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1 Introduction 

Supervised Learning is one of the most central tasks in Machine Learning and 
Pattern Recognition. However, the latter task becomes intrinsically challenging 
whenever the data to be classified is not easily separable in the feature space. A 
myriad of classification algorithms have been proposed in the literature with 
a variety of behaviors and limitations [1-3]. Examples of these algorithms 
include Neural Networks, SVM and Decision Trees. 

A broad class of classification algorithms such as SVM and perceptron 
relies upon defining a mathematical function with weights that can efficiently 
separate two or more classes of data. T he weights are unknown and learned 
from the training data. These functions are either linear, polynomial, or for 
more complex patterns, kernels equivalent to mapping the data to a many­
dimensional space where the classes are separable by a hyperplane. 

However, the main difficulty is to choose the nature of the function or 
kernel. Often, the "best" hyperplane, or line in two dimensions that separates 
classes does not follow the mathematical properties of a function. The "best" 
separator can for example be a polygon encircling certain data points, which is 
not a function and therefore cannot straightforward be outputted by SVM or 
similar classifiers. The accmacy of the SVM is dependent on the right choice 
of the kernel function which is not an easy task given the unlimited number 
of available kernels. 

Figure 1 shows an example of labeled data where it is not possible to per­
fectly separate the data with one function simply because any line separating 
the data perfectly will have multiple y-values of some of the x-values -
which defies the definition of mathematical functions. SVM deals with this by 
projecting the data in high dimensional space using the "kernel trick" where 
the data can be easily separable. 

This paper introduces PolyLA, a novel classification scheme operating in 
two dimensions1 using LA and that does not involve a "kernel trick" whenever 
the data is not easily separable. As in [4], PolyLA deals with the classification 
problem in a completely different manner from existing classifiers. Instead of 
relying upon mathematical functions for separating the classes, PolyLA sur­
rounds the classes with polygons guided by reinforced random walk and ray 
casting. Some of the best !mown classification techniques, such as support vec­
tor machine (SVl\tI) and perceptron-based classifiers, rely upon constructing 
mathematical functions having weights that efficiently separate two or more 

1 It is easy to generalize the current model to multi-dimensional by considering pairs of 
dimensions. In this article, we limit ourselves to the two-dimensional case as a proof of 
concept. Experiments for the multi-dimensional case can be provided if the requested by the 
referee. 



classes of data in the feature space. In two-dimensional spaces, the separa­

tion boundary might be non-linear and thus the decision boundaries might 

be complex. SVM deals with this situation by either projecting the data on a 

higher-dimensional space or using a kernel trick, which provides a separator not 

limited to a linear or polynomial function. The adoption of a kernel is equiv­

alent to transposing the data to many dimensions, but the accuracy depends 

on the right choice of the kernel functions as well as on several other param­

eters. The latter choice is usually performed through manual trial and error. 

The presented approach deals with classification problems in two-dimensional 

Euclidean feature space by building "separator" with many-sided polygons. 

The polygons are extrapolated from reinforced random walks with a prefer­

ence towards encapsulating all items from one class and excluding from the 

encapsulation any items from other classes. In this manner, emerging poly­

gons encapsulate each class in such a way that they can be used as classifiers. 

The classification takes place by resorting to ray casting of unknown items so 

that to identify if an item is contained in the polygon. Each item is labeled 

depending on whether or not it is inside the polygon. 

(J 0 C 0 {_, 0 ;) 0 <) 0 

I I 
I 

0 0 0 •'.) 0 q 0 ,, 0 

0 0 • 0 0 () 0 

I I 

I I 
0 0 - ') 0- ---0 

• • 
• :) 0 0 

0 0 ' ., ,� 0 () 

,;.-; • 0 0 0 

• • • 0 0 ,, 

• - ... � 
• 

0 �(, 0 

:• 
I 

• 
I 

I I I I 
0 ,:'., 0 () 0 C 

Fig. 1 Example of simple two class classification scenario with the classes Blue (T1) and 
Red (T2) 

1.1 Outline 

The paper is organized as follows. Section 2 introduces the problem that we 

attempt to solve. Section 3 gives a brief introduction to the theory of LA which 

is fundamental for our approach named PolyLA. Section 4 reviews relevant 

state-of-the-art in the area of classifiers as well as related LA-based classifiers. 



Section 5 continues with introducing our solution: PolyLA as a method for 
creating polygons for classification with two classes and corresponding results. 
Section 6 shows empirical results for PolyLA and compares it with comparable 
algorithms, namely SVM. Finally, in section 7, we draw final conclusions and 
give insights into future work. 

2 Problem formulation 

Classification of unknown items based on labeled data is a supervised learning 
problem. In line with common practice, the problem is divided into two phases, 
namely (1) training and (2) classification: 

1. Training phase: The aim of this phase is to create polygons that encircle
classes of items so that the polygons separate the training classes from each
other.

2. Classification phase: In this phase, we use the polygons as a basis to
determine which class a new unknown item to be classified belongs to.
This is achieved by finding which polygon(s) it is part of.

Further, this paper presents two distinct variants of PolyLA:

- LA polygon classification for two-class classification problems.
- LA polygon classification for multi-class classification problems.

2.1 The training phase 

This training phase can be formulated as a combinatorial optimization prob­
lem. The training data, T, consists of multiple classes. The data is mapped 
to a two-dimensional Euclidean space as follows. A grid-like bidirectional pla­
nar graph G(V, E) with vertices i E V and edges (-i, j) E E is created where 
i, j E V. All vertices have x- and y- coordinates and corresponding edges so 
that an edge ( i, j) represents the possibility to move from vertex i to j. The 
vertices in the graph are defined so that the first vertex, 1 always has lower 
x- and y-values than all the training data. Similarly, the last vertex, N, has
:i:- and y-values larger than the training data. Hence, all the training data
ti ET lies somewhere between vertices 1 and N, 1 < t.; < NVt,ET· 

An example is shown in Figure 1. In this example, T consists of 19 items, 
9 in the blue class T1 and 10 in the red class T2. The grid G(V, E) is created 
so that all items are located in the grid. 

To deduct, the main purpose of the training phase is to find a polygon, 
s, that encircles and separates the training classes. Using the example form 
Figure 1 the task is to find an s that encircles the first training data T1, but 
not T2 - a polygon that separates well T1 from T2. 

A polygon s is therefore a list of vertices and edges so that the first vertex 
ins is equal to the last vertex ins, and all vertices are connected together with 



corresponding edges. With two classes there is only a need for one polygon to 
perfectly separate the data. 

Whether a training element ti is inside a polygon s E S is defined formally 
as: 

h(ti ,s) = 1 ifli is inside of s 

h(t;, s) = 0 otherwise 
(1) 

Ideally, all items in class one (e.g. T1) should be within the polygon, while 
all items in the other classes should fall outside the polygon. Any item, t; 
from class T1 that is correctly within the polygon s will yield h(t;, s) = 1, 
and, similarly, any item, ti not part of class T1 and is correctly outside of the 
polygon s will yield 1 - h(tj

, s) = l. For all other items, h(., s) will give 0. 
Further let f ( s) be a function that combines h( t;, s) for all t; E T so that an 
ideal polygon that encapsulates all items in T1 and no other items will yield 
an f ( s) = 1. An incorrect polygon, that in a flawed way encapsulates all other 
items than T2 and none in T1 , will yield an J(s) = 0.2

The overall aim of the training phase can therefore be stated as to find 
a polygon S* for each class, consisting of vertices and edges, that minimizes 
f(s*). Thus, formally, we aim to find an S* ES so that f(s*) � f(s) ES using 
an LA-based random walk on the grid as explained in section 3. 

Multi-class classification problem In the case of classification with more than 
two classes , one polygon is not sufficient to separate all classes. As an example, 
let us suppose there are three classes: T1 ,T2 , and T3 . In simple term, we need 
a classifier that identifies an item as belonging to T1 , one to T2, and one to 
T3 . This is done by finding one polygon that separates T1 from the rest, and 
so on. 

The output from the training phase is therefore a list of classifiers rather 
than one single 8*. Following the same example with three classes, we have 
one classifier that decides whether an item is part of T1, S*T

i
, and one that 

decides whether an item is part of T2, S*r
2

• If it is neither part of T1 nor T2, 

it naturally belongs to T3 . Hence, the number of classifier is one less than the 
number of classes. 

For N classes, we get the following N - l classifiers: 

(2) 

2.2 The classification phase 

The classification phase resorts to the polygons from the training phase. The 
classification task is to find which class a new item with unknown label, tk, 
belongs to. 

2 f(s) is formally defined in Section 5 and Equation 14. 



Since the training phase produces one polygon, S*, the problem is reduced 
to simply determining whether a new item is within or outside S*. The problem 
can be stated as follows: given the polygon S* and a new item with unknown 
label, tk, which class does tk belong to? Using the update function from equa­
tion 1, given two classes T1 and T2 and the polygon S* we can define the 
following decision rules: 

tk is of class T1 if h(tk,s*) = 1 

tk is of class T2 if h(tk, S*) = 0 (3) 

Multi-class classification problem The classification phase uses the set of poly­
gons, S*all (see equation 2), from the training phase. The task is to classify 
an unlabeled item tk, The following decision rules are used in the case of 
multi-class classification: 

tk is of class T1 

tk is of class T2 

if h(tk, S*T,) = 1 

if h(tk, s*r
2

) = l 

tk is of class TN-1 if h(tk, S*r
N

_,) = 1 

tk is of class TN otherwise 

(4) 

In simple the terms, the above classification rules mean simply that if the 
item to be classified is part of the first polygon 8*y

1
, it should be classified 

as the label corresponding to the first polygon, T1 . Otherwise, if it is part of 
S*To, it should be classified as T2, and so on. However, if the item is not part 
of any of the polygons of the TN-l classes, it will be labelled as the class TN. 

2.3 l\ilulti-dimensional Classification 

It is possible to extend PolyLA to support multiple features by splitting a 
multi-feature classification problem into several two-dimensional sub-problems 
which are trained independently. The overall classification is a combination of 
the results from all sub-problems through a majority voting scheme. More 
precisely, the overall class prediction is derived by taking the most common 
class prediction from all the sub-problems, as illustrated in Figure 2 using the 
majority vote rule. 

In this sense, PolyLA constructs solutions in all the planes that the data 
set consists of, and handles each plane individually. The number of possible 
planes depends on the number of features in the data set. For example, a 
three-dimensional feature space with axes x, y and z has three planes xy, xz 
and yz (See Figure 2). More generally, the number of planes for n dimensional 
feature space is simply equal to the number of dimension pairs and is given 
by: G). Inevitably, the number of planes explodes as the number of features 
increases. However, feature selection and reduction methods could be used to 
deal with this problem. 
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Fig. 2 Overview of training and classification for PolyLA with several features. 

3 Learning Automata 

The fundamental tool which we shall use in most of our research involves 
Learning Automata (LA). LA have been used in systems that have incom­
plete knowledge about the Environment in which they operate [5-11]. The 
learning mechanism attempts to learn from a stochastic Teacher which models 
the Environment. In his pioneering work, Tsetlin [12] attempted to use LA 
to model biologica.l learning. In general, a random action is selected based 
on a probability vector, and these action probabilities are updated based on 
the observation of the Environment's response, after which the procedure is 
repeated. 

The term "Learning Automata" was first publicized and rendered popu­
lar in the survey paper by Narendra and Thathachar. The goal of LA is to 
"determine the optimal action out of a set of allowable actions" [5]. 

With regard to applications, the entire field of LA and stochastic learning 
has had a myriad of applications [6-8, 10, 11], which (apart from the many 
applications listed in these books) include solutions for problems in network 
and communications [13-16], network call admission, traffic control, quality of 
service routing, [17-19], distributed scheduling [20], training hidden Markov 
models [21], neural network adaptation [22], intelligent vehicle control [23], 
and even fairly theoretical problems such as graph partitioning [24]. Besides 
these fairly generic applications, with a little insight, LA can be used to assist 
in solving (by, indeed, learning the associated parameters) the stochastic res­
onance problem [25], the stochastic sampling problem in computer graphics 
[26], the problem of determining roads in aerial images by using geometric­
stochastic models [27], and various location problems [28]. Similar learning 
solutions can also be used to analyze the stochastic properties of the random 



waypoint mobility model in wireless communication networks [29], to achieve 
spatial point pattern analysis codes for GISs [30], to digitally simulate wind 
field velocities [31], to interrogate the experimental measurements of global 
dynamics in mag11eto-mechanical oscillators [32], and to analyze spatial point 
patterns [33]. LA-based schemes have already been utilized to learn the best 
parameters for neural networks [22], optimizing QoS routing [19], and bus 
arbitration [14] - to mention a few other applications. 

In the field of Automata Theory, an automaton [6-8, 10, 11] is defined as a 
quintuple composed of a set of states, a set of outputs or actions, an input, 
a function that maps the current siate and input to the next state, and a 
function that maps a current state (and input) into the current output. 

Definition 1: A LA is defined by a quintuple (A,B,Q,F(.,.),G(.)), where: 

1. A = { a1, a2, . .. , a,.} is the set of outputs or actions that the LA must
choose from, and a:(t) is the action chosen by the automaton at any instant
t.

2. B = {(31 , (32 , ... , /3m} is the set of inputs to the automaton. (3(t) is the input
at any instant t. The set B can be finite or infinite. The most common LA
input is B = {O, 1}, where f3 = 0 represents reward, and f3 = 1 represents
penalty.

3. Q = { q1 , q2, ... , q8 } is the set of finite states, where Q(t) denotes the state
of the automaton at any instant t.

4. F(., .) : Q x B H Q is a mapping in terms of the state and input at
the instant t, such that, q(t+ 1) = F[q(t),f3(t)]. It is called a transition
function, i.e., a function that determines the state of the automaton at any
subsequent time instant t + 1. This mapping can either be deterministic or
stochastic.

5. G(.): is a mapping G : Q H A, and is called the output function. G de­
termines the action taken by the automaton if it is in a given state as:
a:(t) = G[q(t)]. With no loss of generality, G is deterministic.

If the sets Q, B and A are all finite, the automaton is said be finite.
The Environment, E, typically, refers to the medium in which the au­

tomaton functions. The Environment possesses all the external factors that 
affect the actions of the automaton. Mathematically, an Environment can be 
abstracted by a triple (A, C, B). A, C, and B are defined as follows: 

l. A= { 0:1, 0:2, ... , ar } is the set of actions.
2. B = {(31 , (32 , ... , (3111 } is the is the output set of the Environment. Again, 

we consider the case when m = 2, i.e., with f3 = 0 representing a "Reward", 
and f3 = 1 representing a "Penalty". 

3. C = { c1, c2, ... , er } is a set of penalty probabilities, where element c; E C
corresponds to an input action ai.

The process of learning is based on a learning loop involving the two enti­
ties: the Random Environment (RE), and the LA, as described in Figure 3. In 
the process of learning, the LA continuously interacts with the Environment 



to process responses to its various actions (i.e., its choices). Finally, through 
sufficient interactions, the LA attempts to learn the optimal action offered by 
the RE. The actual process of learning is represented as a set of interactions 
between the RE and the LA. 

State Q 

Transition Function F

Input �- Output Function G Output a 

A� H 
Automaton 

Penalty probabilities C 

Fig. 3 Feedback Loop of LA. 

The automaton is offered a set of actions, and it is constrained to choose 
one of them. When an action is chosen, the Environment gives out a response 
(3(t) at a time "t". The automaton is either penalized or rewarded with an 
unknown probability ci or 1 - ci, respectively. On the basis of the response 
(3(t), the state of the automaton ¢(t) is updated and a new action is chosen 
at (t+l). The penalty probability c; satisfies: 

c; = Pr[(3(t) = lJa(t) = ai] (i=l,2, ... ,R). 

We now provide a few important definitions used in the field. P(t) is re­
ferred to as the action probability vector, where, P(t) = [p1 (t),P2(t), ... ,p,.(t)]1', 
in which each element of the vector. 

,. 

Pi(t) = Pr[a(t) = ai], i = 1, ... , r, such that I>i(t) = 1 \:/t. (5) 
i=l 

Given an action probability vector, P(t) at time t, the average penalty is: 

M(t) = E[/3(t)JP(t)] = Pr[(3(t) = lJP(t)] 
r 

= L Pr[(3(t) = 1 Ja(t) = ai] Pr[a(t) = ai] 
i=l 

r 

= LCiPi(t). 
i=l 

(6)



The average penalty for the "pure-chance" automaton is given by: 

1 
,. 

Mo= - � e;.
r D 

i=l 

(7) 

As l H oo, if the average penalty M(t) < l\110 , at least asymptotically, the au­
tomaton is generally considered to be better than the pure-chance automaton. 
E[M(t)] is given by: 

E[M(t)] = E{E[t](t)[P(t)]} = E[tJ(t)]. 

A LA that performs better than by pure-chance is said to be expedi ent. 

Definition 2: A LA is considered expedient if: 

limt>---+ooE[M(t)] < Mo. 

(8) 

Definition 3: A LA is said to be absolutely expedi ent if E[M(t + l)[P(t)] <
M(t), implying that E[M(t + l)] < E[M(t)].

Definition 4: A LA is considered optimal if limt>---+ooE[M(t)] 
c1 = mini{ci}. 

c1,where 

It should be noted that no optimal LA exist. Marginally sub-optimal perfor­
mance, also termed above as E-optimal performance, is what LA researchers 
attempt to attain. 

Definition 5: A LA is considered E-optimal if: 

limn>---+ooE[M(t)] < Cl+ E, (9) 

where E > 0, and can be arbitrarily small, by a suitable choice of some param­
eter of the LA. 

3.1 Classification of Learning Automata 

3.1.1 Deterministic Learning A ut,omata 

An automaton is termed as a deterministic automaton, if both the transition 
function F(., .) and the output function G(.) are deterministic. Thus, in a 
deterministic automaton, the subsequent state and action can be uniquely 
specified, provided the present state and input are given. 

3.1.2 Stochastic Learning Automata 

If, however, either the transition function F(., .), or the output function G(.) 
are stochastic, the automaton is termed to be a stochastic automaton. In such 
an automaton, if the current state and input are specified, the subsequent 



states and actions cannot be specified uniquely. In such a case, F(., .) only 
provides the probabilities of reaching the various states from a given state. 

In the first LA designs, the transition and the output functions were time 
invariant, and for this reason these LA were considered "Fixed Structure 
Stochastic Automata" (FSSA). Tsetlin, Krylov, and Krinsky [12] presented 
notable examples of this type of automata. 

Later, Vorontsova and Varshavskii introduced a class of stochastic au­
tomata known in the literature as Variable Structure Stochastic Automata 
(VSSA). In the definition of a VSSA, the LA is completely defined by a set of 
actions (one of which is the output of the automaton), a set of inputs (which 
is usually the response of the Environment) and a learning algorithm, T. The 
learning algorithm [8] operates on a vector ( called the Action Probability vec­
tor). 

Note that the algorithm T: [0,1 JR x A x B ➔ [0,l]R is an updating scheme 
where A= {a1, a2, . .. , aR}, 2 � R < oo, is the set of output actions of the
automaton, and B is the set of responses from the Environment. Thus, the 
updating is such that 

P(t+l) = T(P(t), a(t), /3(t)), 
where P(t) is the action probability vector, a(t) is the action chosen at time 
t, and /3(t) is the response it has obtained. 

If the mapping T is chosen in such a manner that the Markov process 
has absorbing states, the algorithm is referred to as an absorbing algorithm. 
Many families of VSSA that posses absorbing barriers have been reported [8]. 
Ergodic VSSA have also been investigated [8, 34]. These VSSA converge in 
distribution and thus, the asymptotic distribution of the action probability 
vector has a value that is independent of the corresponding initial vector. 
While ergodic VSSA are suitable for non-stationary environments, absorbing 
VSSA are preferred in stationary environments. 

4 Related Work 

4.1 Distributed LA on a Graph 

Misra and Oommen pioneered of the concept of concept of LA on a graph 
using pursuit LA [13, 35, 36] for solving the stochastic shortest path problem. 
Li [37] used a type of S LA [38] to find the shortest path in a graph. Beigy and 
Meybodi [39] provided the first proof in the literature that shows the conver­
gence of distributed LA on a graph for a reward inaction LA. For applications 
of distributed LA on a graph in the field of computer communications, we refer 
the reader to the work of Torkestani and his collaborators [40�42]. 

4.2 LA for classification and function optimization 

In order to put our work in the right perspective, we will briefly discuss dif­
ferent classification schemes relevant to this work from the field of LA theory. 



In general terms, the distinguishing characteristic of LA-based learning 
is that the search for the optimizing parameter vector is conducted in the 
space of probability distributions defined over the parameter space, rather 
than in the parameter space itself [43]. In Machine Learning, the most common 
method for building a classifier is to conduct a search over the parameter space 
using optimization techniques such as gradient descent, while the common and 
recurrent theme reported in the literature when building a classifier based on 
LA is to work in a probability space rather than a parameter space. The main 
advantage of working in a probability space is better resilience to noise. This 
resilience to noise was demonstrated in [43] where the true label of each data 
point in the training data is noisy in the sense that it is revealed by an Oracle 
according to a faulty model. It was demonstrated in some cases, LA performs 
better than other classical classification algorithms such as feedforward neural 
networks even with discretized parameter space, and thus a limited number 
of possible parameters which might reduce the accuracy of the scheme [43]. 
It is worth mentioning that Continuous Action LA (CALA), in contrast to 
classical LA, does not discretize the parameter space and rather operates on a 
continuous parameter space where the choices of the parameter is drawn from 
a time-varying sampling distribution that is adjusted based on ideas borrowed 
from the field of reinforcement learning [44]. 

In [44], another structure of LA algorithms used for classification is pre­
sented which possesses a multi-layer representation similar to neural networks. 
The actions of the first level LA are real values parameters of the hyperlanes. 
The second level of LA are Boolean decisions regarding which hyperlanes to be 
included to create convex sets using an AND operation. The final layer of LA 
performs an OR operation on the outputs of the second layer units. Therefore, 
the discriminant is a Boolean expression consisting of linear inequalities [44]. 
Similar ideas were applied in order to learn the decisions trees classifiers using 
LA teams [45] where an individual LA can be used to learn the best split rule 
at at a given node. 

A closely related work to ours is due to Thathachar and Sastry [46] where 
the authors use a team of LA in order to find the optimal discriminant func­
tion in a feature space. The discriminant functions are parametrized and an 
LA is attached to each parameter. The LA team is involved in a cooperative 
game with common payoff. The general theme is to classify the next pattern 
with the chosen discriminant function and to either reward or penalize the 
joint action of to the team depending on whether the classification agrees with 
the true label or not. Later, Santharam et al. [47] proposed to use continuous 
LA in order to deal with the disadvantages of discretization, thus allowing an 
infinite number of actions. For an excellent review on the application of LA 
to the field of Pattern Recognition we refer the reader to [44] . In [48], Zahiri 
devised an LA based classifier that operates using hypercubes in a recursive 
manner. Vve believe that the latter idea can be used to extend our current so­
lution: PolyLA for handling multi-dimensional classification problems. In [49], 
the authors have proposed LA optimization methods for multimodal func-



tions. Through experimental settings, the performance of these algorithms 
were shown to outperform genetic algorithms. 

Some improvements of the latter algorithm was introduced in [50] to better 
remove and regenerate the hypercubes and to better update the LA probabil­
ities which yielded better accuracy. 

In [51], the authors introduce the a combination of the LA and genetic 
algorithms for real-valued function optimization. The latter algorithm termed 
GLA bears similarity to the Population-based Incremental Learning algorithm. 
The main task in Pattern Recognition is to output a class label from a feature 
vector given as input. In [52], LA was used where the actions of the LA are 
the possible classes. An LA gets rewarded or penalized in the training phase 
depending on the real class of the input. However, according to Barto and 
Anand an: "an action is optimal only in the context of certain .feature vectors" 

[52]. This problem is known as associative learning where the aim is to learn 
to associate different inputs to different actions. 

IVloreover, LA was also used to learn the parameters of neural networks as 
an alternative of the classical gradient descent methods [53]. 

4.3 Swarm Intelligence for classification 

Swarm intelligence denotes a set of nature-inspired paradigms that have re­
ceived a lot of attention in computer science due to its simplicity and adapt­
ability [54]. Ant Colony Optimizaiton (ACO) figures among the most popular 
swarm intelligence algorithms due to its ability to solve many optimization 
problems. ACO involves artificial ants operating a reinforced random walk 
over a graph. The ants release pheromones in favorable paths which subse­
quent ant members follow creating a reinforcement learning based behavior. 
The colony of ants will thus concentrate its walk on the most favorable paths 
and in consequence iteratively optimize the solution [55]. 

Recently, work on ACO for classification where the ants perform walks to 
separate classes has been published [56-58,4]3. The approach, named Poly­
ACO, relies upon ants walking in two and many dimensions to circumvent 
and separate classes from each other, and in this way constructing decision 
boundaries not limited by linear or polynomial functions. Our current work 
is inspired by PolyACO [4] which pioneered the idea of using the reinforced 
random walk over a polygon for solving classification problem. There are two 
main differences between PolyACO, and between our approach Poly LA. First, 
PolyLA is less computationally intensive than PolyACO as the latter uses 
global updates while the former resorts to local updates. In fact, because of 
the evaporation effect of the trails, all the pheromones of all edges in the graph 
need to be updated at each iteration in PolyACO. In PolyLA, local updates 
are performed as only the LA probabilities of the edges of nodes along the cho­
sen path are adjusted. Despite the simplicity of PolyLA, we shall show that 

3 By some of the authors of this paper 



it exhibits comparable performance to PolyACO in the experimental Section 
6. The second difference lies in the fact that PolyLA uses negative feedback
update by virtue of applying the theory of LA. The term negative feedback
was reckoned by Di Caro and Dorigo in their seminal work [59] where they
contrast LA and ACO approaches for distributed routing over a graph. In
[59], Di Caro and Dorigo pointed out the difficulty of creating LA systems
that perform well over graph problems due to stability problem. According
to Di Caro and Dorigo [59], " it would be interesting to investigate the use of

negative reinforcements, e·ven if it can potentially lead to stability problems,

as observed by people working on older automata systems". In simple words,
negative feedback arises as each node involved in the chosen path performs
local updates by reducing the choice probability of the non-walked edge while
increasing the choice probability of the edge lying along the nodes of the cho­
sen path at the given iteration. ACO only uses positive feedback as the edge
along the walked path are reinforced via pheromones. In this paper, we pro­
vide theoretical results that show that LA converge to an optimal solution.
The theoretical results are novel in the field of LA as this work is one of the
few works that presents formal proofs for the convergence LA on a distributed
graph while related LA works usually conjecture similar theorems [13, 35, 36].

4.4 Support Vector Machine 

Classification problems usually involves finding classification boundaries in fea­
ture spaces. Among the early and most popular classifier figures the perception 
algorithm. 

Perception works based on "error-driven learning" where it iteratively 
learns a linear separator model by adjusting the weights of the model whenever 
it misclassified an item from the training data. 

However, the major limitation of perception algorithm is the fact that it 
only finds a linear decision boundary which works well for linearly separable 
data but fails to handle the case of non-linearly separable data. In order to 
deal with the limitation of linear classifier, non-linear SVM variants were pro­
posed. SVM tries to circumvent over-fitting by choosing the maximal margin 
hyperplane where the margin is the smallest distance between the decision 
boundary and any of the data points. 

A powerful concept in SVM is the "kernel trick" equivalent to mapping 
the data to higher-dimensional feature space in which the data items can 
be separable. Despite the well recognized performance of SVM in machine 
learning community, the task of choosing the right type of kernel, for example, 
linear, polynomial, Gaussian is considered as a black art! 

5 PolyLA 

This section presents our approach for the two-class classification by introduc­
ing PolyLA. For the training phase, it maps the classification problem to a 
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Fig. 4 Overview of approach applied to a simple classification problem. 

combinatorial optimization problem over the set of all different polygons in 
a grid system and by formally specifying an appropriate cost function that 
encircles one class. Thus, PolyLA trains the classifier by defining a polygon s. 

Subsequently, it uses s with ray casting to find if an item is part of the s.

Figure 4 presents an overview of the approach in the case of a simple two­
class classification problem. The data is separated using a team of distributed 
LA yielding a polygon. Next, the polygon is used in the classification with ray 
casting. In this example, the first item to be labeled will be classified as a T1 
( "Class 1") since it is shown to be inside the polygon, while the second item 
will be classified as T2 ( "Class 2") since it is outside the polygon. 

In order to use a team of distributed LA for encircling points into polygons, 
we resort to a cost function that measures the quality of PolyLA solution. In 
order to find whether a point is within a polygon we use ray casting. 

5.1 Distributed LA 

At each epoch, a polygon is chosen randomly according to a distribution over 
a set of possible paths. The polygon represents a self enclosing path where the 
source coincides with the destination. The observed performance ( classifica­
tion accuracy ) is used to reinforce the polygon by increasing the probability 
of choosing it again . Since the paths yielding low performance receive weak 
reinforcement signals, they are chosen less frequently. Thus the scheme can 
adaptively focus more resources on paths that yield high performance. 

Given a grid modeled as a graph G = (V, E), where V = { 1, ... , m} is 
the set of nodes in the graph, E is the set of directed links in the graph. We 
attach a LA to each node in the graph. The action of each LA attached to a 
node is the choice of the next hop (neighbor node). Let N(i) be the set of the 
neighbors of a node i. 

The automaton's state probability vector at the node i at time tis irf (t) =
[1rf?(t).]N(i)(j), 1rE(t).]N(i)(2), ... 1rf:?

n
(t).]N(i)(m)]. Where ]N(i) is the indi­

cator function which is such ]N(i)(j) equals 1 if node j E N(i) otherwise 
]N(i) (j) = 0. This simple notation is just to emphasize that the only actions 
are the neighbors of the node i. Note also that 1rf,?(t) = 0. The normalized 
feedback function (or reward strength) is given by f(s(t)), where s(t) is the 
path taken at instant t. The function f (.) will be specified in the next section. 



Loosely speaking f(.) measures the fitness of the solution taking values from 
[O, l] where O is the lowest possible reward while 1 is the highest reward. 

The LA update equations at node S are given by: 

(10) 

'\¥here u is the next hop chosen by the LA attached at the source S.

if j = u
else 

(11) 

Note that, initially 
1rfi0) = IN(S)I' for j E N(S).

Similarly, we can define the equation for the update along the path s(t) 
that starts at the source node S and ends at destination node D = S. 

With the updating formula (Equation 10), we can show that the probability 
distribution formula converges to the distribution that satisfies the following 
property if the optimal polygon is unique. 

D {
1 if j = j*

71's· = 

1 0 else 
(12) 

Algorithm 1 summarizes the entire process in a high-level pseudo code 
algorithm of PolyACO. 

Algorithm 1 High-level pseudo code algorithm for PolyLA 
1: CONSTRUC'LENVIRONMEN'l'(training_data) 
2: while Not all the LA converged along a self-enclosing path do 
3: Next Nodej +- according to 1r1:J

j 
4: while Node not at target D do 
5: SELEC'LNEX'LVERTEX(According to Probability Vector at previous vertex) 
6: s(t) +- s(t) U Last visited vertex by LA 
7: end while 
8: f(s(t)) +- Classification Performance of Path s(t) 
9: for all successive pairs of vertices (i,j) in in path s(t) do 

10: 1rf(t + 1) = 1r{J(t) + .Af(s(t))(l - 1r{J(t)) 
11: end for 
12: end while 

Example : Suppose for example that from node S, node j1 is visited, subse­
quently node j2 then node j3 then node j4, then node S again. Hence, all 
the probability distributions xf(t), xfi (t), 1r£(t), xj;(t), x£(t), are updated 
according the value of the path s(t) = U1, J2, Js, j4, S). 

Theorem 1 Let s* is path yielding the highest f(s). And let i* a node along 
s*. T¥hen the learning gain ,\ is sufficiently small, 1rf. j in the cross-correlation 
learning algorithm converges to the scalar 0fl which yields the highest accuracy, 



i.e. limt➔= Plrif? j - Bf.
J

I > E = 0, where Bf. 
j 

= 1 if both node i and j are
along the optimal path otherwise, 0.f.

j 
= 0 if i along the best path while j is

not.

Proof We shall prove that the learning algorithm defined converges to the 
optimal solution defined by the edges of the optimal polygon. 

In the stochastic network environment, according to the Kushner's weak 
convergence method [60] and following the proof in Vazquez-Abad and Mason's 
work [61] as well as the proof by Li, Mason and Rabatt [37] we can derive from 
the cross-correlation algorithm that as the learning gain >, goes to zero, the 
following equation is satisfied: 

>, corresponds to an update rate. 
Lifj corresponds to the average value of f(s(t)) where s(t) includes the 

nodes S and j: we describe it by Sj E s(t), meaning edge Sj belongs to the 
path. More formally Lifj = E(f(s(t)) I 1rf(t), 1 :Si :Sm, and Sj E s(t)). 

To show that the solution is globally stable, let us define Mf (t) = L
j 

r.f
j
(t)Lif

j
•

From the cross-correlation learning algorithm [37], we can write: 

j j 

Let s* the optimal path possessing the best performance. }.If£ ( t + 1) -
Mf(t) :SO since i.e. , since (Lifj)2 - (L

j 
r.£j(t)L1£j)2 equals the variance of 

Lifj• Let M(t) = L;•Es* Mf.. Then M(t) is monotonically decreasing with 
each update of the vector 'if for ·i along S*. Let LiM(t) = LiEs* Mf.(t + 1) -
Mf.(t). When r.f.

j 
= 0f.

j
, LiM(t) = 0 and reaches a stationary state. 

Hence, when the learning gain is sufficiently small, the expected rewards, 
keeps increasing with time. The optimal solution may be not unique, but these 
optimal solutions will give the same value for the objective function. 

5.2 Cost function 

Equation 14 represents the cost function. The cost function takes into account 
the information about whether an item ti is inside or outside of a polygon 
s (see section 2). This cost function measures how good a polygon s is at 
encircling and isolating one class in the training data and is defined as: 

Lt-ET h(ti, s) + Lt -dT (1 - h(tJ, s))
f(s) = ' 1 1r1'"' 1 

(14) 

In layman's terms; function 14 gives the percentage of items that are either 
correctly inside or correctly outside of the polygon. From the example in Figure 



1 the red polygon s correctly encircles all items of class T1 , while correctly 
avoids to encircle any other items from the other class T2. Since sis a polygon 
that perfectly separates the two classes, it gives f(s) = 1.4

The problem reduces to optimizing f(s), given the training data T, subject 
to the search space S - which is equivalent to finding an S* E S so that 
f(s*):::; J(s) ES. 

5.3 Ray Casting 

Vertical ray casting is used to consider whether an item is within or outside a 
many edged polygon [62]. Ray casting is a simple algorithm that determines 
where a virtual ray enters and exits a given solid. 

In a two-dimensional XY-plane, a ray is sent with a y-coordinate and 
starting at O and is increased by one very time an edged is passed. When the 
ray hits the item to be labelled, whether it is inside or outside the polygon is 
determined by reading the bit. An even number means outside while an odd 
number means inside. Formally, for node ti and a polygon s, we get h(ti, s) 
representing to what extent it is inside or outside of the polygon as follows, 
extending equation: 1: 

) { 1 �Oi E T1 and is inside of s.
h(ti , s = 0 otherwise

(15) 

h(ti , s) gives 1 if ti is correctly inside of the polygon, 0 otherwise. Note 
that the cost function j(s) in equation 14 handles both items correctly inside 
and correctly outside of polygons. 

5.4 Remark about uniqueness of the path 

An implicit assumption is that the optimal path is unique. However, in many 
cases, the optimal polygon is not unique and there might be multiple polygons 
yielding the same performance. This will result in multiple equilibrium [61]. 
Our experimental results confirm the convergence to one of the equilibrium. 

5.5 Training phase 

The classifier is trained using a guided walk with the team of distributed LA 
optimizing for the score function f(s) in order to create a polygon. By virtue 
of the reinforcement learning mechanism, the actions of the team of LA will 
converge towards a polygon that is a good separator. This polygon is the key 
to the classification. 

4 Note that s is one of the possible polygons with the shortest circumference that is able 

to perfectly separate the data. The reason for this is explained in section 5.5. 



Note that the classifier, implicitly, performs optimization according to the 
score function f ( s). 

The classifier can therefore be considered as a many-edged polygon with 
only vertical or horizontal edges. 

The LA random walker is not allowed to walk on nodes that has previously 
been selected, except for the initial starting node. 

5.6 Bootstrapping the source node 

A detail worth mentioning is the way by which we choose of the source node of 
the polygon. The performance of the scheme is dependent on the right choice 
of the source vertex for the polygon. In order to deal with this disadvantage 
we allow the scheme to re-adjust it choice of the source vertex. Whenever a 
polygon gives a better performance compared to previous iterations, we choose 
a random node among the nodes part of the best known polygon as the source 
node. Note that when probabilities have converged, our experience is that as 
long as the source node is part of the best polygon, the choice of source node 
is of little importance. 

i\1lore advanced methods can be used and verified empirically. However, we 
found that the latter simple strategy gave good performance. 

6 Experiments 

The experiments are carried out as traditional supervised learning approaches 
in two phases: training and classification. The behavior of the algorithm can 
be best explained by examining how it behaves on the training data. Because 
of this, the figures depict a visualization of the polygon on the training data 
- yielding a good overview of the algorithm behavior.

The data is generated by various functions intended to show the perfor­
mance of Poly LA in various settings. In each experiment 2000 data points are 
generated, of which half are randomly selected for training and the rest used 
for classification. Further, the data always contains two classes; the blue T1 

class and the red T2 class. 
The granularity of the grids is always chosen as lOxlO. A summary of the 

results are presented in Table 1. 

6.1 Simple environments 

We present a simple experimental settings as proof of concept of Poly LA. This 
section empirically shows that the approach works in a simple environment 
with two easily separable sets of data. The data is composed of two blocks of 
data: T1 and T2. Figure 5 shows the LA convergence after the training phase 
in this environment. The LA have built a rectangular polygon encircling all 
items in T1 , but none of the items in T2. Since this is a polygon that perfectly 



separates the classes, it yields f (s) = 1. The polygon solution in this example 
is quite straight forward. In this simple proof of concept, PolyLA gave an 
accuracy of 100%. 

Fig. 5 Simple data set with 0% noise 

6.2 Gaussian 

0 0 -0- 0 

Figure 6 depicts the classification polygon found by the distributed LA for 
data generated from two different Gaussian distributions. This experiment is 
interesting because, in contrast to the proof of concept, due to the overlapping 
data no classifier will be able to give a perfect result and is therefore a good 
test for PolyLA. 

For the classification, the Poly LA classifier gave a accuracy of 0.846, a re­
call of 0.836, and a precision of 0.853. For comparison purposes, linear and 
polynomial SVM give for the same data accuracies of 0.837 and 0.842 respec­
tively. 

These high numbers indicate that PolyLA is able to perform in line with 
SVM even when data are overlapping � without loss of precision or recall. 

6. 2.1 Semi-circles

Figure 7 shows the scheme in a more complex scenario with semi-circles (or 
half moons) where there are no clear separation boundaries. It is an interesting 
experiment because there exists no linear or polynomial solution that can result 
in a perfect classifier without mapping to multiple dimensions or depending 
on a kernel trick. 
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Fig. 6 Gaussian distribution with overlap 

Despite the added complexity, the PolyLA approach works perfectly and 

surrounds the data from the blue class without including the red. In fact, 

in the classification phase it gives and accuracy, precision and recall of 1. For 

comparison purposes, linear and polynomial SVM gave accuracies of 0.912 and 

0.997 on the same data. 
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Fig. 7 Half-moon 



6.2.2 circles 

Figure 8 illustrates the case of non-linear classification boundary in the form 
of a circle. 

Despite the added complexity, the PolyLA approach works perfectly by 

surrounding the data from the blue class without including the red. Again, the 
accuracy, precision and recall for PolyLA is 1, while for linear and polynomial 

SVM gives accuracies of 0.538 and 0.892 respectively. For SVM to come up to 
the performance of PolyLA, we need to rely on a RBF kernel. 
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Fig. 8 Circular without noise 

In Figure 9, we add some noise to the data of 5%. Noise means simply 
that some points of one class are overlapping with the other class making 

impossible to separate between these overlapping points. Despite the added 
noise, the scheme performs well. We would expect an approximate 2.5% loss 

in accuracy because of the 5% noise. Our empirical results confirm this by 
giving an accuracy of 0.973. For comparison purposes, SVM performance drops 
significantly by adding noise. 

6. 2. 3 Gaussian blobs

Figures 10, 11, 12, 13 depicts the case of data generated from Gaussian distri­
butions with blob distance that are respectively 140, 120, 60 and 0. 

These are interesting results because it explains the behavior of PolyLA 
when the data is overlapping more and more, and in turn becoming more and 

more difficult to separate. In the most extreme, with a distance of O in Figure 
13, the data is overlapping and should be indistinguishable from complete 
random data. 
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Fig. 9 Circular with 5% noise 
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In Figure 10, the data is barely overlapping and PolyLA yields in the 

classification phase an accuracy of 0.946, a recall of 0.936 and precision of 

0.956. 
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Fig. 10 Gaussian Blob Distance 140 

In Figure 11, the data is slightly more overlapping. However, PolyLA has 

barely any drop in performance. It is still able to accurately separate the data 

and yields in the classification phase an accuracy of 0.943, a recall of 0.936 

and precision of 0.938. 
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Fig. 11 Gaussian Blob Distance 120 

In Figure 12, the data is overlapping a lot and PolyLA yields in the clas­

sification phase an accuracy of 0.747, a recall of 0.684 and precision of 0.78. 

It is noteworthy that, by examining the figure, it is apparent that a higher 

granularity of the grid would give a better algorithm performance. 
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Fig. 12 Gaussian Blob Distance 60 

In Figure 13, the data is completely overlapping and the classes are indis­

tinguishable from each other. Clearly, Poly LA has a very different behavior 

here than in Figure 12, 11, and 10. In this scenario, there is no apparent pattern 



Scenario Accuracy Precision Recall LSVM PSVM lNN 
Proof of concept 1.0 1.0 1.0 1.0 1.0 1.0 
Gaussian distributions 0.85 0.84 0.85 0.84 0.82 0.84 
Semi-circles 1.0 1.0 1.0 0.91 1.0 0.92 
Circular 1.0 1.0 1.0 0.54 0.89 0.85 
Circular 5% noise 0.97 0.97 0.97 0.54 0.89 0.56 
Gaussian blob distance 140 0.95 0.94 0.96 0.51 0.73 1.0 
Gaussian blob distance 120 0.943 0.936 0.938 0.486 0.734 0.95 
Gaussian blob distance 60 0.747 0.684 0.780 0.497 0.689 0.84 
Gaussian blob distance 0 0.52 0.53 0.49 0.49 0.56 0.56 
Iris 0.82 0.61 0.74 1.0 1.0 0.97 
Wine 0.68 0.32 0.58 0.69 0.66 1.0 

Table 1 Summary of PolyLA Performance. Compared with the accuracy of Linear SVM 
(LSVM) Polynomial SVM (PSVM) one hidden layer Neural Network (lNN), two hidden 
layers Neural Network (2NN), three hidden layer Neural Network (3NN). 

in the polygon. As with the data, the polygon appears random. Our empirical 
results confirm the results giving in the classification phase an accuracy barely 
above random of 0.526, a recall of 0.528 and a precision of 0.486. 

This indicates that Poly LA is able to accurately classify data, even when 
the data is overlapping and hard to distinguish. Only when the two classes are 
completely overlapping will PolyLA come to short. 

6.2.4 Real-life data sets 

In the above experiments, we have focused on illustrating the performance of 
the PolyLA using figures that demonstrate its ability to perform separation. 
At this juncture, we shall use two real-life data sets: the Iris data set and the 
Wine data set. It is worth mentioning that originally PolylA does not handle 
directly the case of multi-dimensional classification arising in the case of Iris 
and Wine data sets. We deal with the multi-dimensional case according to the 
method detailed in Section 2.3. 

We also need to emphasize that PolyLA possesses similar performance to 
PolyACO by examining the results reported in [63]. In fact, PolyACO achieves 
0.948 accuracy while Poly LA outperforms it by achieving 0.97 for the circular 
case with 5% noise. However, PolyACO achieves slightly higher performance 
for the Iris data set, namely 0.96 accuracy, while Poly LA achieves 0.82. When 
it comes to the Wine data set, the performance for Poly LA is 0.68 while Poly­
ACO yields 0.69. Furthermore, in Table 1, we compare against three neural 
networks, one hidden layer Neural Network (INN), two hidden layers Neural 
Network (2NN) and three hidden layer Neural Network (3NN). Please note 
that 2NN and 3NN are considered as deep learning algorithms. We observe 
from Table 1 that those neural networks outperform PolyLA, Linear SVIvI 
(LSViVI) and Polynomial SVM (PSVM). Although Poly LA is able to find non­
linear classification boundaries that might be complex to find and consequently 
outperform LSVM, it is less accurate compared to deep neural networks which 
excel in builduing non-linear decision boundaries. 

2NN 3NN Figure 
1.0 1.0 Figure 5 
0.05 0.84 Figure 6 

1.0 1.0 Figure 7 
0.84 0.85 Figure 8 
0.56 0.56 Figure 9 
1.0 1.0 Figure 10 
0.94 0.95 Figure 11 
0.83 0.77 Figure 12 
0.56 0.56 Figure 13 
0.97 0.97 
10 1.0 
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Fig. 13 Gaussian Blob Distance 0 - indistinguishable from random noise 

7 Conclusion 

In this paper, we propose a novel classifier in two-dimensional feature space 
based on the theory of Learning Automata. The essence of our scheme is to 
search for a separator in the feature space by imposing a LA based random 
walk in a grid system. To each node in the gird we attach an LA, whose ac­
tions are the choices of the edges forming the separator. Indeed, PolyLA has 
appealing properties compared to SVM. ·while SVM performance is subject 
to the user choice of the kernel function, Poly LA can find arbitrarily complex 
separator in feature space without any user guidance. We provide theoretical 
results that demonstrate the convergence of PolyLA based on the theory of 
weak convergence [60]. Comprehensive experimental results illustrate the per­
fonnance of our method and its superiority to SVM in most cases. PolyLA 
faces challenges when dealing with multi-dimensional data as inevitably the 
number of planes explodes as the number of features increases. It would be 
interesting to investigate mitigating this issue in future work. 
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