
A Decentralized Approach for Homogenizing Load Distribution

Disha Sangar
∗∗

s.dish92@hotmail.com

Oslo Metropolitan University (OsloMet)

Oslo, Norway

Hårek Haugerud
††

haugerud@oslomet.no

Oslo Metropolitan University (OsloMet)

Oslo, Norway

Anis Yazidi
†

anisy@oslomet.no

Oslo Metropolitan University (OsloMet)

Oslo, Norway

Kyrre Begnum
†

kyrre@oslomet.no

Oslo Metropolitan University (OsloMet)

Oslo, Norway

ABSTRACT
Running a sheer virtualized data center with the help of Virtual
Machines (VM) is the de facto-standard in modern data centers. Live

migration offers immense flexibility opportunities as it endows the

system administrators with tools to seamlessly move VMs across

physical machines. Several studies have shown that the resource

utilization within a data center is not homogeneous across the

physical servers. Load imbalance situations are observed where

a significant portion of servers are either in overloaded or under-

loaded states. Apart from leading to inefficient usage of energy by

underloaded servers, this might lead to serious QoS degradation

issues in the overloaded servers.

In this paper, we propose a lightweight decentralized solution for

homogenizing the load across different machines in a data center.

In search of better solutions, we have looked outside the field of

computer science for inspiration. Inspired by Nobel Peace Prize

winners Alvin Roth and Lloyd Shapley’s work on Stable Matching

[4], we borrow the concept of stable marriage matching problems

where we pair pairs of underloaded servers and overloaded servers

based on some notion of preferences for the purpose of homogeniz-

ing their load through exchange of VMs. Furthermore, our solution

is distributed by accommodating this aspect in the original Stable

Matching algorithm. We provide some real-life experimental results

that demonstrate the efficiency of our approach.

CCS CONCEPTS
•Hardware→Power estimation and optimization; Enterprise
level and data centers power issues; • Software and its engineer-
ing → Virtual machines;

KEYWORDS
Self-Organization, cloud computing, Stable Marriage, Distributed

Load Balancing.

1 INTRODUCTION
Major systems and Internet based services have grown to such a

scale that we now use the term âĂĲhyper scaleâĂİ to describe them.

Furthermore, hyper scale architectures are often deployed in cloud

based environments, which offers a flexible pay-as-you-go model.

∗
Author contributed significantly

†
This Author and all other authors also contributed

From a system administratorâĂŹs perspective, optimizing a hy-

per scale solution implies introducing system behaviour that can

yield automated reactions to changes in configurations and fault

occurrences. For instance, auto scaling is a desired behaviour model

for websites to optimize cost and performance in accordance to

usage patterns.

There are two different perspectives on how an automated be-

haviour can be implemented within the field of cloud computing.

One of the perspectives is to implement the behaviour in the in-

frastructure, which is the paradigm embraced by the industry. The

other alternative is to introduce behaviour as a part of the Virtual

Machine (VM), which opens up a possibility for cloud independent

models.

Several studies have shown that the resource utilization within

a data center varies drastically across the physical servers. Load

imbalance situations are observed where a significant portion of

servers are either in overloaded or underloaded states. Apart from

leading to inefficient usage of energy by the presence of an under-

loaded servers, this might lead to serious QoS degradation issues

in the overloaded servers. The aim of this paper is to present an

efficient and yet simple solution for homogenizing the load in data

centers. The potential gain with this research is to find an efficient

and less complex way of operating a data center. Stable Marriage is

a an intriguing theory emanating from the field of economy and

holds many promises in the field of computer science and more

particularly in the field of cloud management. In this paper, we

apply the theory of Stable Marriage matching in order to devise a

load homogenizing scheme within data center. We also modify the

original algorithm in order to support distributed execution.

Various studies on self-organizing approaches have been emerg-

ing in the recent years to efficiently solve computationally hard

problems where centralized solutions might not scale or might also

create a single point a failure.

The aim of this paper is to provide a distributed solution for

achieving distributed load balancing in a data center which is in-

spired by the the Stable Marriage algorithm [4]. The algorithm

implements message exchange between pairs of servers. It is worth

emphasizing that modern distributed systems often use gossip pro-

tocols to solve problems that might be difficult to solve in other

ways, either because the underlying network has an inconvenient

structure, is extremely large, or because gossip solutions are the

most efficient ones available [5] in terms of communication. We

shall present two variants of the Stable Marriage algorithm and

study their behavior under different scales.

2 STABLE MATCHING
According to Shapley et al. [3] an allocation where no individual

perceives any gain from any further trade is called Stable. Stability
is a central theory in the field of cooperative game theory that

emanates from mathematical economics which seeks to know how

any constellation of rational individuals might cooperate to choose

an allocation.

Shapley [2] introduced the concept of pairwise matching. Pair-
wise matching studies how individuals can be paired up when they

all have different preferences regarding who are their best matches.

The matching was analyzed at an abstract level where the idea of

marriage was used as an illustrative example.

For this experiment Shapley et al. tested how ten women and ten

men should be matched, while respecting their individual prefer-

ences. The main challenge was to find a simple method that would

lead to stable matching, where no couples would break up and form

new matches which would make them better off. The solution was

deferred acceptance, a simple set of rules that always led straight to

the stable matching.

Deferred acceptance can be set up in two different ways, either

men propose to women or women propose to men. If women pro-

pose to men the process begins with each woman proposing to

the man she likes the best. Each man then looks at the different

proposals he has received, if any, and regards the best proposal

and rejects the others. The women who were rejected in the first

round, then move along to propose to their second best choice. This

will continue in a loop until no women wants to make any further

proposals. Shapley et al. [3] proved this algorithm mathematically

and showed that this algorithm always leads to stable matching.

The specific way the algorithm was set up turned out to have

an important distributional consequence. The outcome of the algo-

rithm might differ significantly depending on whether the right to

propose was given to the women or to the men. If men proposed

this lead to the worst outcome from the womenâĂŹs perspective.

This is because if women proposed, no woman would be worse off

than if the men had been given the right to propose [3].

Figure 1: Stable Matching

The model depicted in Figure 1 presents the selection process

for Stable Matching. On the right side we find the women with

their preferences and to the left the men with their respective

preferences.

3 RELEVANT RESEARCH
In this section, we shall review some prominent works on dis-

tributed approaches for homogenizing the load in a data center. It

is worth mentioning that the related work in this particular area is

rather sparse.

Rao et al. [6] present three different but simple techniques to

achieve load balancing in a structured system. The three different

approaches balance the load by migrating nodes from one place to

another. The first technique called one-to-one, picks two random

virtual machines, where one is a heavy node and the other one

is a light node. Each light node can periodically pick a random

ID and then perform a look up operation to find the node that is

responsible for that ID. If that node is a heavy node, then a transfer

may take place between the two nodes. The second scheme is the

"One-to-many" scheme. According to this scheme, a heavy node

is allowed to consider more than one light node at the time and

migrate to the lightest one after choice. The third and last technique

is the many-to-many scheme, which is an extension of the first two

schemes. In this method, there is a concept of a global pool where

each heavy node drops off their weight. This happens over three

phases; unload, insert and dislodge. Without going into much detail,

heavy nodes drop their "weight" and unload it until they become a

light node. The idea is to transfer all virtual servers from the pool

to light nodes without creating any new heavy nodes.

Marzolla et al. [5] propose a decentralized gossip-based algo-

rithm, called V-MAN to address to the issues regarding consolida-

tion. V-MAN is invoked periodically to create consolidate VMs into

fewer servers. They assume that the cloud system has a commu-

nication layer, so that any pair of servers can exchange messages

between them. The work of Marzolla et al. [5] yields very promising

results which show that using V-MAN converges fast âĂŞ after less

than 5 rounds of message exchanging between the servers.

In [1], the authors use scouts which are allowed to move from

one PM (physical machine) to another âĂŞ to be able to recognize

which compute node might be a suitable migration destination for

a VM. This is completely opposite of what V-MAN does. It does not

rely on any subset like scouts, instead each server can individually

cooperate to identify a new VM location, which makes V-MAN

scalable. It is also to be noted that any server can leave or join the

cloud at any time.

Sedaghat et al [7] use a Peer-to-Peer protocol to achieve energy

efficiency and increase the resource utilization. The Peer-to-Peer

protocol provides mechanisms for nodes to join, leave, publish

or search for a resource-object in the overlay or network. This

solution also considers multi-dimensionality âĂŞ because the al-

gorithm needs to be specified to be dimension aware, each PMs

proportionality should be considered. Each node is a peer where a

peer sampling service, known as newscast, provides each peer with

a list of peers whom are to be considered neighbours. Each peer

only know k random neighbours which map its local view. The aim

2

is to improve a common value which is defined as the total imbal-

ance of each pair at the time of decision-making by redistributing

the VMs.The work uses a modified dimension aware algorithm to

tackle the multi-dimensional problem. The algorithm is iterative

and starts from an arbitrary VM placement. When the algorithm

converges, a reconfiguration plan is set so the migration of the VMs

can start.

4 SOLUTION
4.1 Overview of a functioning framework
As the algorithm implementedwill be based on a real life inspiration,

it is important to understand that the outcome can end in two

different cases. Just as each relationship does not end in marriage

neither will the decision of the PMs. Each PM can be viewed as

individuals making their own âĂĲlife choicesâĂİ.

Figure 2 and 3 enhances the different outcomes the algorithm can

opt for and how the framework is set up to work around the execu-

tion of the algorithm. Note that the environment later implemented

is not in an actual data center. However, for the sake of showing

that the main goal is to achieve load balance in a distributed cloud

data center, the intention is to create a framework that may work

in any given scenario and setup.

Figure 2: Proposal accepted

The basic framework for both scenarios are the same, it is a

data center consisting of PMs with different weight. However, as

explained in the section above, based on the calculations of the

underloaded server in the second scenario the proposal is rejected

and the PM moves on to the next best on their list. This process

is supposed to be a continuous process, unless the target load for

each PM is achieved, then the process stops entirely.

4.2 Bin Packing with Stable Marriage
The bin packing problem is the challenge of packing an amount

n of objects in to as few bins as possible. In this case, the servers

are the bins and the VMs are the objects. This terminology fits the

stable marriage algorithm well, as the bins are the humans who are

in quest of a partner (bin) which represents a good match while

satisfying some constraints in terms of capacity. A constraint can

Figure 3: Proposal Rejected

be defined in many ways, but for a bin some common constraints

would be the height of the box, its width and depth. Our algorithm

will focus on Virtual CPUs (VCPUs) and memory as constraints.

The aim of the algorithm is to even and equalize the load of the

data center by evenly distribute the weight of the VMs across the

bins in such a way that the bins should neither be overfilled nor

underfilled.

4.3 Stable Marriage Animation
A known set of servers is divided into two groups of overutilized

(men) and underutilized (women). The goal is to find a perfect

match for the overutilized servers. The matchmaking is based on

three values, the average CPU load, the imbalance before and after

migration (calculated before the eventual migration) and the profit

of such a marriage.

The figures below demonstrate the expected outcome of imple-

menting the Stable Marriage algorithm. This approach is mainly

centralized and the PMs know the allocated values of each other.

This means that each PM, both over and underutilized, has a list

of preferred men and women they want to propose to or receive a

proposal from.

Figure 4 shows that PM1 has reached full capacity as marked

by the red line. The red line represents the average capacity that

each PM can handle. Assume that each group of men can only

handle four or six full servers, in this case PM1 has then reached

its full capacity and so has PM2. They need to migrate the load

to a underloaded PM of preference, so that they can balance the

load equally. Hence, the overloaded server PM1 proposes to his first

choice, PM3.

The female set of servers have their own method to calculate

the advantage/disadvantage of such a marriage. If the underutilized

PM calculates a higher imbalance than before the marriage, she

sees this as a disadvantage and rejects the proposal. This method

also avoids that the proposing party becomes underutilized in the

future.

After being rejected, PM1 proceeds to his next best choice which

is PM4. PM4 then calculates the imbalance before and after the

proposedmarriage to check if it improves after a potential migration.

3

Figure 4: Set of over/under utilized servers

Figure 5: PM1 proposes to PM3

Figure 6: PM3 rejects PM1 seeing no benefit to thismarriage.

In this case the imbalance factor improves, and PM4 accepts the

proposal. The migration can now take place.

Since PM4 has the same amount of capacity to accept load, the

server is not over-utilized and the load has been balanced between

the married PMs.

This particular animation doesn’t have any scheme implemented,

it just gives an idea of how the algorithm is supposed to work. The

schemes will only make a difference in terms of the size of the VMs

that is migrated. The figure below shows how the VM sizes may

Figure 7: PM4 accepts PM1’s proposal

Figure 8: Migration successful

differ on each PM and how the migration process may look inside

each server.

Figure 9: PM with various VM sizes

4.4 Stable Marriage Algorithm - Migrate
Largest and Migrate Smallest

The two different schemes that will be implemented are Migrate
Largest and Migrate Smallest. These two schemes are very similar,

4

but depend on the size of the VM. As shown in Figure 10, the

resources allocated to the VMs are different. In fact, we tested in

our experiments either to migrate the largest VM in the overloaded

PM or the smallest VM in the overloaded PM. As will be explained

in the next section, both schemes lead to a reduction in the overall

imbalance, however, usually migrating smallest VM first results in

a better overall result at the cost of a higher number of migrations.

Migrating Largest VM first requires less number of migrations to

reach a final state where no more gain can be achieved by the

algorithm in terms of imbalance. However, this takes place at the

cost of higher final imbalance compared to Migrating Smallest First.

Figure 10: VMs with their allocated values

5 IMPLEMENTATION OF STABLE MARRIAGE
In this section we give details about the implementation of the

Stable Marriage algorithm which aims to find the perfect match for

gaining load balance. Each node is considered an individual with

preferences and demands. These are taken into consideration to be

able to find the perfect balance for each individual node.

The flow diagram in Figure 11 gives an insight into how the

Stable Marriage Algorithm operates and the different procedures

involved.

The following describes the most important parameters of the

algorithm. We define the CPU load to simply be the number of

VCPUs of a VM. Let Ci be the total CPU load of server i contained
in its VMs and let c j be the number of VCPUs assigned to VMj :

Ci =
∑
VMj

c j

Each server i has a maximum CPU capacity Ci
max

which is its

number of physical CPUs and we define this to be the maximum

number of VCPUs a server can contain:

Ci ≤ Ci
max

When it comes to consolidation, most algorithms take into ac-

count the bottleneck resource as a sole criterion for achieving better

consolidation decisions. Similarly, when it comes to load balancing,

one can base the algorithm on the imbalanced resource whether it

is CPU or memory. For the sake of simplicity, we assume that the

CPU is the most imbalanced resource in our data center, which in

real life is often the case.

Average load C is defined as the average CPU load of the N

Physical Machines:

C =
∑
PMi

Ci/N =
N∑
i=1

Ci/N

If the system was perfectly balanced and all servers of same size,

each server would have this number of VCPUs. Furthermore, we

define the average capacity of a server as

Cmax =
∑
PMi

Ci
max /N

We define the target load to be the result when evenly distribut-

ing the load according to the capacity of the servers. Let Ti be the
the target load at PMi when there is no imbalance:

Ti =
Ci

max

Cmax
C

If all the machines have the same capacity, this would reduce to

equal load on each server:

Ti = C =
∑
PMi

Ci/N

We define the imbalance Ii of a server or physical machine PMi
in terms of CPU load as the deviation of the load of machine PMi
from the target CPU load:

Ii = |Ti −Ci |

The following pseudo code shows how the possible gain of a

migration between an overloaded server and an underloaded server

is calculated:

Gain_of_Migration_Couple

Calculate imbalance before an eventual migration
<calculate imbalance of overloaded server>
<calculate imbalance of underoaded server>

Ib = I overloaded + I underloaded

Calculate imbalance after an eventual migration
Assume moving largest VM from overloaded
to underloaded server

<calculate imbalance of overloaded server>
<calculate imbalance of underoaded server>

Ia = I overloaded + I underloaded

Calculate the gain

gain = Ib - Ia

Positive result shows a gain

Please note that as explained in the previous section, we have

two different schemes: migrate largest VMfirst andmigrate smallest

VM first. In fact, we tested in our experiments both schemes: largest

VM in the overloaded PM or the smallest VM in the overloaded

PM. Intuitively, migrating large VM first would result in a smaller

number of migrations before the algorithm stops. While migrating

small VM first would result in larger number of migrations but

a better final overall result in terms of balance. In more informal

terms, we could choose to operate with small changes in the data

center by migrating the smallest VMs in the overloaded PMs or we

5

Figure 11: Flow Diagram of the Stable Marriage Implementation

could operate with more crude and less cautious steps by making

larger changes in the data center by migrating the largest VMs.

The Stable Marriage algorithm operates in rounds and it stops

when no more âĂĲgainâĂİ in terms of reducing imbalance can be

achieved. The algorithm will then exit. In other terms, if there is

no beneficial proposal that reduces the imbalance or the propos-

als will increase the imbalance, the algorithm will stop whenever

there are no possibilities to reduce further imbalance. It also re-

stricts overloaded servers to become underloaded, which means

that PMs may also decline a proposal if the overloaded server be-

comes underloaded. This means that a node can never become

overbalanced again or underbalanced to take more VMs on board.

This is an important part of the implementation, as the point of the

Stable Marriage algorithm is to stabilize the system, this algorithm

contributes to the stability factor.

6 EXPERIMENTS
6.1 Experimental Set-up
Figure 12 is a model which gives an overview of the structure

in which the project will be implemented. This is a figure which

shows how the different components from entirely different worlds

are paired together. The bottom layer is the physical hardware

consisting of PM1-PM3 or Lab01-Lab03 which are the assigned

name on the OS. This layer is controlled by the hypervisor KVM,

which is in control of the virtual environment, also the network of

VMs which are later spawned in layer 3.

Figure 12: Design

6.2 Environment Configuration
Evidently, a framework is built with several services and compo-

nents, which are necessary for an environment to work. To set up

a virtual environment for this project several physical and virtual

technologies were necessary.

The physical servers in this project are stored in a server room

at Oslo Metropolitan University. There are three dedicated servers

for this project, as seen in figure 13. The setup consists of a dedi-

cated gateway to connect to the outside. All of the PMs are inter-

connected through a dedicated switch.

Each server is allocated with same specifications:

6

Figure 13: Overview of the Physical lab structure

Figure 14: Physical attributes

These are the details for the physical hardware which are dedi-

cated for the virtual implementation. The PMs run Ubuntu which

is easier to work with especially with QEMU and KVM for virtual-

ization of the environment.

6.3 Virtual Configuration
The next step is to configure the virtual network. This network will

also ensure that when migrating VMs from one host to another,

this happens within the same virtualized network. Figure 15 below

shows how the PMs are connected and how the VMs reside inside

the PMs. The VMs are attached to a virtual bridge by birth. This is

a actually a virtual switch, however it is called a bridge and used

with KVM/QEMU hypervisors to be able to use live migration for

instance.

To connect the PMs together, a physical switch is used.

The different VM flavors that will be used in the experiments are

given in Figure 16. Each PM will be given a combination of VMs of

different flavors.

6.4 Migrating Smallest First
The aim of this experiment is to see how migration can take place

in a real virtualized environment with different flavours of VMs.

The figure below displays the results extracted from the experiment

when we apply migrate smallet first scheme:

6.4.1 Analysis. Figure 17 displays the results extracted from 3

rounds of migration between host PM 1 and PM2. Test1 had an

imbalance of 3.0 before migration and the imbalance after went

Figure 15: Physical Lab details

Figure 16: VMs flavors

Figure 17: Small Imbalance Before vs. After

down to 1.0. The test had one overloaded server with five small

flavoured VMs. The destination host only had two VMs, and space

for more. PM1 sent over 2 VMs to PM2.

Test 2 consisted of seven VMs in total, where only two small

VMs resided with five medium VMs. The destination host consisted

of four VMs, but all small flavoured. This resulted in 3 migrations

in total from PM1 til PM2. In this particular migration, two of the

VMs were small flavoured and one was medium flavoured.

Right after the migration, the small VMs were up and running

quite quickly, using around 0.4 of CPU, while the medium VM spent

a quarter of a second more than the small VMs. The imbalance

7

before migration was 8.0, and after it went down flat 0.0. Which is

a great result, concluding the bin in complete balance.

The aim for Test 3 was to see if now PM2 was overloaded, does

it locate PM1 and continue migration, as well as how many VMs it

would migrate if it only was small flavoured. With an imbalance of

10.0 before and 0.0 after migration.

This test consisted of sixteen small VMs on PM2, while on PM1

there were two small and one large VM. The acceptance of the

proposal ended with four migrations. Now, one would think that

this results in PM2 still being overloaded with 12 VMs, however,

PM1 has one large VM, which evens the imbalance out for both

bins. The average CPU load was only 22.

6.4.2 Migrating Largest First. Figure 18 displays the results ex-

tracted from 3 rounds of migration between host PM1 and PM2,

based on the large flavour scheme.

Figure 18: Large Imbalance Before vs. After

6.4.3 Analysis. The tests were performed exactly the same way as

the previous small flavour experiments were performed. The first

Test, had an imbalance of 17.0 before migration and 3.0 after.

Test 2 had an imbalance of 17.0 before migration and 7.0 af-

ter. Compared to the other columns, it is easy to notice that the

two imbalances do not differ much from each other. There is an

improvement, however PM1 was heavily loaded with seven large

VMs, while PM2 had five VMs where three were small and two

were large. The algorithm decided to migrate three of its largest

VMs from PM1 to PM2, as this would be the best choice.

Test 3 has an imbalance of 36.0 before and resulted in 4.0 after

migration. This test had fourteen large VMs on PM1 and eight VMs

on PM 2. Out of the eight VMs, four were small and four were large

flavoured. The migration resulted in five large VMs from PM1 to

PM2. There was more room on PM2 because of the smaller VMs.

7 CONCLUSION
The aim of this paper was to checkwhether implementing the Stable

Marriage algorithm load balancing could be possible in a cloud data

center. To the best of our knowledge, this is the first attempt in

the literature to apply the latter algorithm in such context. The

results are promising and demonstrate the ability of our approach

to efficiently distribute the load across different physical servers.

As a future work, we would like to investigate an approach for both

performing consolidation and homogenizing the load by increasing

the target load we would like to achieve in each machine. In fact, if

we increase the target load we would achieve in each machine, the

number of active machines should decrease in a similar manner to

consolidation.

REFERENCES
[1] Barbagallo, D., Di Nitto, E., Dubois, D. J., and Mirandola, R. A bio-inspired al-

gorithm for energy optimization in a self-organizing data center. In Self-Organizing
Architectures. Springer, 2010, pp. 127–151.

[2] Levine, D. K. Introduction to the special issue in honor of lloyd shapley: Eight

topics in game theory. Games and Economic Behavior 108 (2018), 1 – 12. Special

Issue in Honor of Lloyd Shapley: Seven Topics in Game Theory.

[3] Lloyd Shapley, A. R. "stable matching: Theory, evidence, and practical design".

[4] Manlove, D. F. Algorithmics of matching under preferences, vol. 2. World Scientific,

2013.

[5] Marzolla, M., Babaoglu, O., and Panzieri, F. Server consolidation in clouds

through gossiping. In 2011 IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM) (2011), IEEE, pp. 1–6.

[6] Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., and Stoica, I. Load

balancing in structured p2p systems. In International Workshop on Peer-to-Peer
Systems (2003), Springer, pp. 68–79.

[7] Sedaghat, M., Hernández-Rodriguez, F., Elmroth, E., and Girdzijauskas, S.

Divide the task, multiply the outcome: Cooperative vm consolidation. In 2014
IEEE 6th International Conference on Cloud Computing Technology and Science
(CloudCom) (2014), IEEE, pp. 300–305.

8

	Abstract
	1 Introduction
	2 Stable Matching
	3 Relevant Research
	4 Solution
	4.1 Overview of a functioning framework
	4.2 Bin Packing with Stable Marriage
	4.3 Stable Marriage Animation
	4.4 Stable Marriage Algorithm - Migrate Largest and Migrate Smallest

	5 Implementation of Stable Marriage
	6 Experiments
	6.1 Experimental Set-up
	6.2 Environment Configuration
	6.3 Virtual Configuration
	6.4 Migrating Smallest First

	7 Conclusion
	References

