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A B S T R A C T

Background and aims: Several risk prediction models for coronary heart disease (CHD) are available today, how-
ever, they only explain a modest proportion of the incidence. Circulating microRNAs (miRs) have recently been
associated with processes in CHD development, and may therefore represent new potential risk markers. The aim
of the study was to assess the incremental value of adding circulating miRs to the Framingham Risk Score (FRS).
Methods: This is a case-control study with a 10-year observation period, with fatal and non-fatal myocardial in-
farction (MI) as endpoint. At baseline, ten candidate miRs were quantified by real-time polymerase chain reaction
in serum samples from 195 healthy participants (60–79 years old). During the follow-up, 96 participants experi-
enced either a fatal (n=36) or a non-fatal MI (n=60), whereas the controls (n=99) remained healthy. By using
best subset logistic regression, we identified the miRs that together with the FRS for hard CHD best predicted fu-
ture MI. The model evaluation was performed by 10-fold cross-validation reporting area under curve (AUC) from
the receiver operating characteristic curve (ROC).
Results: The best miR-based logistic regression risk-prediction model for MI consisted of a combination of
miR-21-5p, miR-26a-5p, mir-29c-3p, miR-144-3p and miR-151a-5p. By adding these 5 miRs to the FRS, AUC in-
creased from 0.66 to 0.80. In comparison, adding other important CHD risk factors (waist-hip ratio, triglycerides,
glucose, creatinine) to the FRS only increased AUC from 0.66 to 0.68.
Conclusions: Circulating levels of miRs can add value on top of traditional risk markers in predicting future MI in
healthy individuals.

1. Introduction

Coronary heart disease (CHD) is the most common cause of death
globally. In the next decade, the number of people at risk is expected to
increase, due to obesity, inactivity, diabetes and ageing [1–3]. Thus, in
the years to come, it will be increasingly important to identify the in-
dividuals at risk to initiate preventive measures before a serious event
occurs.

CHD is a multifactorial disease with several well-known risk factors.
Numerous risk prediction models have been developed based on these

risk factors to estimate individuals’ 10-year risk of CHD, and especially
the risk of myocardial infarction (MI) [4–10]. However, the current risk
prediction models only explain a modest proportion of the incidence. It
is estimated that 15–20

% of patients developing MI lack all the conventional risk factors and
therefore would be classified as “low risk” by the current risk prediction
models [11].

There have been several attempts during the last years to improve
the risk prediction models for CHD by incorporating new biomarkers
[12–23]. For instance, incorporation of C-reactive protein (CRP) and
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glycated haemoglobin (HbA1c) into the Framingham risk score (FRS)
was shown to improve risk prediction for both genders (the Reynolds
Risk Score) [18–20]. However, despite extensive studies, there are cur-
rently no biomarkers that adequately predict the risk of developing MI.
Thus, there is a clinical need for new biomarkers that could complement
the assessment of traditional risk factors, to identify the individuals at
risk with greater precision than today [24].

MicroRNAs (miRs) are small non-coding ribonucleic acid molecules
that act as post-transcriptional regulators of gene expression. They have
been identified as key regulators of different biological and pathologi-
cal processes including ischaemic heart disease, left ventricular hyper-
trophy, heart failure, hypertension and arrhythmias [25]. It is now ac-
cepted that miRs are involved in almost all steps of atherogenesis and
thus the development of CHD [26]. In 2008, it was discovered that sta-
ble amounts of miRs enter the circulation [27–30]. Since then, the po-
tential of using circulating miRs as a biomarker of disease has emerged,
and several studies have shown that circulating miRs have potential as
biomarkers of CHD [31,32]. However, few studies have evaluated the
potential of miRs in risk prediction of future cardiovascular events. Zam-
petaki et al. and Bye et al. previously assessed the predictive potential
for CHD in a primary prevention cohort and Schulte et al. in a secondary
prevention cohort [33–35].

The aim of this study was to determine the association between cir-
culating miRs and the risk of developing MI in healthy asymptomatic in-
dividuals, and to assess the incremental value of adding circulating miRs
to the FRS.

2. Material and methods

2.1. Study design and ethics

This was a case-control study with a 10-year observation period. Pri-
mary endpoints were fatal and non-fatal MI. The Nord-Trøndelag Health
Study (HUNT) and Regional Ethical Committee (REK) approved the
study. Patient information was stored and handled in conformity with
Norwegian laws and regulations.

2.2. Subjects

The HUNT study (an acronym for the name: The Nord-Trøndelag
Healthy Study) is a large population-based cohort including 125000
Norwegian participants. So far four health surveys have been completed,
HUNT1 (1984–86), HUNT2 (1995–97), HUNT3 (2006–08) and HUNT4.

(2017–19). The HUNT studies were carried out in Nord-Trøndelag
county of Norway and every citizen >20 years was invited. The HUNT
study includes data from surveys, interviews, clinical measurements and
biological samples [36]. By using data from the Norwegian Myocardial
Infarction Registry and the Norwegian Cause of Death Registry, we iden-
tified all participants in the HUNT2 cohort that suffered from fatal or
non-fatal MI within the following 10 years. Among the participants re-
porting to be healthy at HUNT2 (baseline) aged 60–79 years, 36 par-
ticipants suffered from a fatal MI and 60 participants suffered from a
non-fatal MI within the next 10 years. Furthermore, we selected 99
age- and gender group-matched controls that reported to be healthy at
HUNT2 (baseline) and at HUNT3 (follow-up). Participants were defined
as healthy if they reported no previous or current self-reported cardio-
vascular disease (including stroke and angina pectoris), no previous or
current use of antihypertensive drugs, any chronic kidney disease or di-
abetes mellitus.

2.3. Data collection

Variables needed for the calculation of FRS for hard CHD were col-
lected from the HUNT database (age, total cholesterol, HDL cholesterol,
systolic blood pressure, treatment for hypertension and smoking sta-
tus, at the time of HUNT2). Information on other CHD risk factors like
waist-hip ratio, serum triglycerides, glucose and creatinine was also col-
lected. Data from the HUNT3 study was used to select controls that were
defined as healthy 10 years after baseline.

2.4. Sample collection

200μL frozen serum from each participant, collected during HUNT2
(baseline), was used for miR isolation and analysis. Standard biochem-
ical analyses to quantify traditional risk markers were performed in
non-fasting serum from fresh venous blood samples.

2.5. Blood analysis

Serum total cholesterol (mmol/L), serum HDL-cholesterol (mmol/
L) and serum triglycerides (mmol/L) were measured using an enzy-
matic coulometric method. Serum non-fasting glucose (mmol/L) was
measured by using an enzymatic hexokinase method. Serum Creati-
nine (μmol/L) was measured by kinetic Jaffè method with sample blank
(Roche Diagnostics, Mannheim, Germany). All analyses were conducted
with Hitachi 911 Autoanalyzer (Hitachi, Mito, Japan) at Levanger Hos-
pital, Norway, using reagents from Boehringer Mannheim (Mannhein,
Germany).

2.6. Risk score calculations

FRS for hard CHD was used in this study as it corresponded best
to the selected endpoints of fatal and non-fatal MI [37]. The FRS was
originally developed from a white American population, and application
to diverse populations has shown to overestimate the CHD risk [38].
Therefore, we performed a simple calibration after adjustment of the
FRS by replacing the average Framingham underlying risk of the Cox's
hazard regression model with the average event rate of the HUNT study
estimated by the Kaplan-Meier estimates, and the means of the risk fac-
tors from the FRS with the means of the HUNT study [39].

2.7. MicroRNA selection

In 2016, Bye et al. published a prospective, nested case-control study
with a 10-year observation period to explore the prediction potential
of circulating miRs on future fatal MI in 220 apparently healthy sub-
jects from the HUNT2 study [34]. Several circulating miRs were sig-
nificantly different in blood samples from individuals who later suf-
fered a fatal MI, compared to those who remained healthy during the
follow-up. We chose a panel of ten circulating miRs based on these
findings: let-7g-5p, miR-21-5p, miR-26a-5p, miR-29c-3p, miR-106a-5p,
miR-144-3p, miR-151a-5p, miR-191-5p, miR-424-5p and miR-451a.
miR-425-5p was included for normalization purposes.

2.8. RNA isolation from serum

Total RNA was extracted from serum using the miRCURY™ RNA iso-
lation kit – biofluids (Exiqon, Vedbaek, Denmark). Serum samples were
centrifuged at 3000×g for 5min in a 4 °C microcentrifuge. 190μL of
serum was then transferred to a new microcentrifuge tube and 60μL
of lysis solution buffer containing 1μg carrier-RNA, and RNA spike-in
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template mixture was added to the sample. The tube was vortexed and
incubated for 3minat room temperature, followed by addition of 20μL
Protein Precipitation solution buffer. The tube was vortexed, incubated
for 1minat room temperature and centrifuged at 11000×g for 3min.
The clear supernatant was transferred to a new collection tube, and
270μL isopropanol was added. The solutions were vortexed and trans-
ferred to a binding column. The column was incubated for 2minat room
temperature, and emptied using a vacuum-manifold. 100μL wash solu-
tion 1 buffer was added to the columns. The liquid was again removed
using a vacuum-manifold, and 700μL wash solution 2 buffer was added.
The liquid was removed using a vacuum-manifold. 250μL wash solution
was added and the column was spun at 11.000×g to dry the columns
entirely. The dry columns were transferred to a new collection tube
and 50μL RNase free H2O was added directly on the membrane of the
spin column. The column was incubated for 1minat room temperature
prior to centrifugation at 11.000×g. The RNA was stored in a −80 °C
freezer. For the RNA isolation step, 3 RNA spike-ins (UniSp2, UniSp4
and UniSp5) were added as RNA isolation controls.

2.9. MicroRNA real-time quantitative PCR (qPCR)

2μL RNA was reverse transcribed in 10μL reactions using the miR-
CURY LNA™ Universal RT microRNA PCR, Polyadenylation and cDNA
synthesis kit (Exiqon). cDNA was diluted 50 x and assayed in 10μL PCR
reactions according to the protocol for miRCURY LNA™ Universal RT
microRNA PCR; each miR was assayed once by qPCR on the microRNA
Ready-to-Use PCR, Custom Pick and Mix Panel using ExiLENT SYBR®

Green master mix. Negative controls excluding template from the re-
verse transcription reaction was performed and profiled like the sam-
ples. The amplification was performed in a LightCycler® 480 Real-Time
PCR System (Roche). The amplification curves were analysed using the
Roche LC software, both for determination of Cq (by the 2nd derivative
method) and for melting curve analysis. For the reversed transcription
step, one spike-in (UniSp6) was added to confirm that the reverse tran-
scription and amplification occurs with equal efficiency in all samples.
All assays were inspected for distinct melting curves and the melting
temperature was checked to be within known specifications for the as-
say. Furthermore, assays had to be detected with 3 Cqs less than.

The negative control, and with Cq<37 to be included in the data
analysis. Data that did not pass these criteria were omitted from any
further analysis. Cq was set at the change point for the amplification
curve (2nd derivative equal zero). Using NormFinder, the best normal-
izer was found to be miR-425-5p, as anticipated from previous expe-
rience [34,40–42]. All data were therefore normalized to the level of
miR-425–5p (normalized ΔCqcandidate miR =CqmiR-425-5p – Cqcandidate miR).
The difference in miR expression between cases and controls was calcu-
lated as mean ΔCqcase - mean ΔCqcontrols=ΔΔCq.

2.10. Statistical analysis

Data was analysed using the statistical packages IBM SPSS Statistics
23, Stata and R (R Core Team, 2013), with R packages foreign, best-
glm (A.I. McLeod and Changjiang Xu,2017), corrplot (Taiyun Wei and
Viliam Simko,2017) and pROC [43]. The Anderson-Darling test, his-
tograms and QQ-plots were used to determine whether the data were
normally distributed or not. If normally distributed, the independent
sample t-test was used to compare baseline characteristics and miR ex-
pression between cases and controls. The Mann-Whitney U test was
used for non-normally distributed characteristics and the Fisher's exact
test for categorical variables. Correlation between traditional risk fac-
tors and miRs was tested using Pearson correlation analyses. Logistic

regression was used to estimate the effect of the FRS for hard CHD and
additional covariates on the 10-year risk for MI [37,44]. In the logistic
regression where the miR data were included, the normalized ΔCqcandi-
date miR for the 10 miR were used as covariates. Best subset logistic re-
gression, using the AIC (Akaike information criterion) as model selec-
tion criterion, was applied to find the set of miRs that together with FRS
for hard CHD best predicted future MI. The results are presented as es-
timated odds ratio with 95% Wald confidence intervals and p values are
given for the covariates in the final model. For model evaluation, 10-fold
cross-validation was used for the ROC curves and the AUC, to reflect the
performance of the method on new data [45]. All parts of the model fit-
ting, also the best subset selection, were part of the cross-validation. All
AUC values were reported with 95% confidence intervals, and to com-
pare two AUC-values a paired hypothesis test was performed in the R
package pROC based on the methods of DeLong et al. [43,46].

3. Results

Table 1 shows baseline information on the 195 participants in this
study. All participants were healthy at the time of blood sampling.
The cases (n=96) experienced either a fatal (n=36) or a non-fatal
(n=60) MI during the follow-up, whereas the controls (n=99) re-
mained healthy. The mean time lapse between baseline (admission in
cohort) and the MI in the case group was 2.6 years (range 0.25–5.25
years). Concerning traditional CHD risk factors, there were significant
differences between the groups as stated in Table 1 (p<0.05).

When comparing cases and controls, six out of ten miRs differed sig-
nificantly between the groups (Table 2). miR-144-3p and miR-26a-5p
displayed the largest differences with a ΔΔCq value of −0.64 and 0.31
(p<0.001). A sub-analysis excluding the 15 smokers (all from the group
of cases) provided the same significant differences in miRs between the
groups.

To illustrate the independence between these miRs and the tradi-
tional risk factors for MI, a Pearson correlation analysis was conducted.
No correlations were found between circulating miRs and CHD risk fac-
tors as WHR, serum glucose, triglycerides or creatinine levels (Fig. 1).
However, several strong positive correlations were seen between the dif-
ferent circulating miRs.

The best combination of miRs to supplement the FRS in predicting
10-year risk of MI was found using best subset logistic regression with
AIC as model selection criterion, testing all combinations of miRs in

Table 1
Baseline characteristics of the study participants.

Cases
(n=96) Controls (n=99) p value

Age (years) 66.8±7.6 66.7±7.1 0.974a

Gender (female/male) 35/61 36/63 1.000
Smokers (%) 15 (15.6) 0 (0) <0.001
BMI (kg/m2) 27.1±3.5 25.8±2.6 0.004
WHR 0.88±0.07 0.86±0.06 0.098a

Cholesterol (mmol/L) 6.9±1.0 6.6±1.1 0.085
HDL cholesterol (mmol/L) 1.3±0.3 1.5±0.4 0.0013a

Triglycerides (mmol/L) 2.1±0.8 1.7±0.8 <0.001a

Non-fasting glucose (mmol/L) 5.4±0.9 5.4±0.8 0.728a

Serum creatinine (mg/dL) 92.3±13.9 90.4±13.6 0.350
Systolic blood pressure
(mmHg)

152.2±20.0 142.1±15.8 <0.001

Framingham Risk Score 16±8 11±7 0.027

Data are shown as mean±standard deviation or n (%).
BMI: Body mass index, WHR: Waist-hip ratio, HDL: High-density lipoprotein. Framingham
Risk Score: 10-year percentage risk of CHD.

a Non-parametric test.
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Table 2
Serum levels of microRNAs (quantified as ΔCq) and difference in cases versus controls
(quantified as ΔΔCq).

MicroRNA
Cases
ΔCq±SD

Controls
ΔCq±SD (95% CI) p value

n 96 99
let-7g-5p 2.41±0.59 2.20±0.41 0.21 (0.07, 0.36) 0.004
miR-21-5p 5.22±0.50 5.13±0.40 0.09 (−0.04, 0.22) 0.162
miR-26a-5p 1.45±0.54 1.15±0.54 0.31 (0.15, 0.46) <0.001
miR-29c-3p 0.74±0.57 0.97±0.52 −0.22 (−0.38,

−0.07)
0.005

miR-106a-5p 2.86±0.52 2.78±0.44 0.08 (−0.05, 0.22) 0.232
miR-144-3p 2.57±0.92 3.21±0.66 −0.64 (−0.86,

−0.41)
<0.001

miR-151a-5p 1.43±0.59 1.33±0.52 0.11 (−0.05, 0.26) 0.187
miR-191-5p 1.55±0.54 1.41±0.41 0.15 (0.01, 0.28) 0.035
miR-424-5p 0.63±0.82 0.55±0.92 0.08 (−0.17, 0.33) 0.519
miR-451a 7.80±0.61 8.07±0.54 −0.26 (−0.43,

−0.10)
0.002

ΔCq values are shown as mean±standard deviation, and ΔΔCq values are shown with
95% confidence intervals. A positive ΔΔCq value indicates increased miR expression in
the cases and a negative ΔΔCq value indicates decreased miR expression in the cases.
SD: standard deviation, CI: confidence interval.

Fig. 1. Correlation plot (Pearson correlation) for all the quantified miRs, FRS and CHD-risk
factors. Positive correlations are displayed in blue and negative correlations are displayed
in red. The circle sizes and colour intensities are proportional to the absolute value of the
corresponding correlation coefficients. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Table 2. Adding a combination of miR-21-5p, miR-26a-5p, miR-29c-3p,
miR-144-3p and miR-151a-5p to the FRS represented the best model for
predicting 10-year risk of MI (results are presented as estimated odds ra-
tio with 95% Wald confidence intervals and p values in the final model
(Table 3)). By adding these 5 miRs to the FRS, the AUC increased
from 0.66 [95% CI 0.59–0.74] to 0.80 [95% CI 0.73–0.86] (evaluated
by 10-fold cross-validation). This 0.14 unit increase in AUC was signif-
icant (p<0.001) and represented a substantial improvement in model
performance. The performance of the FRS for hard CHD (Model 1) in
comparison with the miR-FRS model (Model 2) is shown in Fig. 2
as ROC-curves (10-fold cross-validation). Furthermore, to test whether
adding other well-known risk factors to the FRS could improve the pre-
diction model to the same extent as by adding miRs, we made a new
model incorporating information on waist-hip ratio, triglycerides, glu-
cose, and creatinine to the FRS (Model 4). As seen from Fig. 2, this

Table 3
Results of the best subset logistic regression analysis with AIC as model selection criterion,
using case/control as the response value.

Covariate OR 95% CI p-value

Framingham Risk Score (FRS) 1.10 1.05, 1.15 <0.001
miR-21–5p 11.3 2.82, 50.8 <0.001
miR-26a-5p 3.18 1.24, 8.56 0.018
miR-29c-3p 0.36 0.13, 0.94 0.039
miR-144-3p 0.29 0.15, 0.51 <0.001
miR-151a-5p 0.37 0.14, 0.92 0.038

OR: Odds ratio, where OR>1, OR=1 and OR<1 indicate positive, no or inverse associa-
tion between the covariate and MI, respectively, CI: confidence interval for the odds ratio.

Fig. 2. Model performance illustrated with ROC-curves. The performance of the FRS
(Model 1, green, solid), FRS + miRs (Model 2, red, short dash), FRS + miRs + other risk
factors (Model 3, yellow, long dash) and FRS + other risk factors (Model 4, blue, dot-
ted). miR: microRNA, FRS: Framingham risk score. The ROC-curves are based on 10-fold
cross-validation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

only provided a minor improvement in performance, as AUC increased
from 0.66 to 0.68 [95% CI 0.61–0.76, p=0.2733], i.e. 0.02 units. As
no strong correlations were found between miRs and waist-hip ratio,
triglycerides, glucose, creatinine (Fig. 1), we tested whether adding in-
formation on the same risk factors to the miR-FRS model could im-
prove performance additionally (Model 3). However, this model only
increased AUC by 0.01 (from 0.80 to 0.81, p=0.1719).

Due to the strong correlation between several of the miRs quantified
in this study, several combinations of miRs will improve the precision of
FRS in almost a similar manner. For instance, adding a combination of
miR-106a-5p, miR-144-3p and miR-424-5p resulted in an AUC of 0.79
[95% CI 0.72–0.86].

4. Discussion

In this present study, we confirm and extend prior observations
concerning the association between circulating levels of microRNAs
(miRs) and the risk of developing myocardial infarction (MI) in healthy,
asymptomatic individuals. By exploring ten miRs previously associated
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with MI-risk, six miRs were found significantly related to 10-year risk
of MI in this present cohort. The main intention of this study was to
test whether incorporation of a miR-signature into the Framingham Risk
Score (FRS), could improve prediction of MI in a clinically relevant
manner. In this study, the best combination of miRs to supplement the
FRS in predicting 10-year risk of MI included miR-21-5p, miR-26a-5p,
miR-29c-3p, miR-144-3p and miR-151a-5p. The new model improved
the accuracy of risk prediction, with an increase from

0.66 to 0.80 in the AUC, which is highly relevant in a clinical setting.
In comparison, adding other well-known risk factors to the FRS only pro-
vided a minor improvement in AUC.

Today, there is little consensus concerning the specific miRs reported
to improve risk prediction in CHD. For instance, Zampetaki et al. re-
ported that adding miR-126, miR-197 and miR-223 to the FRS improved
risk prediction, whereas a previous study from our research group sug-
gested using a combination of miR-106a-5p, miR-424-5p, let-7g-5p,
miR-144-3p and miR-660-5p to improve the precision of the FRS
[33,34]. One possible reason for the discrepancy between studies is the
strong correlation that exists between the levels of circulating miRs (Fig.
1). Thus, there is a chance that a miR reported in one study is strongly
correlated with a miR reported in another study, thus, the results could
be approximately the same independent of which of the miRs that are
chosen to be included in the model. Furthermore, Schulte et al. were
able to identify miR-197 and miR-223 as predictors for cardiovascular
death in a cohort of documented CHD patients, and thus extended the
applicability of circulating miRs towards secondary prevention [35]. An
issue with the latter study was the low number of events (2.1%), which
calls for further evaluation.

Obesity is a well-known risk factor for CHD [47]. As the FRS does
not include waist-hip-ratio (WHR) or other obesity-related parameters
(e.g. waist, BMI), we assumed that some of the miRs predicting MI were
reflecting obesity status [48]. We therefore tested whether adding other
well-known CHD risk factors to the FRS could obtain similar improve-
ments in risk prediction, as could be obtained by adding miRs. Surpris-
ingly, adding information on serum triglycerides, serum glucose, serum
creatinine, and WHR barely improved risk prediction.

The discovery of new biomarkers able to improve risk prediction has
several relevant clinical applications such as early identification of in-
dividuals eligible for primary prevention and better risk stratification of
individuals at intermediate risk. Identification of new biomarkers can
also contribute to new knowledge on signalling pathways that may rep-
resent new therapeutic targets. Two of the miRs associated with future
MI in this present study, miR-144-3p and miR-451a, are transcribed
from the same precursor RNA, and make up the miR-144/451-cluster.
The miR-144/451-cluster is controlled by the important transcription
factor GATA-4 in cardiomyocytes [49]. A previous study have reported
that the miR-144/451-cluster is dysregulated in ischemic hearts, and
that high levels of these miRs protect the heart from ischemic injury
[49]. Our results supports this, as we found significantly lower levels of
circulating miR-144-3p and miR-451a in the group of participants devel-
oping MI during the 10-year follow-up period.

One additional miR was down-regulated in the group of participants
who later developed MI; miR-29c-3p. This miR showed a moderate pos-
itive correlation with miR-144. Previous studies in cultured endothelial
cells indicated that miR‐29a-3p is required for normal endothelial.

Function and that delivery of miR-29 have been shown to restore
endothelium‐dependent vasodilation [50]. The same study showed that
miR‐29 promotes endothelium‐dependent vasodilation in both human
and rat arterioles. In contrast, a previous study from our research group
involving younger and healthier participants, reported that high base-
line levels miR‐29a-3p were associated with increased risk for fatal MI
[34]. The reason for this discrepancy is uncertain, however, the differ-
ences in age and the presence of other CHD risk factors might influence
the result.

Another miR that was differently expressed between the cases and
controls and were included in the prediction model was miR-26a-5p.
High levels of circulating miR-26a-5p was associated with increased risk
for MI. Decreasing systemic levels of miR-26a in mice has been shown
to protect the heart form ischemic injury [51]. The same study also re-
vealed that miR-26a-5p levels are increased patients with stenotic le-
sions >70% compared to patients with <20% lesions. Another study
reported that miR-26a levels are increased in endothelial progenitor
cells from patients with atherosclerosis compared to healthy controls,
and that the overexpression is associated with dysfunction of these cells
[52]. Surprisingly, in a previous study from our research group involv-
ing younger and healthier participants, we found that low baseline levels
of miR-26a were associated with increased risk for MI [34]. There may
be consensus that miR-26a-5p plays a major role in the preservation of
cardiovascular health, but the knowledge of its role as a biomarker of
CHD is still sparse [53].

One of the miRs that were selected for the prediction model, de-
spite being significantly differently expressed in the cases and controls
were miR-21-5p. This miR has previously been associated with ather-
osclerosis, endothelial damage and dysfunction [26]. High circulating
levels of miR-21-5p have been found in patients with atherosclerosis
obliterans, cerebrovascular disease and chronic CHD [54–56]. In our
study, participants developing MI during the follow-up had a tendency
towards higher levels of circulating miR-21-5p compared to the controls,
although not significant (p=0.16). This could reflect asymptomatic ath-
erosclerosis at the time of inclusion, and thereby increased risk of MI
during follow-up.

Another miR that was enriched in the group of participants that de-
veloped MI during follow up was miR-191-5p. This miR has previously
been reported to be abnormally expressed in several cancers, as well
as in diabetes type 2 and pulmonary hypertension [57]. A study of di-
abetic patients showed that circulating levels of miR-191-5p correlate
positively with C-reactive protein, and thus make a possible link to the
atherosclerotic process [58]. Exposure to smoking and anti-platelet ther-
apy have been shown to influence the circulating levels of miR-191-5p
[59,60].

As previously mentioned, there is a lack of consensus regarding the
specific miRs reported to improve risk prediction in CHD. In our previ-
ous study exploring miRs predicting MI, we found other miRs capable of
improving risk prediction [61]. However, due to the strong correlation
between several of the miRs quantified, several combinations of miRs
will improve the precision of FRS in almost a similar manner. To inves-
tigate this we fitted our logistic regression to the FRS and miR-106a-5p,
miR-424-5p and miR-144-3p. These miRs were chosen since they are
highly correlated with the five miRs presented in Table 3 (see Fig. 1 for
the correlation plot). The 10-fold CV AUC for this model was 0.79, in-
dicating that these alternative miR had the capability of improving risk
prediction to almost a similar extent.

One of the major limitations in the field of circulating miR is the
lack of a common strategy for normalization. This represents a substan-
tial disadvantage when comparing expression levels between different
studies [62]. Furthermore, antiplatelet therapy, heparin, smoking and a
plethora

of diseases have been shown to alter the miR levels in blood
[59,60,63]. Caution must therefore be made when interpreting exist-
ing studies, and especially when designing new ones. Unfortunately,
detailed information on pharmacological therapy like the use of an-
tiplatelet drugs was not available in the HUNT-cohort. Hence, we cannot
rule out the possibility of medication-induced alterations of miR levels
in individual patients that are not associated with the development of
the disease itself. However, as blood samples were collected in relatively
healthy participants with no previous heart disease, stroke or angina
pectoris, we anticipate that this would not have dramatic effects on the
results.
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Another limitation of this study was the use on non-fasting blood
samples in analysis of lipids and glucose. However, non-fasting blood
samples was considered to be the best approach for the HUNT-studies to
ensure high participation rate and avoid potential fasting-evoked hypo-
glycemic events in diabetic patients. Moreover, a recent study has shown
that most lipid levels differ minimally after a meal compared with fast-
ing [64]. In addition, numerous large prospective studies have shown
that non-fasting lipids are sufficient for general screening of CHD risk
[65–67]. A meta-analysis of 68 prospective studies, 20 of which used
non-fasting blood samples, found no attenuation of lipid relationships
with predicting incident events for non-fasting lipids [67]. Based on this,
we believe that our results would not be significantly interfered by the
fasting-status of the participants.

One more limitation of this study is the lack of a mechanistic path-
way insight. Such information could provide knowledge on signalling
pathways that may represent new therapeutic targets of CVD. How-
ever, as the circulating miRs may originate from different tissues/or-
gans, pathway analyses could be difficult to interpret.

Finally, due to the lack of data on some of the standardized, already
clinically introduced risk factors (e.g. hsCRP), we cannot rule out the
possibility that adding information on other competing risk factors po-
tentially could improve the risk prediction model to the same extent as
by adding miRs. This needs to be addressed in future studies.

In conclusion, our findings support previous studies showing that cir-
culating miR can add value on top of traditional risk factors in risk pre-
diction algorithms for CHD. However, discrepancies with previous stud-
ies indicates that there are still methodological issues to solve before cir-
culating miRs can be considered as reliable biomarkers in disease.
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