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Abstract: We present evidence that quantitative definitions of extreme events in wind, so called gusts, may be 
flawed and unable to grasp true extreme situations of wind velocity in short time intervals. In 
particular, we show that the same statistics of particular pattern shapes in wind data are found in 
surrogate data generated from the original series of measurements. We apply a pattern recognition 
algorithm to a two- -
of occurrence for both original measurements and surrogate data. The distribution of the 
corresponding values of the duration and amplitude present deviations that can be explained by the 
filtering of n-point correlations in the original series. 

Keywords: Wind data, Gusts, Extreme Events 
 

 
Nomenclature   

EOG 
EDC 
ECG 
EWS 

Extreme Operating Gust 
Extreme Direction Change 
Extreme Coherent Gust 
Extreme Wind Shear 

  

 
1. INTRODUCTION 
Though being one of the most promising sources of renewable energy [1], wind has a challenging feature: it is 
highly intermittent. Due to its highly fluctuating velocity it is difficult to account for an estimate of power output 
within a given time period [2]. Indeed, in just a few seconds one can observe an increase of the wind velocity from 
a few meters per second up to almost 20 meters per second. Such sudden occurrence of strong wind, so-called gusts, 
drives a corresponding high fluctuation of the power output of one wind turbine [3], which therefore appeals for a 
better understanding of such strong fluctuations in wind data. For wind power production, approaches to evaluate 
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wind speed persistence [4] as well as wind speed synthetic generation of wind fields [5], were proposed for better 
reproduce power production in wind turbines and wind farms. In particular, Markov models have been proposed 
for reproducing the statistics of wind velocities together with power output in Portuguese wind farms [6, 7]. 
Methods for modeling wind gusts [8] as well as some numerical procedures for detecting them [5] have also been 
proposed. However, from a physical perspective, a gust is still loosely defined: it results from a local, short-term 
and sudden wind speed variation in the turbulent atmosphere, but, up to our knowledge, a closed quantitative 
definition is not established.  
In this paper we address the question of the statistical and functional features of gusts. Assuming that a gust results 
from the joint happening of a sudden increase in the wind velocity followed by a similarly fast decrease, i.e. it yields 
a functional shape for the gust given by the so- -
wind speed that occurs in a short time (high acceleration) leads to a gust shape given by a so-
According to the 2005 International Electrotechnical Comission standards [9] there are four different types of 
extreme wind events: (i) the extreme operating gust (EOG) typically modeled with a Mexican-hat function of 
varying amplitude (maximum velocity) and width (duration); (ii) the extreme direction change (EDC), which is 
characterized by a sustained change in wind direction modeled typically with a cosine-shaped curve with a given 
return period; (iii) the extreme coherent gust (ECG), characterized by a sustained change in wind speed which ends, 
differently from EOG, on a constant high speed; and (iv) the extreme wind shear (EWS), characterized by a transient 
variation in the horizontal and vertical wind gradient across the rotor. These types of extreme wind events are not 
mutually exclusive. For example, so-called extreme coherent gusts with direction change can occur, which result 
from a simultaneous occurrence of EDC and ECG. Here we focus on EOG, which are standardly taken as typical 
extreme wind events. While attention is often centered on positive gusts -real Mexican-hats- since they are 

ling what we 
-  

We start in Sec. 2 by describing the data and the surrogate data preprocessing. In Sec. 3 we characterize an extreme 
event and describe how to detect those events in data series. In Sec. 4 we present the statistical results and compare 
real and surrogate cases and Sec. 5 concludes the paper. 
 
2. WIND MEASUREMENTS AND SURROGATES PROCESSING 
The available data for extreme events detection consists of twelve data sets recorded at FINO1. Each of these files 
contains the wind speed during one month at different heights. Since all sets have long segments with missing data 
or segments at different sampling rates, we choose a fragment of them, namely segments of approximately 36 hours 

5 data points) were selected for each recording. Each of these segments was selected so that most of gaps 
last at most one second. Long segments with missing values (over 5 seconds) were eliminated. The remaining 
missing data was then added using linear interpolation. For the sake of simplicity, we focus on a single height, 
namely 80 m. Figure 34a shows illustrative data series of the wind which was then normalized, Figure 34b, according 
to 
 

 (1)

 
where and  are, respectively, the mean and standard deviation computed within a window of 10 
minutes centered at time-step . 
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Figure 34. Illustration of wind data series: (a) real wind velocity in FINO1 of Alpha Ventus at 80 m height, (b) the 

associated normalized data  (see Eq. [1]) and (c) the surrogate wind velocity generated for the wind velocity 
(see text). 

 
For testing if the extreme events are characteristic of wind data, we compare the existence of specific extreme 
events in real data and in surrogate data derived from it. Surrogate data testing is usually employed for detecting 
non-linear behavior in time series. This method requires specifying a null hypothesis describing a linear process 
sharing the same linear properties as the original time series. Then, several surrogate data sets according to the null 
hypothesis are generated using Monte Carlo methods. A discriminating statistic, such as nonlinear prediction error, 
time reversal symmetry or correlation dimension, is then calculated for the original time series and for the surrogate 
set. If the statistics are significantly different from each other, the null hypothesis is rejected and non-linearity 
assumed [10].  
We can adopt this method for testing if the number of extreme events in wind data is significantly larger than in a 
linear process. The null hypothesis is that there is no significant difference in the number of extreme events observed 
in wind data when compared with a Gaussian linear process. Accepting the null hypothesis would suggest that such 

stical fluctuations present in every Gaussian 
process, and are not characteristic of wind data.  

Figure 34c shows a plot of the surrogate  series obtained from the original velocity series  To avoid 
4 points).

 
3. METHOD FOR EXTREME EVENTS DETECTION 
For detecting EOG events present in wind data we will use the same approach employed by M. Ahmann [11], where 
the extreme events are assumed to follow a Mexican-hat pattern defined as 
 

 (2) 

 
where A is the amplitude of the event and D controls the duration of the Mexican shape. An example of a Mexican-
hat pattern in wind data is shown in Figure 35a.  
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Figure 35. -
with A = 1 and D = 9. In (b) a succession of detected extreme events are marked (diamonds) in an illustrative wind data 

 
 
The extreme events are detected using a matched filter: the detection is performed by correlating the template of 
the Mexican-hat pattern with the wind data time series, through the following function 
 

 
(3)

 
where the mean  is performed from time  till  and (resp. ) and  (resp. ) are the mean and 
standard deviation of wind speed (resp. of ). When a local extrema of the resulting correlation exceeds a certain 
threshold, , an extreme event is detected. The exact time  in Eq. [2] marking the occurrence of the 
extreme event is determined by exploring a small temporal window around the instant in which the correlation 
exceeds the threshold.  
Extreme events are assumed to not occur simultaneously, i.e. during an extreme event with the time-duration , no 
other extreme event can take place. The detection process is repeated for several values of the  and  parameters, 
till the maximum of the correlation between function and real data is found. An illustrative example of the 
performance of the algorithm is shown in Figure 35b, where one plots a short series of successive Mexican-hats 
and Mexican-holes. 
 
4. ANALYSIS OF WIND EXTREME EVENTS 
Statistical frequency 
Sweeping our detection method through the wind data and surrogate series we first count the number of extreme 
events as a function of the duration . Figure 36a and Figure 36b show the distribution of events depending on the 

 parameter. 
The probability of an event follows a stretched exponential distribution  with parameters 

 for the wind data series and for the corresponding surrogates. The exponential 
behavior showed in Figure 36a is a consequence from the fact that narrower Mexican-hats can occur more often 
than wider Mexican-hats. 
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In order to take into account the length of the events we calculate the probability for a Mexican-hat of duration 
to occur as the quotient between the number of events  detected for a given  and the maximum number of 
possible events with duration , given by , being  the total length of the data set. Figure 36c and Figure 36d 
show the distributions  of the duration  for the real wind series and the surrogates. Both are well 

approximated by . 

 

 
Figure 36. Figures (a) and (b) show the distribution of the Mexican-hat pattern for real wind data and the corresponding 
surrogates, depending on D. In (b) and (c) one shows the probability of occurrence of an extreme event for real wind data 

and the corresponding surrogates. 
 
From Figure 36 one concludes that, from the perspective of its frequency, the occurrence of Mexican-hats in wind 
data is not characteristic of the data. 
 
Amplitude and duration of extreme events 
The fact that the number of events in wind data is similar to the number of events in Gaussian processes does not 
imply that their associated statistical features are also the same. To explore this question, we next study the 
distribution of the amplitudes of EOGs. Indeed, we may argue that the distributions of amplitudes for Gaussian 
processes and wind data are different. Due to the way they are generated, Gaussian processes are stationary and 
consequently, the amplitude of an extreme event will be concentrated around some specific value. On the other 
hand, wind data is non-stationary and thus, the amplitude of what we call an extreme event will change over time, 
generating broader distributions. 
Figure 37a-d show the distribution of amplitudes for different values of the duration D for wind series in FINO1. 
From such plots one clearly sees that Mexican-holes (negative amplitudes) tend to be more probable than Mexican-
hats (positive amplitudes). However the distribution of the positive amplitudes is similar to the distribution of 
negative amplitudes in wind data: both show a heavy tail for the extreme values (large negative or positive values) 
and another tail quickly decreasing towards zero when the amplitude tends to zero. As expected, the distribution is 
zero for , since there are no Mexican-hat with zero amplitude.  
 



7th EUROPEAN CONFERENCE ON RENEWABLE ENERGY SYSTEMS   Madrid/Spain 10-12 June 2019

325 
 

 
Figure 37. (a-d) Distribution of amplitudes in both normalized wind and the corresponding surrogate data for different 

values of the  parameter, =1, 6, 9 and 12. The probability density function was estimated using a Gaussian kernel. Note 
that wind data distribution has heavier tails than the distribution of the surrogate data. 

 
Altogether, for the distribution of amplitudes in wind differs from the one of surrogate data. However, we may 
hypothesize that these differences are only due to the non-stationary nature of wind data. To test this hypothesis, 
we can study the distribution of the normalized wind series  that feeds the detection algorithm, as defined in 
Eq. [1]. Note that, statistically, the standardization procedure should generate similar wind data series for all the 
different files. The statistics obtained for normalized data will be more robust than those from the original set: 
normalization allows one to average through all the months (different files) since we assume that these time series 
were generated from the same distribution. 
Figure 38a-d show the first four moments of the amplitude distribution, namely the mean, the standard deviation, 
the skewness and the kurtosis, for both positive and negative amplitudes separately. As one sees, the distributions 
of the positive and negative amplitudes have similar statistical properties for the full range of D values, indicating 
that the distribution of the positive and negative amplitudes is the same, apart from their different absolute 
frequencies.  
The mean, as well as the median and the mode (not shown), of surrogate and wind data are similar for small values 
of D, but diverge significantly from each other for larger values. The standard deviation of the surrogate data is 
smaller than the standard deviation of the original data, which explains why the density of surrogate data for the 
mode is greater than the density of the mode for the original data. From the skewness plot, we may conclude that 
wind data has still heavier tails than surrogate data. On the other hand, the skewness decreases with D: the longer 
the events last, the more symmetric their frequency distribution is. Kurtosis shows a tendency of also decreasing 
with the duration of the extreme event, showing a Gaussian shape (kurtosis=3) for the middle duration range. 
 

 
Figure 38. (a-d) Central metrics and moments of the amplitude distribution for both wind data and the surrogate data as a 

function of the event duration D. 
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Applying the Kolmogorov-Smirnov test we have ascertained that the positive amplitudes from surrogate data have 
a different distribution than the positive amplitudes in wind data, i.e. p-values closed to zero. The same applies for 
negative values. The difference between data and surrogates is mainly characterized by heavy tails, reflecting 
correlations in wind data that are not included in the surrogates. 
We also compare the distributions of both positive and negative amplitudes in wind data, which seem to be equally 
distributed only for long enough events (see Figure 39). For extreme events occurring in short time-spans the 
amplitudes are no longer symmetrical and Mexican-holes tend to be significantly stronger than Mexican-hats, 
typically associated with gusts. 
 

 
Figure 39. To test how close the two distributions are we calculate the p-values for the Kolmogorov-Smirnov test, taking 

positive and negative amplitudes in wind data separately. The dashed horizontal line marks a p-value of 0.01.
 

5. CONCLUSIONS AND DISCUSSIONS 
Our findings can be summarized in two conclusions: (i) the frequency statistics of the number of extreme events in 
wind data is similar to the one in Gaussian processes (surrogate); (ii) however, the corresponding distributions of 
their parameters, namely duration and amplitude do not always match.  
Such mismatch of the amplitudes and duration of extreme events can be explained by the removal of 2-point and 
higher n-point correlations in the linear Gaussian surrogates. Consequently, following the first conclusion we argue 
that, contrary to previous works, Mexican-hats are not necessarily characteristic of extreme wind patterns, namely 
gusts.  
Since Mexican-hat is a pattern of at least five points, n-point correlations play a non negligible role in their 
occurrence and properties. Therefore, a comparison with surrogates that preserve the same n-point correlations as 
in wind data would be a step forward to investigate this problem. Recently [12, 13, 14], the n-point statistics of 
wave height in the ocean was recovered from empirical data, using a proper stochastic framework.
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