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Abstract—Deep learning using neural networks is becoming
more and more popular. It is frequently used in areas like
video analysis, image retrieval, traffic forecast and speech
recognition. In this respect, the learning and training process
usually requires a lot of data. However, in many areas, data is
scarce which is definitely the case in our medical application
scenario, i.e., polyp detection in the gastrointestinal tract. Here,
colorectal cancer is on the list of most common cancer types,
and often, the cancer arises from benign, adenomatous polyps
containing dysplastic cells. Detection and removal of polyps
can therefore prevent the development of cancer. Due to high
cost, time consumption, patient discomfort and in-accuracy of
existing procedures, researchers have started to explore systems
for automatic polyp detection to assist and automate current
examination procedures. Following the current gained traction
for neural networks, and the typical lack of medical data,
we explore how data enhancements affect the training and
evaluation of the networks in terms of polyp detection accuracy
and particularly if it can be used to increase the detection
rate. We also experiment with how various training techniques
can be used to increase performance. Our experimental results
show how data enhancement and training optimization can be
used to increase different aspects of the performance, but we
also point out mechanisms that have no and even a negative
effect.

Keywords-data enhancements; neural networks; disease de-
tection;

I. INTRODUCTION

Lately, the interest in deep learning using neural networks
has exploded. Experiments in various areas analyzing and
retrieving data are performed using this approach, includ-
ing various area of multimedia data analysis. Here, neural
networks mimic how a biological brain step-wise learns,
where each layer (step) can learn different abstraction levels
of the data using the input of previous layers until a final
layer combines all abstractions in a stack-wise manner and
provides the final result of the analysis. Current research
proves that this is a promising approach. However, neural
networks also come with several challenges where one is that
training or learning is complicated. Usually, a vast amount of
data is required to achieve an accurate result in the analysis,
and in many scenarios, data availability is a challenge.

In this paper, we analyze the effect of enhancing data
and optimizing training for neural networks in scenarios

where data availability is a limitation for training. As a
multimedia case study, we have selected a societal relevant
scenario, where we build a system to automatically assist
doctors in detecting polyps in videos and images from parts
of the human gastrointestinal tract, i.e., the colon. Polyps
are precursor lesions for colorectal cancer where the cancer
often arises from benign, adenomatous polyps containing
dysplastic cells. Colorectal cancer is the third most com-
monly diagnosed cancer in both men and women. In 2017,
there will be an estimated 95.000 new cases of colon cancer
in the US alone where about 27.000 men and 23.000 women
will die due to the disease [1]. Thus, detection and removal
of polyps therefore prevents the development of cancer, and
our detection challenge is shown in figure 1, where the
polyps must be detected and identified among images and
video frames also containing normal mucosa and various
other anatomical landmarks and abnormalities.

(a) Polyp (b) Polyp (c) Polyp (d) Polyp

Figure 1. Example of polyp images from the colon [2].

With respect to using neural networks for this type of
abnormality detection, research have already proven that
neural networks can be suitable, e.g., for similar problems
detecting breast cancer [3], lung cancer [4], and for polyp
detection in particular [5], [6], [7], [8], [9]. In this paper, we
enhance our neural network-based EIR system (named after
a Norse goddess associated with medical skills) with data
enhancement methods and assess their effect on detection
performance. In particular, we use the Tensorflow [10], [11]
open source neural network library, and we “artificially”
increase the dataset size making copies by changing rotation,
brightness, contrast and reflection masking.

Using a real-world medical dataset [12], we have used var-
ious splits of the data in k-fold cross-validation experiments
to make non-overlapping training and test sets and tested
various combinations of the methods above. In summary,
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for the GI polyp detection scenario, our experimental results
show that rotation seems to be a good method method to
extend the dataset size. Attempting to improve quality by
reflection masking and higher contrasts had both positive
and negative effects depending on the data splits. Overall,
rotation is an interesting approach due to an increased F1-
score, and the combination of rotation and contrast increases
the positive recall.

The following paper is structured as following. First, we
give a short overview of the background and related work.
This is followed by describing our data enhancement system.
After that, we describe the conducted experiments where we
present our findings. Finally, we give conclusions and an
outlook for possible future work.

II. BACKGROUND AND RELATED WORK

Machine learning is the concept where computers gain
the ability to learn without being explicitly programmed.
It has evolved from artificial intelligence research, and has
been one of the hottest topics among researchers in recent
years [13]. It learns by making data driven decisions or
predictions instead of following static instructions, and it
alters its own understanding in an iterative manner by
evaluating its current interpretation of the data against past
knowledge, i.e., creating a new and improved understanding
where the improvements are kept, and changes for the worse
are discarded. After many iterations, it will have gained a
general understanding of the concept.

A machine learning approach that has been reborn and
lately gained a lot of interest is neural networks [14] which
is a type of machine learning which loosely mimics how
a biological brain learns, i.e., being able to learn general
concepts from concrete examples. Neural networks are also
used in the medical domain, e.g., for micro-calcification
detection in mammogram images [15], detecting breast can-
cer [3], colonic polyp detection [5], [6], [7], [8], [9] and lung
cancer [4]. To perform the analysis of the data, deep neural
networks (deep learning) contain multiple network layers
where each layer can learn different abstraction levels of
the data using the input of previous layers. The information
travels through different routes in the network depending on
each layers understanding in the same way as a brain works
using neurons. The route ends up in a terminal, which is the
output of the final layer giving the estimation made by the
network, i.e., an estimated understanding of what the data
is or contains.

Despite the promising initial research, neural networks
come with several challenges, and in the context of our
research, neural networks require a high amount of training
data of sufficient quality and with ground truth. This is
especially hard in the medical field since collecting such
data requires the time of experts. In order to address the
challenge of limited data for training, one can increase the
data using various enhancement steps where copies of the

image data are added by for example rotation, changing
brightness and contrast, masking reflections, etc. A question,
however, is how such enhancements affect the detection
accuracy of such systems. Here, we have tested different
enhancement techniques in order to research which methods
really improve polyp detection in particular, and we compare
various training optimizations.

III. ENHANCED NEURAL NETWORK TRAINING

In our polyp detection system, as for computer vision
systems in general, the input data greatly affects the results.
The quality and quantity of the input data can be increased
by using data enhancement. A higher quality could make
the polyps easier to detect, while a higher quantity gives
the system more samples to learn from, i.e., both potentially
improving the situation where the input data to the neural
network is too small or too narrow resulting in overfitting the
network. To enhance our neural network training process, we
have created a 5-stage training pipeline as shown in figure 2
where we use TensorBox. One can artificially increase the
size of a dataset by transforming the existing dataset in
various ways, such as rotation, translation, scaling, flipping,
shearing and stretching [16].

Figure 2. Training system

Polyps have no logical up or down as they can be
found anywhere inside the colon. Thus, rotation of images
may potentially improve the detection performance. In this
respect, Amaral et al. [17] has performed experiments using
rotated images and were able to increase the detection rate
by between 8% and 42% using a very a low number of
images as input, i.e., arguing that the main benefit of rotation
is to increase the amount of input data. In our experiments,



(a) Original image (b) 90◦rotation (c) 180◦rotation (d) 270◦rotation (e) 33% brightness (f) 66% brightness

(g) 133% brightness (h) Enhanced contrast (i) Marked bright spots (j) Padded bright spots (k) Filled bright spots

Figure 3. An example of the original image compared to the various additional enhancements: rotation, brightness, contrast and reflection maskings.

rotation of images are performed on each image that contains
a polyp. As shown in figures 3(b)-3(d), the original image
(figure 3(a)) is duplicated three times, with 90◦, 180◦ and
270◦ rotated variants, in addition to the original.

Using different endoscopes, one can experience different
types of lighting, i.e., brightness levels in different parts of
the image. As with rotation, only images that contain a polyp
and are part of the training data are brightness adjusted. The
original image in figure 3(a) is again duplicated three times,
with 33%, 66% and 133% brightness level variants, shown
in figures 3(e)-3(g), respectively.

As can be observed in figure 1, it can be a challenge
to distinguish the polyps from the surrounding areas in the
GI tract. A possible way to improve polyp detection is
to enhance the contrast in the images. Yadav et al. [18]
were able to increase the number of detectable edges in
images with heavy fog by enhancing the contrast. While
we have no images with fog, contrast enhancement could
be beneficial by increasing the detail level in low-contrast
areas. In this respect, adaptive histogram equalization [19] is
a technique to perform contrast enhancement. In contrast to
ordinary histogram equalizations, the adaptive variant uses
the neighboring regions to derive a transformation function.
The benefit of this is that dark and light regions within
the image are also sufficiently enhanced, since it adapts
the function to local areas in the image. Furthermore, to
deal with a possible over-amplification of noise in adaptive
histogram equalization, contrast limited adaptive histogram
equalization (CLAHE) [20] is an optimization limiting the
amplification. It clips the histogram at a predefined limit,
and distributes the clipped part among surrounding areas,
preserving the clipped part while limiting the amplification.
Using OpenCV, we implemented a CLAHE tool for each
RGB channel in the image. At the end, the original image
is replaced with the enhanced version, making updating file
names unnecessary and avoids having duplicate images. An

example of this can be seen in figure 3(h).
The light source, which is needed to capture video inside

the colon, can potentially create sharp reflections (e.g.,
figure 3(a)) since the colon surface can be uneven and
contain fluids. Zhou et al. [21] use these reflections for
detection and polyp measurements. In our case, images both
with and without polyps contain similar types of reflections.
As such, it could be beneficial for the polyp detection to
remove the reflections, letting the neural network focus
on other features of the polyp. As shown in figures 3(i)-
3(k), our tool to the masking of reflections consists of three
steps; marking bright areas, padding marked areas and filling
marked areas with surrounding colors. For each marked area,
we find the color to the left and right, and color the pixels as
a gradient color between the left and right color. If no valid
color is found in either direction, we try the pixel above
instead. The RGB limit is set to (240, 150, 150), and the
padding radius is 5 pixels.

IV. IMPROVING DATASET SIZE AND QUALITY

To evaluate our pre-processing tools, we have performed
a large number of experiments using each method and
their combinations, various numbers of training iterations
and confidences. We used the ASU Mayo Clinic polyp
dataset [22], which is an annotated dataset of polyp videos
as training and evaluation data. It consists of 20 videos, 10
of which contain polyps and 10 that do not. An example
can seen in figure 4 where a mask is used to show the
location of a polyp. Furthermore, we have used a 5-fold
cross validation [23] where we divided the 10 videos into
5 separate partitions, so in each cross validation, we use
8 videos for training and 2 for evaluation. The result from
each cross validation is then averaged to produce a single
estimation. This ensures that the results are not based
on a single partitioning, which could be a deviation, but
rather an average over all partitions. Each experiment is
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100k 28.50 29.08 27.52 96.19 96.76 96.46 92.95 92.77 93.27
200k 31.27 26.60 28.03 96.12 98.01 97.05 93.51 92.80 94.36
300k 31.50 26.16 27.73 96.10 98.15 97.11 93.56 92.81 94.47
400k 31.64 26.31 27.85 96.11 98.15 97.11 93.57 92.83 94.47
500k 31.60 26.29 27.85 96.11 98.14 97.10 93.56 92.82 94.46

Table I
RESULTS WITHOUT USING ANY ENHANCEMENTS (NP).
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NP 31.60 26.29 27.85 96.11 98.14 97.10 93.56 92.82 94.46
R 36.51 31.80 33.67 96.35 97.41 96.88 93.62 93.22 94.06
B 20.24 20.70 19.87 95.62 96.01 95.80 91.85 91.73 92.05

RB 25.09 27.66 25.79 96.17 96.60 96.38 92.78 92.52 93.13
M 24.74 22.26 22.85 96.00 97.76 96.86 93.20 92.52 93.98
C 27.26 24.62 25.14 96.15 97.60 96.86 93.28 92.69 93.99

MC 27.84 24.82 25.92 96.12 97.88 96.98 93.45 92.74 94.22
RBM 24.86 30.24 27.06 96.23 95.29 95.75 92.25 92.56 92.01
RBC 20.86 31.12 24.40 96.28 93.80 95.01 91.43 92.40 90.70

RBMC 19.42 25.00 21.05 95.98 95.20 95.57 91.77 92.03 91.69
RM 30.84 31.61 30.67 96.37 96.85 96.60 93.24 93.01 93.56
RC 30.80 37.79 33.44 96.63 95.93 96.27 93.08 93.28 92.97

RMC 24.97 29.99 25.95 96.24 95.73 95.97 92.41 92.61 92.40

Table II
SUMMARY OF ALL THE RESULTS FROM THE DIFFERENT DATA ENHANCEMENT METHODS, GIVEN 90% CONFIDENCE AND 500K TRAINING ITERATIONS

(a) Frame containing polyp. (b) Ground truth mask.

Figure 4. Polyp annotation example in the ASU Mayo dataset [22]

trained between 100k to 500k training iterations, where a
training iteration is defined as one round of a feedback
and adjustment loop. For the presented evaluation, a 90%
confidence is used, which means that the system has to
have a 90% or higher certainty that the image contains
a polyp, before it is classified as positive. The different
results are labeled according to method used using NP
(Non-preprocessed), R (Rotation), B (Brightness variations),
M (Masking reflections) and C (Contrast enhancement),
and where combinations like RB means that rotation and
brightness have been used. For further details about the
setup, please see [24].

We started by using non-preprocessed data to see how
the system performed with no data enhancement method
applied, giving us a basis for comparison with the data
enhancement methods. The results can be seen in table I. The

system without any enhancements (NP) achieves a weighted
recall of 94.46, a weighted precision of 92.82 and a weighted
F1-score of 93.56. From the NP results, we can see that
we get an increase in scores from 100k to 300k training
iterations, but after 300k there are small variations, but very
little to no gain. However, due to space restrictions, we
therefore only present 500k for the remainder of this section.
More details can again be found in [24] where we also show
that iterations up to 1000k have negligible impacts.

Next, table II shows the results from the experiments,
using the enhancements both individually and combined.
The most promising combinations have been selected. We
have tried rotation (R) and brightness (B) variations to
increase the dataset, and we used masked reflections (M)
and contrast enhancement (C) to improve the quality of the
dataset. Additionally, we have experimented using combi-
nations. The results show that rotation has an ability to
improve positive recall, but also produces a slight decrease in
negative recall. However, the improvement in positive recall
is enough to offset the decrease in negative recall, resulting
in rotation being the only data enhancement method able
to beat the F1-score of NP. Brightness variations shows an
inability to improve any aspect of the results, both when used
independently and in combinations. It lowers both positive
and negative recall, and thus affects weighted F1-score
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Different types of networks
Inception 14.52 86.67 24.87 98.04 56.62 71.78 68.10 91.49 58.98

Resnet 15.44 84.68 26.12 97.89 60.66 74.82 71.00 91.43 62.44
Default RNN 70.66 66.32 68.42 97.15 97.66 97.40 95.13 95.07 95.20

Comparing training techniques
None 13.01 8.23 10.08 95.97 97.55 96.75 93.05 92.43 93.74

LSTM 18.61 22.42 20.34 96.51 95.63 96.07 92.84 93.19 92.51
Rezoom 16.24 12.26 13.97 96.13 97.18 96.65 93.12 92.72 93.56

Both 17.52 17.10 17.31 96.31 96.41 96.36 92.99 92.95 93.02
Comparing optimizers

Rezoom + SGD 54.70 29.28 36.58 96.11 99.27 97.66 94.41 94.02 95.49
LSTM + SDG 00.00 00.00 00.00 94.74 100.0 97.29 92.20 95.04 94.74

Rezoom + ADAM 15.78 35.94 20.65 96.15 86.81 91.18 87.65 92.12 84.17

Table III
RESULTS OF USING REZOOM AND LSTM AND THEIR COMBINATIONS WITH 90% AS CONFIDENCE

negatively. Masking reflections has a varying effect on the
results, depending on the videos. The best experienced result
was an increase in positive recall of 5% and negative recall
of 1.5%, while the worst experienced result was a decrease
in positive recall of 19% and negative recall of 1.3%. Due
to this, masking reflections had an overall negative effect on
the F1-score. A more advanced implementation of masking
reflections that are able to handle reflections of many shapes
and colors, may be able to increase the results in additional
videos, making masking reflections able to improve overall
performance. Contrast enhancement has a varying effect on
the results, depending on the polyps in the videos. If there
are polyps with defined outlines, it is able to enhance the
polyp, making it more detectable. If there are no outlines, for
instance if the polyp is part of other structures in the colon,
the polyp will not be more detectable, but instead other
structures that resemble that of a polyp may be mistaken
as such, producing additional false positives.

Rotation can be combined with any data enhancement
method, where it is able to increases the positive recall
while only slightly lowering the negative recall, making the
addition of rotation an overall improvement. When masking
reflections and contrast enhancement are combined, they
improve each others results by providing mutual gains,
improving the performance from their individual results. By
introducing rotation to MC, the mutual gains are not present,
making RMC produce worse results than RM and RC. When
introducing rotation to either masking reflections or contrast
enhancement, we see the highest increase in positive recall,
where RMs 31.62% is up from 22.26% and RCs 37.79%
is up from 24.62%, which makes RCs positive recall an
increase of 11.50% compared to NP. The combinations that
include contrast enhancement tend to have a higher positive
recall, while those that include masking reflections tend to
have a higher negative recall. Because of the imbalance in
the dataset, masking reflections achieves a higher F1-score
than contrast enhancement. We still view RC as the most

interesting combination because of its high positive recall
and relatively high negative recall, and it is thus a suitable
combination for various scenarios.

V. OTHER TRAINING OPTIMIZATION

We have also performed experiments with various training
optimizations where an excerpt of our results are shown in
table III. First, we performed a limited experiment with
different types of neural networks where Inception and
Resnet were tested to see the effects of the different types of
networks. They both produced very high positive recall, but
at the same time very low negative recall, making them non-
optimal for most common polyp detection scenarios. Due to
this, we did not perform in-depth experiments with Inception
and Resnet, and decided to keep the default neural network.

We then experimented with different training techniques,
consisting of LSTM and Rezoom. First a limited experiment
was performed with the different combinations since LSTM
and Rezoom can both be enabled and disabled, resulting
in four different combinations. LSTM produced the highest
positive recall while Rezoom produced the highest weighted
F1-score, which is then used for the next experiment.

Our next experiment examine examined how different
optimizers affect the results. Root Mean Square Propagation
(RMS), Stochastic gradient descent (SGD) and Adaptive
Moment Estimation (Adam) were compared, where RMS
has been used as the optimizer for all experiments until
now. SGD was run with both LSTM and Rezoom from the
previous step, where Rezoom and SGD produced the better
results, therefore only Rezoom was tested with Adam. The
results of SGD saw the highest increase in positive recall
without a large sacrifice in negative recall, almost doubling
its positive recall from 32.38% to 60.04%. Adam produced
both lower positive and negative recall compared to SGD
with no other benefits, and as such SGD was the optimizer
used in the last experiment.



(a) After 100k iterations

(b) After 500k iterations.

Figure 5. Confidence variations using 100k and 500k iterations.

For the last experiment, we combined the optimized
training with the most optimal data enhancements. From
the experiments with data enhancements, R produced the
highest weighted F1-score and RC the highest positive recall,
which is why R and RC were used in this experiment. In
combination with SGD, both produced similar results, with
R slightly higher than RC in every aspect for every confi-
dence. By applying R, improvements can be had, especially
in positive recall, with little no no decrease in negative recall.
This shows that data enhancement and training optimization
should be combined to achieve optimal results.

VI. TRAINING ITERATIONS AND CONFIDENCES

As seen above, the network is very unstable before 300k
iterations have been reached, as this is the phase where
the network makes major adjustments to its weights. From
300k until 500k iterations, the network stabilizes to a larger
extent, and while it is still adjusting its weights, the changes
in the results become minor. In [24], we demonstrated that
iterations beyond 500k iterations (up to 1000k) have no real
impact. The reason a network will often fluctuate initially,
is that it is less sure about its classifications until additional
iterations have been executed. The confidence of the network
for its classifications increases gradually, and will thus result
in less fluctuations.

Every classification a network performs is accompanied
by a confidence, a number between 0 and 1 indicating how
sure the network is of the existence of a polyp within the
image. When evaluating, a certain confidence number needs
to be used as to what will be defined as a polyp, for instance,

using 0.9 would mean that the classification needs to have a
90% certainty before we classify it as an image containing
a polyp. A comparison of confidence variations between
100k and 500k iterations is shown in figure 5. With many
confidence numbers towards the middle of the spectrum, the
results become more randomized. When training the network
further, the confidences were to a higher degree either close
to 0 or 1.

When requiring a confidence of 0.9 in evaluation, the
number of false positives are kept relatively low, but at the
same time some true positives may be missed. By changing
the required confidence, it is possible to trade false positives
for true positives. A general balance does not exist, as
different scenarios may focus on different aspects.

All detections for every video using a confidence of 10%,
30%, 50%, 70% and 90% are displayed in figure 6 together
with the ground truth that indicates which frames contain
a polyp. The figures show how the detection is spread
throughout the videos, where all true and false findings
can be read. They clearly show how different confidences
affect detection and how lowering the confidence increases
detection, but also produces additional false positives. Thus,
choosing the appropriate confidence is important, and to
avoid false positives, we have used a confidence of 90%
in most of your experiments.

(a) Split 1.

(b) Split 2

(c) Split 3.

Figure 6. Effect of various confidence scores for selected polyp-videos.

VII. CONCLUSION

It has been shown many times that neural networks
can be used for anomaly detection in medical videos. A
challenge, however, is often that data is scarce and has
artifacts. The question we have addressed in this paper is
whether data preprocessing methods improve the detection
rate. Using GI anomaly detection (polyps) as a case study,



we showed that rotation increases the overall performance,
and a combination of rotation and contrast enhancement re-
sults in the highest number of detected polyps. Additionally,
both masking reflections and contrast enhancement show
potential depending on the video. Brightness variations, on
the other hand, seems to be unable to produce positive
effects. Thus, some data enhancements improve detection
accuracy, where using Rezoom as a training technique and
SGD as a training optimizer, seems to produce the best
results where the detection is increased while keeping the
number of false positives relatively stable.
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