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ABSTRACT

Open quantum systems can exhibit complex states, for which classification and quantification are still not well resolved. The Kerr-nonlinear
cavity, periodically modulated in time by coherent pumping of the intracavity photonic mode, is one of the examples. Unraveling the corre-
sponding Markovian master equation into an ensemble of quantum trajectories and employing the recently proposed calculation of quantum
Lyapunov exponents [I. I. Yusipov et al., Chaos 29, 063130 (2019)], we identify “chaotic” and “regular” regimes there. In particular, we
show that chaotic regimes manifest an intermediate power-law asymptotics in the distribution of photon waiting times. This distribution can
be retrieved by monitoring photon emission with a single-photon detector so that chaotic and regular states can be discriminated without
disturbing the intracavity dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5127936

Quantification of regimes emerging in open quantum systems
driven out of equilibrium is a problem, which is interesting in
several respects. In particular, it could help bridging nonequi-
librium quantum phenomena with manifestations of classical
dissipative chaos, such as local instability, bifurcations, strange
attractors, etc.1 Considerable effort was devoted to quantum
generalization of Lyapunov exponents (LEs), the most popular
and powerful means to quantify classical chaos.2–4 Recently, a
new wave of research in this direction has been initiated by the
idea of out-of-time correlation functions as possible quantum
LE analogs.5,7,8 In our recent work,9 we proposed yet another
approach to “quantization” of LEs, based on unraveling of the
Markovian master equation that describes the evolution of the
system’s density matrix into an ensemble of trajectories. How-
ever, all the approaches suffer from a common problem: while it
is possible to define the corresponding observables and correla-
tors and then treat them analytically or calculate numerically, it
is much harder (or not possible at all) to access them in a real-
life experiment. Here, we demonstrate that “chaos-regularity”
transitions can be captured by looking at the statistics of dis-
sipative jump events that are accessible in quantum optics and
called these “distribution of photon waiting times.”10,11 Exem-
plifying in a simple model of an open periodically modulated

quantum system, we show that transitions from regular to chaotic
regimes (beforehand defined in terms of LEs) are marked by tran-
sitions from exponential waiting-time distributions to those with
intermediate power-law scaling. Since photon emission events
can be resolved in an experiment, e.g., by using single-photon
detectors, discrimination between chaotic and regular regimes
can, therefore, be achieved without disturbance of the system
dynamics.

INTRODUCTION

Recent progress in the fields of experimental quantum physics,
such as cavity quantum electrodynamics,12 cavity optomechanics,13

artificial atoms,14 and polaritonic devices,15 has given the theory of
open quantum systems16 a new impetus. Different from the typ-
ical single-particle models of quantum optics,10 such systems are
essentially multicomponent and thus require many-body models to
describe them.

These models, when considered out of equilibrium, display
asymptotic states that are sometimes interpreted as quantum ver-
sions of chaotic (or regular) attractors.1 Until recently, such clas-
sification was performed mostly visually, after projecting quantum
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states onto a suitable classical phase space.17–22 The quantitative
approach to dissipative Quantum Chaos23 is possible by means
of quantum versions of Lyapunov exponents (LEs).24 There is no
unique definition of quantum LEs; instead, there are several alter-
native generalizations ranging from early attempts to define the
exponents in terms of quasiclassical distributions2–4 to stochastic
Schrödinger equation,25–30 and further on to a very recent approach
based on the concept of out-of-time-correlators.5–8 However, all
these generalizations suffer a common problem: the corresponding
quantifiers are hard (or not possible at all) to measure in a real-life
experiment.

In our recent work,9 we introduced a version of quantum LEs
based on the so-called “quantum trajectory” unraveling43,44 [also
called the “Monte Carlo wave function (MCwf) method”41,42], which
replaces the original quantum Markovian master equation16 with an
ensemble of quantum trajectories. The evolution of the trajectories
is governed by a non-Hermitian Hamiltonian in a continuous-time
manner, interrupted by random jumplike dissipative events. While
this version, in principle, opens a way to theoretical characteriza-
tion of quantum dissipative chaos in physically relevant setups (e.g.,
in cavity quantum electrodynamic systems12), the experimental esti-
mation of such quantum LEs is no less challenging than for the prior
versions.

Here, we propose an experimentally feasible approach to detect
chaotic regimes in cavitylike open quantum systems. Namely, using
a periodically modulated Kerr-nonlinear cavity as a model, we
demonstrate that the transition to quantum chaos, quantified with
the LEs from Ref. 9, is associated with the appearance of an inter-
mediate power-law asymptotics in the distribution of waiting time
(that is, the time between two consequent photon emissions from
the cavity32–34). This distribution can be sampled in an experiment
by using single-photon detection techniques.35,36

MODEL

We consider a photonic mode in a leaky Kerr-nonlinear cav-
ity, periodically modulated by an external coherent EM field.17,18 Its
unitary dynamics is governed by the Hamiltonian (we set ~ = 1),

H(t) = 1

2
χ â†2â2 + iF(t)(â† − â). (1)

Here, χ is the photon interaction strength, â† and â are photon
creation and annihilation operators so that n̂ = â†â is the photon
number operator. F(t) = F(t + T) describes periodic modulation.
We use the two-valued quenchlike driving with period T, that is,
F(t) = A within 0 < t ≤ T/2 and F(t) = 0 for the second half period
T/2 < t ≤ T.

Photons can be emitted from the cavity. In principle, they can
also be pumped in by thermal environment, but here, similar to the
setups in Refs. 17 and 18, we work in the zero-temperature limit,
assuming that the pumping rate is zero. Evolution of the cavity is
described by the Lindblad master equation16,37,38

%̇ = L(%) = −i[H, %] + D(%), (2)

where the first term in the r.h.s. captures the unitary dynamics of
the system, determined by Hamiltonian (1), while the second term
reflects coupling to the environment. The dissipative term involves

a single jump operator,

D(%) = V%V† − 1

2
{V†V, %}, V = √

γ â, (3)

which describes emission of photons by the cavity into the zero-
temperature environment. The dissipative coupling constant γ is
assumed to be time-independent.

In simulations, we limit the number of photons in the cavity
mode to N so that the Hilbert space of the numerical model has
dimension N + 1 and can be spanned with the N + 1 Fock basis vec-
tors, {|n + 1〉}, n = 0, . . . , N. N is chosen to be large enough so that
the average number of photons in the cavity, 〈Nph〉, remains sub-
stantially smaller. 〈Nph〉 depends on parameters of Hamiltonian; yet
the main control parameter, which allows to control the mean num-
ber of photons, is the coupling χ .17,18 Throughout the paper, we set
χ = 0.008 and γ = 0.05. It gives 〈Nph〉 ∼ 50, so we set N = 300 and
verify that it suffices.

We make use of the quantum Monte Carlo wave function
method to unravel the deterministic equation (2) into an ensemble
of quantum trajectories.41–44 It allows us to describe evolution of the
model system in terms of an ensemble of pure states,ψ(t), governed
by the effective non-Hermitian Hamiltonian,17,18

iψ̇ = Hψ − i

2
V†Vψ . (4)

The norm of the wave function decays according to

d

dt
||ψ || = −ψ∗V†Vψ , (5)

until it reaches a threshold η, repeatedly chosen as i.i.d. random
number from [0, 1]. Then, a random jump is performed, and the
wave function norm is reset to ||ψ(t)|| = 1. After that the continu-
ous nonunitary evolution, Eq. (4), is resumed until the next quantum
jump, etc. For the model given by Eqs. (1) and (3), a quantum jump
corresponds to emission of a single photon, which can be recorded
by a photodetector.10

The density matrix sampled from a set of Mr realizations, that
originate from an initial pure state ψ init for Eq. (4), as %(tp; Mr)

= 1
Mr

∑Mr
j=1 |ψj(tp)〉 〈ψj(tp)|, converges toward the solution of Eq. (2)

at time tp for the initial density matrix %init = |ψ init〉 〈ψ init|.
Following Refs. 17 and 18, we use the complex valued observ-

able of the non-Hermitian photon annihilation operator as a
dynamical “variable”

ξ(t) = 〈ψ†(t)|â|ψ(t)〉. (6)

In the mean-field classical limit, Nph → ∞, its evolution is given by

ξ̇ = −1

2
γ ξ + F(t)− iχ |ξ |2ξ . (7)

The state of the mean-field system is described by two phase
variables, {Re ξ , Im ξ}. This system is essentially nonlinear and peri-
odically modulated time and, expectedly, exhibits a spectrum of
different asymptotic regimes, from various periodic orbits to chaotic
attractors. The parameter dependence can be visualized with a bifur-
cation diagram [Fig. 1(a)] constructed from stroboscopic values,
ξk = ξ(t0 + kT), where t0 is a transient time given to the system
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(a)

(b)

FIG. 1. Bifurcation diagrams and largest Lyapunov exponent for the model sys-
tem as functions of the modulation amplitude A in the classical (a) and quantum
(b) cases. The color-coded probability distributions for Re(ξ) are normalized so
that the maximum for every A value is set to 1. The other parameters are T = 10,
N = 300. The values of quantum LE are consistently reproduced, independent
of the dimension of the numerical model for N ≥ 250, (b) bottom panel.

to land on the corresponding attractor. In particular, one observes
that the largest Lyapunov exponent becomes positive upon transi-
tion from a fixed point to a chaotic attractor in the stroboscopic map
[see Fig. 1(b)].

QUANTUM LYAPUNOV EXPONENT

To calculate the largest quantum LE, we employ the recently
proposed method.9 It is based on the parallel evolution of fidu-
cial and auxiliary trajectories, ψf(t) and ψa(t), under Eq. (4), in

the spirit of the classical LE calculation.45 The auxiliary trajectory
is initialized as a normalized perturbed vector ψ init

a = ψ init
f + εψr,

produced with random i.i.d. entries in ψr and ε � 1. The fiducial
and perturbed observables, ξf(t) and ξa(t), typically remain close
to each other over many quantum jump events; as the difference
in the observables gets over an upper threshold, 1(tk) = |ξf(tk)

− ξa(tk)| > 1max, or below a bottom threshold 1(tk) < 1min, the
perturbed state is set back closer to the fiducial one along the
mismatch direction ψf(tk)− ψa(tk) so that |ξf(tk)− ξa(tk)| = 10;
the wave vector gets normalized and the occurred growth rate
recorded, dk = 1(tk)/10.46 The largest LE is estimated following the
divergence of the chosen observable as λ(t) = 1

t

∑
k ln dk.45

We use a recent high-performance realization of the quantum
jumps method47 to generate Mr = 102 different trajectories. First,
we allow each trajectory to evolve up to t0 = 2 × 103T in order to
arrive to the asymptotic regime, and then we follow the dynamics
of fiducial and auxiliary trajectories up to t = 103T. We determine
the dimension of the computational model, N, that would be large
enough to ensure independence of the results on the chosen value.
It has turned out that N = 150 is already sufficient for the consis-
tent calculation of the quantum LEs almost in the whole range of
modulation amplitude, A [cf. Fig. 1(b), bottom panel]. However, for
A > 3.5 oscillations of the number of photons in the cavity grow
and this leads to the distortion of the dynamics and positive LEs.
Ultimately, we find it out that choosing the maximal number of pho-
tons N > 250 provides consistency in the whole range of studied
parameters.

Additionally, we verified convergence of the maximal LE to its
asymptotic values in the regular and chaotic regimes and confirm
that the results are weakly dependent on the choice of observables
[e.g., we used photon population number, n(t) = 〈ψ†(t)|n̂|ψ(t)〉, as
an alternative] (see Fig. 2).

Depending on parameter values, interaction with the environ-
ment can strongly localize quantum trajectories on the classical
ones.17,18,26,27 Our case is notably different so that the resulting struc-
ture of the probability distribution for ξ has only a qualitative
resemblance [see Fig. 1(b), top]. Nevertheless, working in the essen-
tially quantum regime, we observe that the largest quantum LE
becomes positive [see Fig. 1(b)]. Note that the chaotic interval in
the quantum case is somewhat greater, and fine structure intervals
of classical regular dynamics are not reproduced. Such examples,
when quantization generates chaotic dynamics, are known in the
literature.27

To get a more general picture, we performed an extensive
round of calculations and obtained the two-parameter dependence
of classical and quantum largest LEs on the amplitude and period
of modulations [see Figs. 3(a) and 3(b)]. Both the mean-field and
quantum models produce visually similar structures of regular and
chaotic regimes.

WAITING-TIME DISTRIBUTION

As we pointed it out in the Introduction, quantum LEs are good
objects for theoretical and numerical analysis, but their experimental
estimation is highly nontrivial.

Can we infer information about intracavity dynamics from
what is accessible in experiment? Statistics of fluorescent photon
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FIG. 2. Convergence of finite time LEs to their asymptotic values, λ = 0 (regular
dynamics) and λ ≈ 0.08 (chaotic regime). Three individual trajectories are used
in each case. Exponents are calculated by using, first, ξ(t) as an observable,
A = 0.05, T = 0.5 (blue), A = 4.0, T = 20 (red) and second, the mean num-
ber of photons in the cavity, n(t), A = 0.05, T = 0.5 (green), A = 4.0, T = 20
(orange). Here, N = 300.

emission from cavity is one of the most popular characteristics in
quantum optics and appears promising for our purpose.33,49–51 The
other reason for the choice is that there is only one dissipative chan-
nel in our model system, and a single quantum jump corresponds

to a single photon emission so that the intracavity dynamics and
radiation are tightly bound.

Evolution of the wave vector norm between consecutive quan-
tum jumps at times {tk} is governed by Eq. (5). For the system under
study, Eqs. (1) and (3), it follows:

d

dt
||ψ || = −γ n(t)||ψ ||, (8)

as V†V = γ n̂. The norm decay from ||ψ(tk−1)|| = 1 to the random
jump threshold ||ψ(tk)|| = ηk can be approximated by an exponent
with an average rate proportional to an effective number of pho-

tons within tk−1 < t < tk, that is, sk = γ n
(eff)

k . In other words, one
can write τk = tk − tk−1 = − ln(ηk)/sk. Since ηk are random i.i.d.
numbers on [0, 1], the variable ζ = − ln(ηk) has the probability den-
sity distribution Wζ (ζ ) = exp(−ζ ). If an asymptotic density matrix
ρ has a regular structure (e.g., unity matrix or unimodal distribu-
tion), then n ≈ const and, hence, s ≈ const. In this case, the intervals
between jumps also follow Poisson distribution, Wτ (τ ) = exp(−τ).
Another example is a bimodal asymptotic solution, a result of the
quantum analog of period doubling bifurcation,20,21 also a regular
one, that would produce a superposition of two exponents.

When the system has a chaotic attractor, the dynamics of
observables, in particular, n(t), becomes irregular. An example for
a quantum trajectory deep in the chaotic regime, A = 4.0, T = 20, is
presented in Fig. 4(a). It is seen that the norm decay rates between
each jump differ substantially. Therefore, the probability distribu-
tion Ws(s) cannot be deduced from simple arguments any longer. At
the same time, it can be estimated numerically [see Fig. 4(b), upper
panel]. The results indicate that the distribution becomes much
broader for A > 0.4, with transition to chaos [Fig. 4(b), lower panel].
Correspondingly, the resulting distribution of interjump intervals,

(a) (b)

FIG. 3. Largest Lyapunov exponent as a function of amplitude A and period T of the modulations for the model system in (a) the mean-field and (b) quantum versions
[selected points correspond to those in Fig. 5(b)]. Here, N = 300.
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(a) (b)

FIG. 4. (a) Wave function evolution for an individual quantum trajectory deep in the chaotic regime for A = 4.0, T = 20 (color) and expectation n(t) (blue line). (b) PDF of
average norm decay rates,Ws(s), between quantum jumps (top). Corresponding largest quantum LE (red) and an exponent for the power-law fit ofWτ (τ ) (blue, where valid).
Note simultaneous broadening ofWs(s), transition to λ > 0, and appearance of the power-law interval in the time between quantum jumps distribution. Here, N = 300.

Wτ (τ ), will no longer be exponential. In the complete absence
of a theoretical background in this case, we turn to numerical
simulations.

Our main finding is presented in Fig. 5. The key observation
is that the waiting-time distribution becomes non-Poissonian and

acquires a power-law intermediate scaling when the largest quantum
LE becomes positive [Fig. 5, see also Fig. 4(b), lower panel].

We performed massive sampling over the parameter plane
{A, T}. At every parameter point, the power-law fitting of the
sampled Probability Distribution Function (PDF) was obtained by

(a) (b)

FIG. 5. (a) PDF of time intervals between quantum jumps for selected parameter values, A = 0.1, T = 1 (blue), A = 2.0, T = 20 (cyan), and A = 4.8, T = 48 (green), cf.
color matched points in Figs. 3(b) and 5(b), power-law and exponential fits. (b) The heat map for the power-law exponent on the amplitude-period of modulation parameter
plane; black color indicates its failure [compare to the largest LE diagram, Fig. 3(b)]. Here, N = 300.
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the least squares linear regression for the log–log scaled distribu-
tions. The quality of fit was characterized by the coefficient of
determination,31 R2 ∈ [0, 1], with larger values corresponding to bet-
ter fit. We vary the interval of durations to search for the best fit, the
power-law exponent α, and request that it spans over at least one
decade for the horizontal axis and has R2 > 0.98.48 Otherwise, the
power-law hypothesis is rejected [black zones in Fig. 5(b)].

It is noteworthy that the zones, where power-law asymptotics
in the waiting-time distribution is present, are well correlated with
the zones, where the corresponding maximal quantum LE is posi-
tive [cf. Fig. 3(b)]. Moreover, there are concordant variations of the
values of power-law exponents and of the largest LE.

CONCLUSIONS

By using an open ac-driven Kerr cavity as a model, we found
that the photon waiting-time statistics can serve as a good diag-
nostic tool to detect dissipative quantum chaos by the appearance
of power-law intermediate asymptotics (which can be alternatively
characterized by the positive largest quantum LE). The theoretical
foundation of this observation remains a challenge. We conjecture
that the first step would be to assume the statistical independence of
the consecutive times tj−1, tj, tj+1 (which is not guaranteed though)
and then to implement the machinery used by Scherr and Mon-
troll to derive power-law statistics of photocurrent in amorphous
materials.39 Implementation of this program is the subject of future
study.

Our results open a new perspective for quantification of
regimes emerging in open quantum systems far from equilibrium,
especially in such fields as quantum electrodynamics, quantum
optics, and polaritonic devices, where photon emission statistics
is an established and conventional tool.33,49–51 Recently, substan-
tial progress in a nondemolition detection of individual emitted
microwave photons has been achieved (see, e.g., Ref. 40) so that the
field of microwave quantum optics represents the most appealing
opportunity to explore dissipative quantum chaos by waiting-time
statistics.

Potential links to self-organized criticality52,53 and Lévy flights
(recently used to model power-law flip statistics of open spin
systems54) are other issues worth considering.
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