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ABSTRACT
With the exponential growth in cloud computing, the steadily in-
creasing amount of power consumption due to the use of physi-
cal and virtual machines is becoming a serious challenge. In this
context, we report a study on optimizing the power and energy
efficiency of physical and virtual machines in a cloud computing en-
vironment. The energy profile of different workloads is thoroughly
investigated under different configurations. This paper presents
the findings from our study which provides a good understanding
of how different workloads affect power and energy efficiency of
both physical and virtual machines.
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1 INTRODUCTION
In today’s cloud era, an extensive amount of cloud applications are
being developed and used by all kinds of businesses from small to
large scale [4, 15, 25]. These applications are hosted in the cloud and
consume a large amount of resources from computation to storage
and bandwidth. To fulfill the increasing demand of resources, cloud
service providers are expanding their infrastructure [2, 29, 35, 36,
42, 43]. The dramatic increase in the number and size of cloud
data centers is impacting the global electric power consumption
on our planet [5, 25]. Power consumption depends on other factors
also, such as complexity of cloud infrastructure design, physical
hardware and operation.

The amount of electric power consumed by data centers and their
corresponding carbon footprint are becoming an environmental
challenge for our planet. Data centers are predicted to consume
around 150 billion kWh of power by 2020 and around 1430 million
metric tons of carbon emissions. Data centers will be responsible
for about 18% of the carbon emission [1]. Virtualization helps in
reducing energy consumption by allowing scalable virtual machines
to be hosted on a single physical machine [13, 30].

In this perspective, the field of green computing has attracted a
lot of research interest during the last years [33, 45]. The advent
of virtualization technology has offered a set opportunities for the
cloud computing providers to optimize the use of physical hard-
ware in the cloud computing data centers. However, virtualization
technology comes short when we consider the idle state of virtual

machines, as virtual machines consume resources even in the idle
state.

There is variety of techniques that help in reducing power con-
sumption [9, 20, 32, 40]. Dynamic voltage frequency scaling (DVFS)
is a technique that operates by both adjusting the frequency of the
CPU and voltage. In this context, a per-core DVFS techniques was
suggested in [8] to reduce power consumption. Vary-on/Vary-off
(VOVO) technique powers on and off the server, based on server
workload to reduce wasting of energy [40]. There exist workload-
aware consolidation techniques that reduce energy consumption
using consolidation fitness metric [38].

In this paper, we have studied and presented the findings on
energy efficiency of physical and virtual machines in cloud comput-
ing data center. We have addressed a problem of energy efficiency
optimization by tuning the CPU of both physical and virtual ma-
chines. The main objective is to find an answer to how energy
efficiency can be optimized by tuning the resources of physical and
virtual machines in a cloud computing environment. Jiang et al.[16]
compared the energy efficiency of different hypervisors. In this
work, we are comparing energy efficiency of physical and virtual
machines. Then we attempt to find an optimal frequency that can
be selected for achieving the highest energy efficiency.

2 RELATEDWORK
Virtualization technology has been considered as one of the key
enabling technologies behind cloud computing. Cloud computing
data centers host tens of thousands of clusters of servers with the
help of virtualization technology to reduce hardware footprint.
On the other hand, these data centers consume a huge amount of
energy to keep up their services.

A lot of research has been done in this direction which deals
with performance analysis of virtualized platforms and measuring
energy efficiency. The work reported in [7] presented a detailed
study related to virtualized systems performance-energy trade-off.
They suggested that virtualization overhead, performance-energy
trade-off, and virtual machine interference are some of the key ar-
eas that need more attention from the research community. In [12],
a model is presented to predict performance of different virtualiza-
tion platforms by evaluating the behavior of different workloads
to see their mutual influence. The authors showed that CPU and
memory performance is the same for both systems while there are
deviations in the case of input/output (I/O). Understanding energy
efficiency and power usage of hardware systems is necessary in
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order to properly perform capacity planning of hardware. Jiang
et al. [16] presented a study on energy efficiency by comparing
hypervisors on different servers. They showed that using the same
hardware for different hypervisors exhibits different power and
energy characteristics.

Energy efficiency can be measured along with resource usage
showing the relationship between power consumption and server
load [26]. It was found that homogeneous virtual machines finished
the job with the same load and time while heterogeneous virtual
machines finished jobs faster with less powerful virtual machines,
and the power consumed by virtual machines with the highest
degree of heterogeneity is twice compared to homogeneous virtual
machines.

Using power metering methods at the virtual machine level
and identifying inefficiency in big applications provide data for
managing power efficiency. In [27] the efficiency of data-intensive
applications was shown and penalties introduced in terms of power
consumed by virtual machines in a cluster. To investigate the per-
formance of data-intensive applications and evaluate the power
consumed, a Hadoop MapReduce cluster was implemented. Results
showed that homogeneous virtual machines with the same load
finished the transfers at the same time while heterogeneous virtual
machines with high-performance characteristics finished the trans-
fers faster and then waited for low-performance characteristics
virtual machines to finish the transfer. In this case, high charac-
teristics virtual machines remain idle with no useful jobs while
consuming power.

In [40], a combined frequency scaling and application elasticity
approach for energy-efficient cloud computing using three tech-
niques to control a cloud data center in an energy-efficient manner
was proposed. A feedback controller for configuration is used to
reduce power consumption while maintaining system performance.
A power meter is attached to the power distribution unit (PDU)
to measure power consumption. Power scaling techniques that
are horizontal, vertical and hard power scaling have been iden-
tified to understand and investigate their impact on application
performance and power usage. The study achieved 34% of energy
saving, meeting targeted performance when each policy is applied
in isolation.

To reduce power at the processor level, Intel SpeedStep tech-
nology allows the processor to adjust frequency and voltage at
the hardware level [14]. AMD PowerNow technology controls pro-
cessor power consumption by controlling frequency and voltage
on the fly [3]. AMD Cool’n Quite PowerNow permits to reduce
both noise and heat [44]. Some other popular techniques include
dynamic voltage scaling and workload consolidation which help
in the reduction of power consumption [31, 34]. Liang et al. [20]
have shown that running a processor at a specific frequency instead
of running at the lowest frequency can achieve optimal operation
speed and optimal energy efficiency. They found that a modified
form of DVFS governor lowers power consumption. Energy-aware
scheduling refers to another research direction to reduce power
consumption. A representative example that falls under the latter
research direction is reported in [21] where the authors proposed
an energy-aware virtual machine scheduling and consolidation al-
gorithm. The study reports evidences that a dynamic round robin
algorithm reduces 43.7% of power compared to other scheduling

algorithms. In [38], Sharifi et al. presented a scheduling algorithm
by assigning a set of virtual machines to a set of physical machines
to reduce the total power consumption in a data center. Energy-
aware workload consolidation is yet another approach in which
workloads are applied to least physical machines to minimize en-
ergy consumption. In [28], a work consolidation technique using
operating system and dynamic control mechanisms is presented
to adjust the allocation of cores and frequency based on delays for
latency critical workloads.

Energy-efficient techniques play an important role to reduce
power consumption. Energy management policies are used at the
architectural level for efficiency. Energy efficient resource manage-
ment techniques that are used to reduce operational costs by saving
a substantial amount of energy without reducing the quality of
service (QoS) have been shown to be effective [1, 6].

Virtualization technology reduces power consumption in a cloud
data center if virtual machines are properly provisioned and proper
management policies are deployed. Still, virtual machines place-
ment is a big challenge as it impacts energy efficiency and QoS
significantly [17]. According to [6], leveraging virtual machines
live migration and dynamically reallocating them yields a substan-
tial amount of energy saving in cloud data centers.

Proper resource management can also reduce power consump-
tion of servers that host performance-oriented applications. A re-
source estimation model that draws a relationship between server
performance and power based on utilization ratio provides amethod
to reduce the power consumption. Properly adjusting resources
to improve performance of applications achieved a power saving
within 12% to 20% compared to scaling performance governor [41].

3 EXPERIMENTAL DESIGN
We ran a series of experiments in a custom-built environment. The
setup consisted of three physical servers equipped with Intel (R)
Xeon (R) Processors (7 Sockets, 28 Cores, 56 GB Physical Memory)
with hyperthreading-enabled, and running a Ubuntu 16.04.3 LTS
operating system. Hyperthreading takes advantage of superscalar
architecture to improve parallelization of x86 processors by run-
ning multiple instructions in a clock cycle [24]. A topology diagram
of the experimental data center is shown in Figure 1. The set-up
consists of two hosts, Host-16 with 16 cores and Host-4 with 4 cores,
and a monitoring server. An external rack-mounted APC PDU [37]
was used for power supply to the server machines. Power con-
sumption data is collected from the PDU using the simple network
management protocol (SNMP).

The cpufrequtils package [9] was used for scaling CPU frequency.
The frequency of the CPU cores was scaled between 0.8 GHz and
3.00 GHz. Scaling Governors in Linux are power management poli-
cies that control the CPU frequency. To allow dynamic scaling of
frequency, the cpufreq interface was used to adjust CPU frequency.
The Scaling Governor was changed from the default on-demand
to allow power management policies based on dynamic voltage
frequency scaling [9, 20, 32].

To provision virtual machines, we used QEMU with the KVM
module, which is a full virtualization solution commonly used in
Linux-based systems.
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Figure 1: Topology of experimental setup

To study the power usage under realistic workloads, we used
Minerd [11], which is a CPUminer used for Litecoin Bitcoin mining.
First, we ran the stress tool [39] as our benchmark tool that imposes
stress on the systems to see the power used when the CPUs are fully
utilized. Later, we ran the Minerd application to see the difference in
power usage. The output power was visualized using ELK stack [10,
18, 23], an open-source stack for log-aggregation and analytics.

Since changing the number of cores of the virtual machines at
the time was not possible on the fly using the KVM hypervisor [40],
we rather started and stopped the virtual machines. The frequency
of individual CPU cores was changed while pinning virtual machine
cores to physical cores using core pinning, more particularly, core
affinity [12].

Power and energy are related as follows [1]:

P = E/T (1)
where P is total power in Watts, E is energy in Joules, and T is the
time in seconds. The results of the minerd bitcoin-miner is given
as hashes/second and represents the efficiency of the process. The
metric we use for energy efficiency in this paper is the hashing
efficiency divided by power, giving hash/Joule as a measure of how
much work the algorithm is able to do per unit of energy.

We ran several experiments using different physical and virtual
machine combinations with the frequency of CPU cores set between
1.6 and 2.4 GHz. The number of threads was set to 1, 4, 8, and 16 for
each physical and virtual machine running on different frequencies
while hyperthreading was turned on.

4 RESULTS AND DISCUSSION
Figure 2 shows power consumption resulting from the stress test
on CPU, memory, and disk in case of no-virtualization and virtual-
ization, in Host-16. Similarly, Figure 3 shows the test results in the
case of Host-4. In both figures, we see power consumption drop-
ping down every 5 minutes, which was because the stress-tool was
stopped and restarted every 5 minutes. From these figures, we see

that the results in terms of power consumption of heterogeneous
servers with different resources are different in magnitude, but at
the same time the results are also quite similar. The average total
power consumption for the larger Host-16 server was 252 watts
when stressing the CPU while for the Host-4 server the average
power consumption was 81 watts. The results when running on
bare metal and when using virtualization are quite similar.
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Figure 2: Power consumption under stress test on Host-16,
with and without virtualization.
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Figure 3: Power consumption under stress test on Host-4,
with and without virtualization.

In order to investigate the energy efficiency, we ran a CPU in-
tensive workload to study the impact on power consumption and
how much of the total energy was useful. The workload was a CPU
miner, which performed the jobs based on hashes per second. The
frequency of CPU cores was scaled between 1.6 GHz to 2.4 GHz
and variations in threads were set to 1, 4, 8, 12 and 16, both in
case of virtualization and no-virtualization. Figure 4 shows power
consumption at different frequencies and the different number of
threads in both cases. Similarly, Figure 5 shows energy efficiency
in terms of Hash/Joule for the same combinations.

From Figure 4, we can observe that as the number of CPUs is
increased, power consumption also increases. It can also be ob-
served that increasing the threads improves the performance of an
application and that is because multiple threads generate higher
hash rate in this case. On the other hand power consumption also
increases when threads are increased.

Figure 5 shows the highest energy efficiency of 0.67 Hash/
Joule at frequency 2.26 GHz and 16 threads, in case of no-virtualization.
When the same number of CPU cores and the same frequency were
assigned to the virtual machine, we can see that a 10% performance
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Figure 4: Power consumption with different CPU frequen-
cies and different number of threads.
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Figure 5: Energy efficiency with different CPU frequencies
and different number of threads.

decrease has been recorded when running the workload inside the
virtual machine. The workload generated 0.5 Hash/Joule with 16
threads while running the CPUs at 2.26 GHz frequency.

Next, we have investigated the influence of the architecture of the
underlying system on energy efficiency using non-uniformmemory
access (NUMA), which is amethod used to increase the performance
and capability of a multi-processor system allowing a processor to
access local memory faster compared to non-local memory [19].
The command line tool numactl [22] was used to bind processes to
physical CPUs, allowing control of policies for processes and shared
memory. Figure 6 and 7 show the power consumption and energy
efficiency respectively for 1, 4 and 8 threads with a CPU frequency
range from 1.6 to 2.4GHz. Comparing Figure 7 with Figure 5, we
see that there is no real difference between these two cases, which
is as expected as the memory usage of the minerd process is not
extensive. Forcing the process to use local memory, labeled as LM in
the figures, does also not lead to any difference in energy efficiency.
For workloads which are more memory demanding, this kind of
binding could make a difference.In Figure 8 the resulting energy efficiency of using the optimal
value of the CPU frequency is compared to that of the operating
system scaling governors Performance and Powersave on physical
and virtual machines. The figure shows that with the optimal fre-
quency of 2.26 GHz in both cases gives the highest energy efficiency.
Table 1 and Table 2 provide comparative results on power usage
and energy efficiency. The results were better in terms of energy
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Figure 6: Power consumption with the physical machine us-
ing NUMA scheduled workload. LM means restricted to lo-
cal memory.
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Figure 7: Energy efficiency with the physical machine using
NUMA scheduled workload.

efficiency on physical machines at the optimal CPU frequency of
2.26 GHz. In case of virtualization when comparing the optimal
frequency 2.26 GHz to the scaling governors as shown in Figure 8,
energy efficiency is decreased by 0.14 Hash/Joule while still the op-
timal frequency 2.26 performs better compared to the Performance
and Powersave governors.
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Figure 8: Energy efficiency for the two scaling governors and
the optimal frequency.

We also ran the application workload to measure the energy
efficiency in the cases of enabling and disabling hyperthreading
and the results are shown in Figure 9. When hyperthreading was
disabled on the physical machine (pNHT), energy efficiency was
identical for 1, 4 and 8 threads compared to hyperthreading enabled
(pHT). This is as expected since the server has 8 hyperthreading
cores. In both cases the threads will run on separate cores when
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Table 1: Average power usage (in Watts) for various scaling
governors and number of threads.

1T 4T 8T 12T 16T

Performance 135 182 215 231 247

Powersave 123 138 158 166 173

Optimal 2.26 126 149 187 196 207

Table 2: Power and energy efficiency for physical and virtual
machines.

Power 

(Watt)

Efficiency 

(Hash/Joule)

Power 

(Watt)

Efficiency 

(Hash/Joule)

Performance 1.6-2.4 229 0.60 214 0.45

Powersave 1.6-2.4 162 0.56 158 0.43

Optimal 2.26 2.26 191 0.64 187 0.50

Physical machine Virtual machine
Frequency 

(Ghz)

there are 8 or less of them and then there will be no hyperthreading
taking place. When running more than 8 threads with hyperthread-
ing disabled, this will lead to multitasking between two processes
on the same CPUwhich in general is less efficient than hyperthread-
ing. And as seen in Figure 9 hyperthreading leads to higher efficincy
for 16 threads. For 4 and 8 threads the virtualized server performs
slightly better when hyperthreading is turned off. This is not as
expected but the difference is small and further investigations are
needed in order to establish whether this is not just a statistical
variation.
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Figure 9: Energy efficiency with (red) and without (blue) hy-
perthreading.

When running a CPU bound workload, our results show that
in this specific case it is possible to find an optimal frequency that
gives higher energy efficiency than any other frequency. The results
also show that running at this frequency gives a higher efficiency
than when running using frequency scaling governors like Power-
save or Performance. The latter is typically the scaling governor run
on a normal server, unless the server is configured to always run
on maximum frequency for obtaining the maximum performance.
However, our results show that compared to running at the maxi-
mum frequency, reducing it slightly might lead to a higher energy
efficiency. In general the results indicate that utilizing as many
of the cores of the system as possible is the most energy efficient
approach. When there are more workload threads than cores of the
underlying physical server, our results show that hyperthreading
improves not only the performance but also makes the system as a
whole more energy efficient.

5 CONCLUSION AND FUTUREWORK
In this paper, we performed experiments and in-depth analysis of
the results obtained to see the power and energy efficiency of physi-
cal and virtual machines. Our experimental results and observations
demonstrated that properly scaling the resources of a physical and
virtual machines can reduce power consumption and improve en-
ergy efficiency. The methods and frameworks provided in this work
not only enable measuring accurate power of each CPU that runs
workload and calculating power consumption and energy efficiency
but also provide methods for determining energy-efficient config-
urations. This study can serve as a guideline to improve energy
efficiency in any cloud environment of any size.

For future work, these methods and framework presented here
can be extended to large data centers to maximize energy efficiency
while minimizing power consumption. It would be interesting to
design a scheduler that can handle scaling of frequencies automati-
cally and to find an optimal frequency for the current workload in
order to achieve improved energy efficiency.
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