ENHANCED EPISODE
DISCOVERY
SPEED is also a sequence prediction algorithm that is
based on the occurrence of frequent patterns in home

FIGURE 3. Tree generated by the ALZ algorithm for the sequence
‘‘abcdebdb’’.

environments [19]. SPEED builds on the same procedure
of ALZ, however, it introduces a different method for finding
patterns in the sequence. SPEED defines an episode as the
sequence between an initial and ending point of an activity.
For example, the moment a coffee machine is turned ‘‘on’’ is
the initial point of a coffee making episode, which lasts until
the coffee machine is turned ‘‘off’’. An ‘‘off’’ event cannot
happen unless an ‘‘on’’ event has preceded it. Therefore
‘‘off’’ events always happen after an ‘‘on’’ event of the same
activity (or sensor), and vice-versa.

The data received from the sensors in the smart home
are represented as a sequence of letters, where upper-case
letters represent a sensor’s ‘‘on’’ event and lower-case letters
represent a sensor’s ‘‘off’’ event. The sequence represent-
ing the example scenario presented in Table 3 would be
‘‘AaBCbDEdBbDedB’’.

The main idea of the SPEED algorithm is to extract
episodes from a sequence of data and derive patterns from
them. These patterns are used to generate a decision tree that
keeps track of the learned episodes and their frequencies. The
height of the tree is the length of the longest episode found
in the sequence, defined as the maximum episode length. For
every event in a sequence, the algorithm searches for its oppo-
site event in the window and if it exists, an episode was found.
In the previous sequence, the first episode found is ‘‘Aa’’,
the patterns generated from it would be ‘‘A’’, ‘‘a’’ and ‘‘Aa’’.
We keep track of these and count their occurrences to generate
an order-k-1Markovmodel, where k is the maximum episode
length. A tree for the example sequence is presented in Fig. 4.
Finally, the PPM algorithm is used for prediction.

C. PREDICTION PARTIAL MATCHING ALGORITHM
The PPM algorithm calculates the probability distribution of
each possible event based on a given sequence by taking
into consideration the different order Markov models with
different weights [39], [40]. The weights are given by the
escape probability, which allows the model to go from a
higher-order to a lower one. The advantage of PPM is that
it assigns a greater weight to the probability calculated in
higher-order models if the symbol being predicted is actually
found in the tree [18]. The predicted symbol is the one with
the highest probability.
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FIGURE 4. Tree generated by the SPEED algorithm for the sequence ‘‘AaBCbDEdBbDedB’’.

FIGURE 5. LSTM network configuration.

ALZ and SPEED use slightly different strategies of PPM.
ALZ uses the exclusion strategy, which means the predic-
tion is performed with the suffixes of the given sequence,
except the sequence itself. Therefore, in the case of the
sequence ‘‘bd’’, the patterns used to calculate the proba-
bility of each letter being the next would be ‘‘b’’ and the
null context. Suppose we want to calculate the probability
of having a ‘‘c’’ after ‘‘bd’’ using ALZ, based on the tree
in Fig. 3. The probability would be given by (1): in an
order-2 model, the probability of having a ‘‘c’’ after a ‘‘b’’
is 0/3 and we escape to the order-1 with 2/3 probability.
In order 1, the probability of having a ‘‘c’’ after a null context
is 1/9.

In the case of SPEED, the patterns used for calculating
probabilities after a certain sequencewould be all the suffixes,
including the sequence itself. Suppose we have the sequence
‘‘dB’’. We would use patterns ‘‘dB’’, ‘‘d’’ and the null con-
text. The probability of having a ‘‘b’’ after this sequence
based on the tree in Fig. 4, would be given by (2): we start
in order 2 model, where the probability of having a ‘‘b’’ after
‘‘dB’’ is 1/2 and escape to the lower order with probabil-
ity 1/2. In order-1, the probability of having a ‘‘b’’ after ‘‘d’’
is 0/4 and we escape to the lower order with probability 2/4.
Finally, in the lowest order, the probability of ‘‘b’’ after a null
context is 4/22.

p(c, bd) =
0
3

+
2
3

(
1
9

)
= 0.074 (1)

p(b, dB) =
1
2

+
1
2

(
0
4

+
2
4

(
4
22

))
= 0.545 (2)

D. LONG SHORT-TERM MEMORY NETWORK
RNN [42] is a neural network that has the property of keeping
an internal memory, and has therefore been widely applied to
inputs that are sequential in time [43], [44]. The LSTM [45] is
a type of RNN designed to be better at storing and accessing
information than the standard RNN.

We employ an LSTM network configured as a text gen-
eration network. The number of inputs is a certain number
of sensor events – equal to the memory length – and the
output is the predicted next event in the sequence (Fig. 5). The
input and output are one-hot encoded. In the one-hot encoding
representation, each symbol is represented by a vector of
bits of length equal to the number of symbols in a sequence.
All values are zero, except for the one corresponding to that
symbol (Fig. 5).

A stateless LSTM network model was implemented in
Python 3 using Keras open source library for neural networks.
A number of parameters were tuned in order to find the opti-
mal values. The model has one hidden layer with hyperbolic
tangent activation and 64 neurons. Our batch size (i.e. number
of samples used for training each iteration of the epoch)
was 512. We used Adam as the optimization function with
learning rate of 0.01 and categorical cross-entropy as loss
function. The output layer was a softmax activation function.
We used the early stopping method and dropout rate of 50%
to avoid overfitting, allowing a maximum of 200 epochs
for each model’s training. In addition, during the training
process we use weights for each sensor to balance the number
of samples for each sensor. These are computed using the
‘‘compute_class_weight’’ function of the Scikit-learn
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TABLE 5. Re-labeling of Sensors.

open source library. The weight corresponds to the total
number of samples divided by the number of occurrences of
the class.

V. DATA PREPROCESSING
A. SENSORS MAPPING
As described in Section III, some power and magnetic sen-
sors differ within the eight apartments (Table 1). In the
tests where we compare the prediction accuracy and trans-
fer the learning across the apartments, we re-label the sen-
sors that refer to the same activity. The new labels and
the sensors assigned to these are shown in Table 5. Lamp
power sensors and wardrobe door magnetic sensors’ events
were removed from the datasets since we did not manage to
assign them to an activity that was common for most of the
apartments.

B. DATA CORRECTION
Data acquired from binary sensors often contain faulty events
e.g. erroneous activation of motion sensors by sunlight and
switch-off delays of motion sensors [46]. Such noise can
significantly affect the performance of the models. Hence,
we have carried out a data correction preprocessing as fol-
lows. Occasionally the motion sensors do not send an acti-
vation event when they should. We therefore insert missing
events to correct the data. For example, it is not possible to
go to the bedroom directly from the kitchen without passing
through the living room. When the living room activation
event is missing, it is inserted. If there are two possible sensor
events (e.g. two possible paths in the apartment), the choice of
the inserted sensor event is done such that the final percentage
distribution of the two options remains as observed in the
original data. The time of the inserted event is the mean
between that of the previous and of the next event. This does
not compromise the data accuracy because the faulty events
usually take place between relatively fast motions around the
apartment, which means that the elapsed time between the
events is quite short.

C. DATA CONVERSION
The corrected data are subsequently converted to both
ALZ- and SPEED-text sequences, as explained in Section IV.
The time inclusion was performed as follows. In all
cases the generated sensor events are treated as indepen-
dent events. In the case of the one-hot encoding for the
LSTM, our input vector has as many values as the num-
ber of symbols in the sequence. For 15 sensors, we have
30 inputs to represent the ‘‘on’’ and ‘‘off’’ states of each of
these.

1) SENSOR EVENT AND PERIOD OF DAY
In this case, we distinguish between four periods of the day:
morning (from 7am to noon), afternoon (from noon to 6pm),
evening (from 6pm to 10pm), and night (from 10pm to 7am).
This is indicated by a number between 0 and 3 that is added
to the letter that represents the event. For instance, an event of
the motion sensor in the bedroom going ‘‘on’’ in the morning
would generate the symbol ‘‘A0’’. E.g. when the time of day
is taken into account, the number of inputs to the LSTM is
multiplied by 4 (120 inputs in total) and similarly in the other
cases. These are treated as independent events.

2) SENSOR EVENT WITH TIME ELAPSED TO THE NEXT EVENT
When predicting the next sensor event only, we use together
with the sensor’s letter a number that indicates the time
elapsed to the next event. We define a set of 4-class time
intervals: [< 1min, 1-15min, 15min-1h, > 1h]. Hence,
we assign numbers 0-3 to the event. For example, if the
motion in the bedroom (assigned letter a/A) were activated
in the morning and 10 minutes later the person went to the
bathroom, the generated symbol would be ‘‘A1’’.

3) SENSOR AND K-MEANS TIME-CLUSTER WITH HOUR OF
THE DAY AND ELAPSED TIME TO THE NEXT EVENT
We apply an unsupervised learning method to cluster the
sensor samples, where the K-means algorithm clusters each
sensor event according to the hour of the day it has occurred
and the time elapsed to the following sensor event. In the
K-means algorithm, the samples of each sensor are classi-
fied into K clusters such that the sum of square distances
(SSD) within the clusters is minimized [47]. Each cluster
contains a centroid, given by the mean value of each fea-
ture of the algorithm. We perform K-means for a number
of clusters (K) between 1 and 8 and choose the best K
manually according to the elbow method [48]. This method
consists of plotting an SSD vs. K graph and choosing the
K that resembles an ‘‘elbow’’ (the point of inflection on the
curve), which is the best fit for that problem. Fig. 6 shows
an example of clustering the samples of the motion sensor in
the kitchen. This sensor results in four clusters (represented
by the different colors) – chosen by the elbow method based
on Fig. 7. Suppose this sensor is represented by letter B, has
had an ‘‘on’’ event at noon (blue cluster), and the next sensor
event took place 3 minutes later. This would generate ‘‘B2’’
(where 2 represents the blue cluster).

VI. PREDICTION OF THE NEXT SENSOR AND TIME OF
OCCURRENCE
Table 6 shows the number of sensor events in the dataset of
each apartment and the number of days it has been collected.
This section is organized as follows. We first explain the
training and testing procedure for all methods. Subsequently,
we perform tests for (i) predicting the next sensor event
based on past sensor events, (ii) predicting the next sensor
event based on past sensor events and time of occurrence
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FIGURE 6. K-means clustering of samples of motion sensor events in the
kitchen.

FIGURE 7. SSD vs. number of clusters for motion sensor events in the
kitchen.

TABLE 6. Number of events per apartment.

information, and (iii) predicting both sensor event and time
of occurrence information based on input including these.
In (i) the performance of the four algorithms is tested against
a number of factors: the memory length, the amount of data
required for good accuracy, and the number of sensors in the
dataset. The best-performing algorithm is then further devel-
oped for tests (ii) and (iii), where we compare the methods
and analyze the accuracy variability across apartments.

A. TRAINING AND TESTING CONFIGURATION
In the SPEED algorithm, the next event is predicted based on
the last sequence of events with length equal to the maximum

episode length [19]. In the work in [19], the authors use the
same dataset for both training and testing, which may lead
to overfitting and, in addition, may not lead to a generalized
model that can be used on other datasets.

We have modified the testing procedure for both ALZ and
SPEED by calculating the optimal number of last events to
base the prediction on, i.e. the number of events that leads
to the maximum overall prediction accuracy, which we refer
to as the optimal memory length. Memory lengths up to the
maximum pattern found have been considered. In a previous
paper [12], we applied the SPEED method on our data that
were obtained from one of the apartments reported over a
period of two weeks. When using the same procedure as
in [19], we achieved an accuracy of 82% – compared to 88%
on the Mavlab dataset. When splitting the data into training
(60%), validation (20%), and testing (20%), and optimizing
the memory length as described above, we achieved an accu-
racy of 75% on our data obtained from a real home over
two weeks. Similarly for ALZ we obtained 73% (compared
to 47% in [18]) when using the same dataset for training and
testing, and 53% when using separate datasets for training,
validation and testing, and optimizing the memory length as
described above. Hence, we use this modified method for
SPEED and ALZ in the following sections.

In the case of SPEED and ALZ, the training set is used to
build the tree, the validation set is used to find the optimal
memory length, and the testing set is used to compute the
model’s accuracy. In the LSTM networks, the training set is
used to train the network, the validation set is used for tuning
the parameters and the testing set to calculate the accuracy.
All models were trained based on a certain number of events,
validated on 3000 random events, and tested on 3000 random
events. This process is repeated three times and the accuracy
values in the graph correspond to the mean accuracy. The fact
that the testing set is always randomproduces some instability
in the accuracy when the model is trained with little data,
which is evidenced by the instability shown in the lower range
in some of the graphs.

B. PREDICTION OF THE NEXT SENSOR EVENT
BASED ON PAST EVENTS
1) CHOICE OF MEMORY LENGTH
We examine the accuracy achieved on the validation set for
values of memory length ranging from 1 to 30 events. This
is performed first for the dataset of apartment 1 that contains
events from fifteen sensors (including magnetic, power and
motion sensors) – Fig. 8 – and then for the dataset containing
only the seven motion sensors – Fig. 9.
When using the dataset with fifteen sensors (Fig. 9),

ALZ achieved a best accuracy of 69.15% while SPEED
reached 79.87%. The optimal memory length was four events
for ALZ and three for SPEED. The LSTM networks achieved
accuracies of 72.02% and 84.12% when using ALZ- and
SPEED-text, respectively. In both cases the optimal mem-
ory length is equal or larger than eight. The larger optimal
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FIGURE 8. Accuracy vs. memory length for all algorithms on a dataset
with all fifteen sensors.

FIGURE 9. Accuracy vs. memory length for all algorithms on a dataset
with seven motion sensors.

memory length for LSTM indicates that these are very effi-
cient at detecting patterns and correlations over a longer
sequence, in opposition to probabilistic methods.

It is also interesting to notice how the accuracy is affected
by memory lengths larger than the optimal. The accuracy of
the probabilistic methods drops substantially as the memory
length gets larger. In contrast, the LSTM networks roughly
stabilize at the peak accuracy for larger memory length values
than the optimal. A reason for this is that probabilistic meth-
ods are based on certain patterns happening quite frequently.
Since our dataset has few sensors, short patterns are more
likely to happen more often, and therefore they provide better
predictions. The LSTM, on the other hand, has the ability to
find patterns in long sequences and can therefore predict the
next event based onmany past events and longer term patterns
and dependencies. Increasing the memory length further does
not improve the accuracy, however, which can imply that the
model has reached its best performance for this configuration.

Subsequently, we compare the accuracy results of the
dataset with fifteen sensors (Fig. 8) to the accuracy results
for the dataset that contains only the seven motion sensors
(Fig. 9). The accuracy curves for the LSTM network models
show a similar dependency to memory length. The optimal
memory length is eight or larger. The LSTM with SPEED-
text achieves 86.64% while with ALZ-text achieves 74.00%.

FIGURE 10. Accuracy vs. size of training set for all algorithms on the
dataset of apartment 1 with all sensors (15).

FIGURE 11. Accuracy vs. size of training set for all algorithms on the
dataset of apartment 1 with seven motion sensors.

The ALZ method also shows similar behaviour, and the
same optimal memory length of four, with a peak accuracy
of 71.45%. SPEED presents a very peculiar behaviour. The
maximum memory length is two. This is a consequence of
the fact that SPEED builds the tree based on episodes, and
the longest episode in this case is two events. For example,
if the resident would go from the bedroom to the living
room and then to the kitchen, the resulting sequence would
be ‘‘AaBbCc’’. There are no intertwined events, since when
one motion sensor activates, another deactivates. Hence,
the ‘‘off’’ events are easily predicted. When it comes to
‘‘on’’ events, the sensor that is most frequently activated will
always be the one predicted to activate next, leading to lower
accuracy for the ‘‘on’’ events.

2) ACCURACY PER TRAINING SET SIZE
In the following, we investigate the behavior of the accuracy
with respect to the size of the training dataset. The accuracy
results are computed using the optimal memory length found
in the previous analysis. Fig. 10 and 11 show the results
when the algorithms are applied to the dataset with all fifteen
sensors and with seven sensors, respectively. Since there is no
significant improvement in the accuracy for larger datasets,
we show the plots for training dataset sizes up to 30000 events
for better clarity on the low range of the graph.

We first examine the accuracy in the dataset with all sen-
sors (Fig. 10). A peak accuracy of 83.26% was achieved
by LSTM with SPEED-text, while the SPEED algorithm
achieved a peak accuracy of 80.65%. The accuracy achieved
by the LSTM with ALZ-text was considerably lower
at 70.43%. In this case, stability is achieved much later than
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with the other methods. Finally, the ALZ method reached a
peak accuracy of 68.00%. Note that the probabilistic methods
attain a good accuracy (close to their peak accuracy) with only
1000 events in the training set. By comparison, the LSTM
with ALZ- and SPEED-text require 7500 and 4000,
respectively.

Next we examine the accuracy results for the dataset using
only the seven motion sensors (Fig. 11). As seen in the previ-
ous analysis, the top accuracy is higher since there are fewer
sensors in this set. Moreover, motion sensor events happen
sequentially, without intertwined events. Hence ‘‘off’’ events
can be predicted more easily. The LSTM with SPEED-text
achieved an accuracy of 87.21%, by far the best among the
methods. The stability was achieved with about 4000 events.
Stability is reached with a similar amount of data compared
with the case in Fig. 10. The LSTM with ALZ-text and
the ALZ achieved very similar accuracies of 73.24%, and
72.32% respectively. The SPEEDmethod, however, achieved
a poor accuracy in this case. This is due to the short memory
length and lack of intertwined events, as discussed when
presenting Fig. 9. Also here, it is confirmed that probabilistic
methods require a rather small amount of data to achieve a
considerable accuracy, close to the peak accuracy that can be
reached by these methods.

3) PREDICTION VARIABILITY ACROSS APARTMENTS
In the following, we apply the two prediction methods with
higher accuracy – LSTM with SPEED-text and SPEED – on
the dataset of each apartment of our field trial. In this case,
we perform the mapping (Section V-A) so that the compar-
ison is fair. Table 7 presents the obtained results. SPEED
achieved accuracies in the range 74-82% and LSTM with
SPEED-text in the range 75-85%. In all cases, the LSTM
had an accuracy 1.5-5% higher than SPEED, with one excep-
tion (apartment 4), where the accuracies are about the same.
On the other hand, in most of the apartments SPEED required
less events for a good accuracy and convergence of the model.
We noticed that apartments 6, 7, and 8 have have not achieved
stability completely yet as the curves keep rising, indicating
that higher accuracy can be achieved. They are indeed the
apartments with less collected data (Table 6).

It is interesting to notice that SPEED presents less vari-
ability across the apartments. This may be due to the fact
that SPEED builds a tree where the predictions will be based
on the patterns that happen more often, and these are in fact
similar to all the apartments since they have similar layouts.
The LSTM network, however, is better able to adapt to the
resident in this case, taking into account also patterns that do
not happen often.

4) SUMMARY AND DISCUSSION
We have compared the performance of two probabilistic
methods – ALZ and SPEED – with LSTM networks using
ALZ-text and SPEED-text in apartment 1. The best accu-
racy was achieved by the LSTM network with SPEED-text,

TABLE 7. Prediction accuracy of the next sensor event.

83% with all the fifteen sensors and 87% with seven motion
sensors.

The probabilistic methods achieved a high prediction accu-
racy (close to their peak accuracy) with a relatively small
amount of training dataset (about 1000 events). LSTM net-
works required a larger training dataset (about 4000 event
with SPEED-text and 7500 events with ALZ-text) to reach
an accuracy close to the peak. Also, probabilistic methods
are found to base the prediction on a relatively small number
of previous events – an optimal memory length of four for
ALZ and three for SPEED was established. On the other
hand, LSTM networks base the prediction on a sequence
of eight previous events or more. This indicates that such
networks are better at finding longer-term dependencies and
patterns in a sequence of events. In addition, in the LSTM
the attained accuracy is quite stable for memory lengths that
are larger than the optimal. On the other hand, probabilistic
methods have an optimum memory length, hence the accu-
racy decreases both for shorter and for longermemory lengths
than the optimal.

For the dataset containing events from the fifteen sensors,
our best result was achieved by the LSTM network with
SPEED-text (83%). SPEED achieved only 2% lower accu-
racy, however, after considerably longer training time [10].
Hence, in applications where it is an advantage to model with
a small amount of data where in addition execution time is not
too critical, SPEEDmay be a good choice, since it can achieve
an accuracy close to its peak with little data. In general, our
results have shown that it is possible to achieve good accuracy
with much less data than thought previously. SPEED and
LSTM with SPEED-text achieve better results than ALZ
and LSTM with ALZ-text. This is not surprising since the
conversion of data to SPEED-text sequences contains more
information (both ‘‘on’’ and ‘‘off’’ events). This can also
be confirmed by the trees formed by ALZ and SPEED
(Fig. 3 and 4).

For a dataset with no intertwined events though – the case
of our dataset with only the seven motion sensors – the best
choice is the LSTMwith SPEED-text. SPEED does not work
well in this case, since the tree has a height of two so that only
‘‘off’’ events can be predicted reliably.

Another interesting finding is that when applying these
algorithms in different apartments, LSTM with SPEED-text
has shown a larger range of accuracies. This indicates that the
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LSTM can adapt better to the different patterns in the home of
each resident than SPEED does. This fact, in addition to the
higher accuracy and the shorter execution time, have shown
that the LSTM network with SPEED-text is the best model
for our smart homes setup. We therefore further develop only
this method in the following analysis.

C. PREDICTION OF THE NEXT SENSOR EVENT BASED ON
PAST EVENTS AND TIME INFORMATION
It is important to observe in the results of the previous section
that having more than 10000 events in the training set did
not improve significantly the results for any of the applied
methods. Hence, a change in the algorithms and/or in the way
the data are input, or additional information, is required to
improve the prediction accuracy. In this section, we include
the time of occurrence information in the input of the LSTM
network with SPEED-text to investigate whether this leads to
an improvement of the prediction accuracy.

1) COMPARISON OF METHODS
We predict the next sensor event based on the three proposed
input sequences with time information (Section V-C). Fig. 12
shows the performance of the prediction according to the
amount of data in the training set in apartment 1. We include
the accuracy when using only the previous sensors for com-
parison purposes. We achieved an accuracy of 83.26% when
predicting the next sensor event using previous sensor events
as input (i.e. no time information). When we include the
period of the day, the class time intervals, and the K-means
time-cluster in the input, themodels achieve 84.07%, 85.05%,
and 84.01%, respectively. The small improvement of 0.8-2%
was initially somewhat surprising, as we had expected that
the time information would increase accuracy significantly.
However, on second thoughts, the apartments are quite
small – limiting the number of possible patterns – and there
is a limited number of sensors, and hence a lot of information
(including for example time information about movements
and actions in the home) is not ‘‘visible’’ for the model. The
standard deviation of the LSTMmodels is about 0.02-0.06%,
hence the model is quite stable. A significant improvement,
however, is in the convergence of the model that occurs with
training set sizes of 2500 events, almost half of the events
needed for when no time information is included.

2) PREDICTION VARIABILITY ACROSS APARTMENTS
The input using the 4-class time intervals has shown
marginally better results than the other two methods, and
we therefore apply this method on the other apartments.
The results are shown in Table 8. Including the time has
led to improved accuracy in all the apartments, in a range
of 0.5-4%.

The 10% variability between apartments for the prediction
of the next sensor could be due to the amount of data available
in each apartment. In Table 9, we present the average number
of events per day and the average time spent out of the
apartment per day. This indicates that the degree of activity

FIGURE 12. Accuracy of prediction of next sensor event vs. the number of
events in the dataset.

TABLE 8. Prediction accuracy of the next sensor event based on past
sensor events and 4-class time intervals with LSTM with SPEED-text.

TABLE 9. Number of events per day and time spent outside the
apartment for each resident.

varies significantly and/or that some of the residents are more
active when in the apartment (e.g. apartments 1 and 5) than
others. Nonetheless, the average number of events per day
does not seem to have a direct influence on the achieved
prediction accuracy. For instance, relatively high prediction
accuracy (86%) has been achieved for apartment 3 that only
has 227 events per day, whereas much lower prediction accu-
racy (81%) is achieved in apartment 5 that has the highest
number of events per day (729). Also, comparable accuracy
is attained in apartment 1 (87%) as to apartment 3, although
there are on average more than twice as many events per day
in the former than in the latter. Hence, there is no correlation
between attained accuracy and the average number of events
per day here. Another hypothesis for the prediction accuracy
variability is the noise originated by different sources in the
data for the apartments. For example, the resident in apart-
ment 6 has often family members visiting. This noise cannot
be measured in our setup at this moment.
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FIGURE 13. Accuracy of prediction of next sensor event and time
information vs. the number of events in the training dataset.

Furthermore, the coefficient of variation (standard devia-
tion divided by the mean) in this case is about 0.04, which
is lower than 1 and therefore, a low variance. The different
predictions in this case may simply indicate some people are
more predictable in their patterns around the apartment than
others.

D. PREDICTION OF THE NEXT SENSOR EVENT AND ITS
MEAN TIME OF OCCURRENCE
1) COMPARISON OF METHODS
In the following we examine the accuracy of predicting both
the next sensor event and the time of occurrence information.
In this case, only the input sequences of class time intervals
and K-means time-cluster are considered. Lower accuracy is
attained (Fig. 13) than when predicting only the next sensor
event, as expected, since now more information is being pre-
dicted within the same model. The best accuracy is achieved
by the K-means time-cluster (82.00%), 6% better than the
class time-intervals (76.63%). For both methods, conver-
gence is achieved with about 2000 events in the training
set (Fig. 13). Our hypothesis is that the K-means algorithm
clusters the samples in a more balanced way than the 4-class
intervals, and this leads to a better prediction accuracy.

2) PREDICTION VARIABILITY ACROSS APARTMENTS
The K-means time-cluster method attained the highest accu-
racy when predicting both the next sensor event and time
information, and therefore we apply this on the dataset from
all apartments. The obtained results are shown in Table 10.
The attained accuracy is 3-6% lower than when predicting
the next sensor only (Table 8), as expected.

VII. TRANSFER LEARNING ACROSS APARTMENTS
In this section, we investigate whether the transfer learning
technique is feasible and beneficial across the apartments in
our field trial. We use transfer learning as follows. We first
train an LSTM network with data from seven source apart-
ments and fine-tune and test with one target apartment. In this
case, the data from the target apartment – that have not been
used in the training – are split to be used in the fine-tuning

TABLE 10. Prediction accuracy of the next sensor event and time-cluster
based on past sensor events and time-cluster with LSTM with SPEED-text.

FIGURE 14. Accuracy of prediction of the next sensor vs. number of
events used for fine-tuning, using as input both sensor event and 4-class
time interval. Transfer learning – training the model with data from seven
apartments, fine-tuning with and testing on the target apartment.

FIGURE 15. Accuracy of prediction of the next sensor and time-cluster vs.
number of events used for fine-tuning, using as input both sensor event
and time-cluster. Transfer learning – training the model with data from
seven apartments, fine-tuning with and testing on the target apartment.

of the network (keeping the weights of the best-fit model),
and in the testing (3000 events). We compute the accuracy of
predicting the next sensor event only based on input about
previous sensor events, as well as time information using
4-class time of occurrence intervals (Fig. 14). In Fig. 15,
we present the obtained accuracy when predicting both the
next sensor event and the time-cluster based on inputs about
both these.

Accuracies from about 80% can be achieved straight away
with very little data from the target apartment. There is one
exception, apartment 6, which takes much longer time to
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TABLE 11. Prediction accuracy with transfer learning without and with
Fine-tuning (FT).

achieve good accuracy. However, also this apartment required
less data (about 4000 events) compared to the case without
transfer learning (about 5000 events). For larger training
datasets, the prediction accuracy is approximately the same
as when each apartment is modelled with its own data. In fact,
in most cases is it marginally higher when each apartment is
modelled individually, except for apartments 4 and 8.

Note also that when predicting the time-cluster in addition
to the next sensor, a larger amount of data is required to
transfer the learning as effectively as when not predicting the
time. This is due to the fact that when predicting only the next
sensor, the layout of the apartment is what is mostly taken
into account given that the apartments are very small and all
have the same layout (section III). When predicting the time-
cluster, we account in addition for the individual habits of
each resident, and hence, additional data are required to fine-
tune the network.

Table 11 presents the top accuracy obtained for each
apartment. We have also computed the accuracy without
fine-tuning prior to testing when applying transfer learn-
ing, i.e. when the network has been trained with data from
seven apartments and subsequently tested directly on the
target dataset. For the prediction of the next sensor only,
the accuracy is 4-8% lower than when using fine-tuning.
When predicting both the next sensor and the time informa-
tion, the accuracy is 15-30% lower without as compared to
with fine-tuning. This is in accordance with what has been
mentioned earlier in this section, i.e. that predicting the time
takes into account individual patterns, and therefore needs
additional data to fine-tune the network to each resident.
In either prediction case, the fine-tuning of the model is
indeed required to achieve good prediction accuracy when
using transfer learning across apartments.

Subsequently, we investigate how much data are required
to transfer learning from the base model (with data from
several apartments) such that the target apartment will obtain
a good accuracy with very little data.We chose apartment 8 to
be the target apartment in this case, since it has shown to have
higher accuracy with transfer learning rather than when being
modeled with its own data. We use 100 events from the target
apartment to fine-tune the network and test on 3000 ran-
dom events. When predicting only the next sensor, about
40000 events from seven different apartments are required so

FIGURE 16. Types of activities sequences implemented – sequential and
concurrent. The example corresponds to a scenario where the resident
watches TV, goes to the kitchen to prepare a coffee while watching TV,
and then goes to bed.

that in apartment 8 80% prediction accuracy can be achieved
with only 100 events, as shown in Fig. 14. For predicting
the next sensor and the time-cluster much more data are
needed, about 500000 from the seven different apartments.
In this case, the accuracy with only 100 events in the target
apartment is about 60%. As discussed earlier and presented
in Fig. 15, when predicting the time, more data are required
from the target apartment to achieve the peak accuracy.

VIII. ACTIVITY PREDICTION
A. METHOD
Ultimately, the binary sensor events indicate activities of
daily living. In this section, we associate the binary sen-
sor events with activities and predict these. We are only
able to register high-level activities as the number of
sensors in our set-up is quite limited. Our dataset com-
prises the following classes: watching TV, being in bed,
being out, bedroom activities, living room activities, kitchen
activities, bathroom activities, transitions in bedroom/
bathroom/entrance/living room – 11 in total.

We implemented two rule-based algorithms for deriving
activities from binary sensors that we refer to as sequential
activities and concurrent activities. We decided for a set of
rules as described in Table 12. In the case of sequential
activities, we assume that no more than one activity takes
place at the same time, so that as soon as one activity ends,
another starts. The time information is the elapsed time to the
next activity, which in this case is the duration of the activity.
In the case of concurrent activities, each activity has a start
and an end – indicated by a ‘‘1’’ and a ‘‘0’’, respectively –,
allowing several activities to be happening in parallel. For
example, the resident can be in the kitchen preparing coffee
and still be watching TV. This implies that, in many cases,
the duration of the activities will be longer compared to the
sequential activities. The time information is inserted such
that activity start contains the duration of the activity (time
elapsed until the end of the activity) and activity end contains
the elapsed time to the start of the next activity event. Fig. 16
shows an example of the two sequences without including the
time, for simplicity.

As we do for the sensor events, each activity is assigned a
letter, and the time information with K-means time-cluster is
selected due to its best performance. The transition classes
are only used in the input of the LSTM network, thus
the output classes are in fact only 7. The LSTM network
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TABLE 12. Rules for deriving activities from sensor events.

TABLE 13. Number of activities per apartment.

has the same configuration parameters as the one used
for the prediction of sensor events. In addition, we use
the Synthetic Minority Oversampling Technique (SMOTE)
since our data is imbalanced. SMOTE is an over-sampling
technique that creates synthetic samples for the minority
classes [49]. The library Imbalanced-Learn was used for this
implementation [50].

B. RESULTS AND DISCUSSION
Table 13 shows the number of activity events in each dataset
for each apartment. The LSTM network was trained based on
a certain number of events and tested on either 3000 random
events or 10% of the total number of events (for the apart-
ments with very few activity events, e.g. 6-8). This process is
repeated three times, and the accuracy values in the graphs
correspond to the mean of the best test accuracy of each
training.

FIGURE 17. Prediction accuracy of next activity based on previous
activities per apartment and type of activity dataset.

FIGURE 18. Prediction accuracy of the next activity based on previous
activities and K-means time-cluster per apartment and type of activity
dataset.

FIGURE 19. Prediction accuracy of both next activity and K-means
time-cluster per apartment and type of activity dataset.

Firstly, we predict the next activity based on previous activ-
ities (Fig. 17), and subsequently when including the K-means
time-cluster (Fig. 18), for both types of activity sequences.
Table 14 presents the prediction accuracy for these. For the
sequential activities dataset, the prediction accuracy varies
between 58-90% without using the time information in
the input, and between 61-90% when including the time
information. Including the time in the input resulted in 0
(apartment 7) to 3% improvement. In the case of the
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FIGURE 20. Confusion matrix of prediction of the next activity based on previous
activities and K-means time-cluster for apartment 1, using the concurrent activity dataset.

TABLE 14. Prediction of the next activity.

TABLE 15. Prediction of the next activity and K-means Time-Cluster.

concurrent activities dataset, the prediction accuracy varies
between 75-92% without using the time information in the
input, and between 75-95%when including the time informa-
tion. Thus the accuracy has improved from 0.3-3.1% across
the apartments when the time information is included in the
input. Fig. 19 and Table 15 present the accuracy results when
predicting both the next activity and its duration/time elapsed
to the next activity. The obtained accuracy varies between 64-
85% for the concurrent activities, i.e. it is 4.5-11.8% lower
compared to above. Similarly, for the sequential activities,
an accuracy of 50-80% is achieved, i.e. 9.4-16.2% lower than
above. This is expected since now the model has many more
classes to predict from and it is in addition predicting more
information.

We can notice that apartment 3 has achieved the best
accuracy in all tests. One observation is that this resident did
not have the power sensor in the TV, so that this model has one

less class to predict (watching tv). In addition, it is a class that
usually presents much confusion with others, especially with
living room activity. Apartments 6 and 8 have shown similar
and poor accuracies in the tests, however, they do not have
enough data for conclusive results (see number of activity
events in Table 13). The other apartments – 1, 2, 4, 5, and
7 – present comparable results.

The accuracy results for the concurrent activities dataset
were better in all cases – 5.4-14% improvement when pre-
dicting only the next activity based on previous activities
and time; and 5.1-16.1% when predicting the next activity
and K-means time-cluster. However, since there is only one
resident and a relatively small number of sensors in each
apartment, that moreover do not relate to other sensors, there
are in reality only few concurrent activities. Hence, most
of the ‘‘start’’ activity events in the concurrent dataset are
immediately followed by the ‘‘end’’ of the same activity.
Therefore, most of the ‘‘end’’ of activities is predicted with
100% accuracy, which explains the higher accuracies of this
method. This can be confirmed by the confusion matrix
obtained with the prediction accuracy results in apartment 1 –
Fig. 20. Nevertheless, this may be a good implementation
in smart home environments where several activities can
happen at the same time, e.g. multi-resident smart homes.
This is not the case of our setup, hence the sequential activity
dataset is probably a fairer algorithm. An example confusion
matrix for this dataset (apartment 1), is shown in Fig. 21.
The confusions within classes are similar for both types of
datasets. Bedroom activities are mostly predicted as in bed
and kitchen activities. This is understandable since bedroom
activities happen often after having been in bed or in the living
room, which has access to the kitchen. As mentioned before,
living room activities are confused with watching TV, and a
little with kitchen activities, as the previous comment. And
finally, being out has been predicted most of the times as
kitchen activities, as the entrance door also has a connec-
tion to the living room. An interesting result is that in this

111026 VOLUME 7, 2019



F.D. Casagrande et al.: Predicting Sensor Events, Activities, and Time of Occurrence Using Binary Sensor Data From Homes

FIGURE 21. Confusion matrix of prediction of the next activity based on
previous activities and K-means time-cluster for apartment 1, using the
sequential activity dataset.

apartment the watching tv activity has been very well pre-
dicted – 86.5%. This could be useful for smart functions
involving the TV, e.g. if the resident has difficulties operating
the remote control. Bathroom and kitchen activities have also
shown a considerably good accuracy (77.9% and 83.2%). The
range of accuracy may be useful for analyzing patterns in the
home and potentially for anomaly detection.

IX. CONCLUSION
Sequential sensor events, time prediction, and activity recog-
nition and prediction algorithms can enable the development
of a number of support functions in smart home environ-
ments. Most of the research work in the literature has been
carried out using data collected in lab environments and
testbeds, typically including a quite large number of binary
sensors (e.g. 50 sensors [18]). We collected data from eight
apartments in a community care facility, with one resident
each (over 70 years old). Data were collected from 13-17 sen-
sors per apartment, over a period of time ranging from 75 to
385 days, depending on the apartment.

To our knowledge, there is no comparative study investigat-
ing state-of-the-art sequence prediction algorithms applied
to sensor data acquired in homes of real users, as we do in
this paper. We compare the performance of these methods
regarding factors such as memory length and the required
amount of data for good accuracy. When applying two proba-
bilistic methods (ALZ and SPEED) and LSTMnetworks with
both SPEED- and ALZ-text sequence inputs for prediction of
the next sensor in a sequence, LSTM with SPEED-text has
achieved the highest accuracy of 85%. SPEED achieved 3%
lower accuracy and required much longer time to execute.
On the other hand, the LSTM required about 4000 events in
the training set to reach an accuracy close to its peak, whilst
the probabilistic methods only needed about 2000 events.
Hence, for datasets with little data SPEEDmay be beneficial.
If there is a considerable amount of data (5000 events in
this work), LSTM with SPEED-text is more suitable – it
provides a higher accuracy and in much faster execution

time than probabilistic methods. When tested in all the
apartments, LSTM with SPEED-text achieves results in the
range 76-85%.

There is quite limited work in the literature on the pre-
diction of the time of occurrence in addition to the sensor
events in smart homes. We study the possibility of improving
the best performing algorithm (LSTM with SPEED-text) by
including the time component in three different ways: period
of the day (morning, afternoon, evening, night), 4-class time
interval (elapsed time) to the next sensor event, and K-means
time-cluster including information about themean hour of the
day and the mean time elapsed to the next sensor event. Our
best performing model for predicting the next sensor event
included the 4-class time interval input and attained a peak
average accuracy of almost 87%. This is 2% better than with-
out including the time information. Hence, the time elapsed
between events contains some information that improves pre-
diction, however, only marginally. In other apartments the
improvement varied from 0.5-4.5%. We also predict both
the next sensor event and the time of occurrence informa-
tion, obtaining best results by using K-means time-cluster
input. This implementation attained an accuracy of 83%.
Other apartments had accuracies in the range 73-83%.
Furthermore, we evaluate the variability of the prediction
accuracy across the apartments and investigate the feasibil-
ity of transfer learning between these. Transfer learning has
been shown to work successfully up to a certain number of
events. For a low number of events in the training dataset,
up to about 4000 events, transfer learning leads to higher
prediction accuracy than when each apartment is modelled
individually. This means that when a new apartment is added
to the study, the prediction algorithm can work well straight
away, and attain a relatively good accuracy (70-80%) from the
first day in most cases. However, for larger training datasets,
the prediction accuracy is approximately the same. In fact,
in most cases it is marginally higher when each apartment is
modelled individually.

A last analysis carried out activity recognition in a rule-
based manner from the binary sensors events and performed
activity prediction with the LSTM with SPEED-text algo-
rithm. Two types of activity datasets were analyzed: sequen-
tial and concurrent. For the concurrent activity dataset, when
predicting the next activity only, our best model achieved
95% accuracy, whilst when predicting the next activity and
the mean duration and time of occurrence information,
the best model achieved an accuracy of 85%. For the sequen-
tial activity dataset, the results are worse. When predicting
the next activity, our best model achieved 90% accuracy,
whilst when predicting the next activity and its duration and
time of occurrence information, the best model achieved
80%. However, we indicate that this latter method may be
fairer for our dataset where there are relatively few activities
happening concurrently. Additional sensors could have been
an advantage for better activity recognition and prediction.
Our set of sensors proved to be somewhat limited for the
task since it can only imply high-level activities. A small
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number of sensors like ours may, however, be preferable both
in terms of reduced surveillance for the user, lower cost, and
less nuance for the aesthetics of the home. Our work shows
that it is possible to achieve acceptable prediction accuracy
with few sensors. In addition, the findings of our study can
be useful for deciding which analysis and prediction methods
to use in accordance with project constraints (e.g. the num-
ber of available sensors, user privacy, etc.) and the area of
application.
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