
Classification of Delay-based TCP Algorithms From
Passive Traffic Measurements

Desta Haileselassie Hagos∗, Paal E. Engelstad†, Anis Yazidi‡
∗†University of Oslo, Department of Technology Systems, Kjeller, Norway

∗†‡Oslo Metropolitan University, Department of Computer Science, Oslo, Norway
Email: ∗destahh@ifi.uio.no, {∗desta.hagos, †paal.engelstad, ‡anis.yazidi}@oslomet.no

Abstract—Identifying the underlying TCP variant from
passive measurements is important for several reasons, e.g.,
exploring security ramifications, traffic engineering in the
Internet, etc. In this paper, we are interested in investigating
the delay characteristics of widely used TCP algorithms that
exploit queueing delay as a congestion signal. Hence, we present
an effective TCP variant identification methodology from traffic
measured passively by analyzing β, the multiplicative back-off
factor to decrease the cwnd on a loss event, and the queueing
delay values. We address how the β as a function of queueing
delay varies and how the TCP variants of delay-based congestion
control algorithms can be predicted both from passively
measured traffic and real measurements over the Internet. We
further employ a novel non-stationary time series approach
from a stochastic nonparametric perspective using a two-sided
Kolmogorov–Smirnov test to classify delay-based TCP algorithms
based on the α, the rate at which a TCP sender’s side cwnd
grows per window of acknowledged packets, parameter. Through
extensive experiments on emulated and realistic scenarios, we
demonstrate that the data-driven classification techniques based
on probabilistic models and Bayesian inference for optimal
identification of the underlying delay-based TCP congestion
algorithms give promising results. We show that our method can
also be applied equally well to loss-based TCP variants.

Keywords—TCP, Delay-based, LSTM, Bayesian, Classification,
Kullback-Leibler divergence, Kolmogorov–Smirnov, Stochastic

I. INTRODUCTION AND MOTIVATION

Transmission Control Protocol (TCP) is one of the
dominant transport protocols that has played a great role in
the exponential success of the Internet, network technologies
and applications [17]. The majority of all Internet traffic all
over the world today use TCP. TCP is a highly reliable
end-to-end connection-oriented transport protocol designed to
prevent excessive congestion on the Internet [17]. Note that
congestion control in TCP was not part of the protocol initially
until the first Internet congestion collapse was observed [17].
TCP controls congestion by aiming for fair sharing of
the available network resources by the competing flows,
using strategies empowered by TCP [17]. Congestion control
algorithms provide a fundamental set of techniques critical
for maintaining the robustness, efficiency, and stability of
the global Internet. Since the specification of TCP [25],
various end-to-end congestion control algorithms have been
designed and implemented on a larger scale for the Internet
with several enhancements. One category of the widely
deployed variants ranging from TCP CUBIC [12], Reno [17],
BIC [30], etc. where packet loss probability is an implicit
signal for congestion in the underlying network are called
loss-based TCP congestion control algorithms. Variants of
this kind aggressively fill up the actual network buffers in
order to achieve better throughput by ignoring queueing delay.
However, this is challenging for the quality of latency-sensitive

and bandwidth-intensive real-time media applications to
achieve good performance when long-running flows also share
a large bottleneck link buffers. Therefore, to address this
challenging problem, delay-based TCP schemes that adopt
packet queueing delay rather than a loss as congestion
signals are introduced. With delay-based congestion control
algorithms, allocating network resources across competing
users can be attained by supporting both high network
utilization and low queuing delay even when the buffer
sizes are large. Detailed background on these categories
of TCP variants is presented in Section II. In this paper,
we are interested in investigating the delay characteristics
of widely used TCP algorithms that exploit queueing
delay as a congestion signal and demonstrating how an
intermediate node can identify both loss-based and delay-based
TCP variants from passively captured TCP traffic using
state-of-the-art approaches. As explained below, inferring
whether the underlying network is using loss-based or
delay-based TCP congestion control algorithms has potential
benefits for various reasons. Our work in this paper is mainly
motivated by the following questions: (i) How well can we
infer the most important TCP per-connection transmission
states that determine a network condition (e.g., Congestion
Window (cwnd)) from a passive traffic collected at an
intermediate node of the network without having access
to the sender? (ii) How can we identify the underlying
delay-based TCP variant that the TCP client is using from
passive measurements? (iii) What percentage of network users
are using delay-based TCP variants? (iv) How do different
implementations of TCP congestion control algorithms behave
on the end-to-end variability of bandwidth, delay, different
cross-traffic, Round-Trip Time (RTT)? etc.

Potenial opportunities and benefits: It is reasonable to
ask: Why is the identification of the underlying TCP flavors
performed in an intermediate node from passive measurements
important? Some of the main reasons why passive estimation
of TCP internal state variables in an intermediate node is
important, for example, is when (i) We have no control
over either end-host of communication so we can’t launch
active measurements from either host, (ii) The TCP active
probes used in active measurements (such as ping messages)
are blocked by firewalls etc. In addition to this passive
measurements, unlike active measurements, do not introduce
additional traffic into the network that can skew the results.
For more details about the difference between active and
passive measurement techniques, we refer the reader to our
previous work [13]. There are myriad reasons we may want
to use passive measurements to identify the underlying TCP
flavors but in our paper, we will explore the above questions
quantitatively from different perspectives as they apply to the
problems of network congestion.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works.

Operational benefit: We argue that uniquely inferring the
underlying TCP congestion algorithm the client is using is
useful for network operators to monitor if major content
providers (e.g., Google, Facebook, Netflix, Akamai etc.) are
manipulating their congestion windows in their servers to
achieve more than their fair share of available bandwidth.
Another scenario where network operators might find this
information useful is if they have a path that they know is
congested due to customer complaints, but the links using that
path are not especially over-subscribed. In that case, details
about the cwnd behaviour of all the users on that path might
be helpful in trying to diagnose the cause, i.e., are there users
that are using aggressive congestion control algorithms which
are unfair and affecting other user’s available bandwidth?

ISP benefit: Knowledge about the TCP stack in use in the
endpoints is useful for operators of big ISP networks that
do much traffic engineering who need to move traffic from
oversubscribed links. It can also be used to diagnose TCP
performance problems (e.g., to determine whether the sending
application, the network or the receiving network stack are
to blame for slow transmissions) in real-time. Another benefit
might be to observe when large content providers implement
their own custom congestion control behavior that does not
match to one of the known congestion control algorithms.

Security ramifications: We believe it is also useful for
exploring security threats. This is because if we are able to
infer the TCP variant, we can also make some guessing on the
implementation of the underlying operating system and search
for vulnerabilities. This can tell us about the encryption at the
end-system that can be used to tailor-made attacks.

Contributions. Our paper makes the following contributions.

• We identify the main challenges in investigating the delay
characteristics of the widely used TCP algorithms.

• We demonstrate how the intermediate node (e.g., a network
operator) can predict the cwnd size of delay-based TCP
algorithms using state-of-the-art deep learning techniques.

• We examine a set of state-of-the-art techniques that are
reasonably effective in classifying the underlying variants
of delay-based TCP congestion control algorithms within
flow from passive measurements based on the β parameter.

• We employ a novel non-stationary time series approach from
a stochastic nonparametric perspective using a two-sided
Kolmogorov–Smirnov test to classify delay-based TCP
algorithms based on the α parameter.

• We are able to identify the widely used TCP variants with
high accuracy and explore security ramifications.

• We compare our delay-based classification approach with
recent state-of-the-art loss-based identification techniques.

• Finally, we show that the learned prediction model performs
reasonably well by leveraging trained knowledge from the
emulated network when it is applied and transferred on a
realistic scenario setting.

II. BACKGROUND

TCP congestion control strategies are broadly categorized
into loss and delay sensitive schemes. Loss-based TCP
congestion control algorithms consider packet loss as an
implicit indication of congestion by the network. TCP variants
of this kind attempt to fill the network buffers and hence

they tend to induce large queueing delays when the buffer
sizes are large. Unlike traditional loss-based approaches,
delay-based TCP congestion control algorithms use the
changes in queueing delay measurements as implicit feedback
to congestion in the network. Delay-based congestion control
algorithms attempt to avoid network congestion by monitoring
the trend of network path’s RTT information contained in
packets. It is believed that variants of this kind achieve better
average throughput by not filling buffers and maintaining full
path utilization with low queueing and fair allocation of rates
to flows [4, 28]. In order to properly allocate, share the
underlying network resources, and ensure network queueing
delay stays low, delay-based congestion control algorithms
require knowledge of an accurate estimate of the network
path’s BaseRTT [21], usually defined as the smallest of all
measured minimum RTTs of a segment in the absence of
congestion. The following are the list of an end-to-end widely
used delay-based congestion control algorithms on the Internet
we use for our evaluation.

• TCP Vegas [4]: Vegas is a delay-based implementation
of TCP congestion control algorithm motivated by the
studies [18] and [27]. Vegas’s congestion detection
technique depends on the accurate estimation of
BaseRTT [4]. Hence, if the estimated value of BaseRTT is
too small, then it’s throughput will stay below the available
bandwidth; however, if the estimated value for BaseRTT is
too large, then it will overrun the connection [4]. As shown
in Equation 1, Vegas computes the expected throughput
of the connection as the ratio of the current window size
and BaseRTT. The main idea of Vegas behind Equations 1
and 2 is that when the network is not congested, the actual
flow rate will be close to the expected flow rate. However,
if the network is congested, the expected flow rate will be
greater than the actual flow rate.

Expected =
WindowSize

BaseRTT
(1)

Actual =
WindowSize

RTT
(2)

To estimate the available bandwidth and congestion state
of the network, TCP Vegas compares the actual sending
rate and evaluates the difference, Diff, between the estimated
throughput and the current actual throughput computed as
shown in Equation 3 and updates the cwnd accordingly.

Diff = Exptected−Actual (3)

By definition Diff is a non-negative since Actual>Expected
implies that we need to change BaseRTT to the latest
sampled RTT. To adjust the congestion window size, TCP
Vegas uses two threshold values α and β where 0≤α<β [4].
Depending on this difference as shown in Figure 1 and
Equation 4, if Diff<α, Vegas increases the cwnd size
linearly until the next RTT, and when Diff>β, then Vegas
reduces the cwnd linearly until the next RTT. However,
Vegas leaves the cwnd size unchanged when α<Diff<β.

++
0
increase cwnd decrease cwndcwnd unchanged

Fig. 1: TCP Vegas throughput thresholds

cwnd =

cwnd+ 1 If Diff<α
cwnd− 1 If Diff>β
cwnd Otherwise

(4)

• TCP Veno [11]: Veno adopts the same methodology as
TCP Reno [17] in determining the congestion window
size in the network. But Veno uses the delay information
of TCP-Vegas [4] to further differentiate non-congestion
packet losses when RTT varies greatly by estimating the
backlogged packets in the buffer similar to TCP Vegas. If
the number of backlogged packets in the buffer is below a
certain threshold, it is a strong indication of random loss.
However, if packet loss is detected when the connection
is in the congestive state, TCP Veno uses the standard
TCP Reno Additive Increase and Multiplicative Decrease
(AIMD) scheme to reduce the cwnd during its congestion
avoidance mode. TCP Veno sets β factor to 0.8 when the
queueing delay is small. However, when the queueing delay
is high, TCP Veno sets β to 0.5.

For comparison reasons we also consider the following most
widely used loss-based TCP congestion control algorithms.

• TCP Reno [17]: Reno is one of the most predominant
implementations of loss-based TCP variants which employs
a conservative linear growth function for increasing the cwnd
by one segment for each received ACK and multiplicative
decrease function on encountering a packet loss per RTT [5].
Its β value is 0.5 which corresponds to reducing the window
by 50% during a loss event as shown in Equation 5.

cwnd =

cwnd+ 1 Slow start phase
cwnd+ 1

cwnd Congestion avoidance
cwnd

2 If packet is lost
(5)

• TCP CUBIC [12]: CUBIC is the default congestion
control algorithm as part of the Linux kernel distribution
configurations from version 2.6.19 onwards. It modifies the
linear window growth function of existing TCP standards
to be governed by a cubic function in order to improve the
scalability of TCP over fast and long distance networks.
CUBIC decreases the cwnd by a factor of β whenever it
detects that a segment was lost. And, it increases towards a
target congestion window size (W) when in-order segments
are acknowledged where W is defined as follows:

Wcubic
(t) = |C(t−K)|3 +Wmax (6)

where Wmax is the window size reached before the last
packet loss event, C is a fixed scaling constant that
determines the aggressiveness of window growth, t is the
elapsed time from the last window reduction measured after
the fast recovery, and K is defined by the following function:

K =
3

√
Wmaxβ

C
(7)

where β is a constant back-off factor of CUBIC [12] applied
for window reduction at the time of a TCP packet loss event.
The β value of CUBIC is 0.7 which corresponds to reducing
the window by 30% during a TCP packet loss event [12]
and can be calculated as per Equations 6 and 7.

Roadmap: The rest of this paper is organized as follows. Next,
in Section III, we discuss the related work in the literature
considered as a state-of-the-art. In Section IV, we describe
an overview of our controlled experimental setup for the
evaluation. Section V presents approaches to our classification
models in detail. The experimental results and discussion are
presented in Section VI. Finally, Section VII concludes the
paper and outlines directions of research for future extensions.

III. RELATED WORK

TCP is one of the key protocols of today’s Internet Protocol
(IP) suite and its performance analysis has been extensively
studied in the computer networking community [24]. Many
research studies have also analyzed the underlying TCP
congestion control algorithms as we have already discussed
the most relevant works in Section II. There are many different
TCP variants widely in use, and each variant uses a specific
end-to-end congestion control algorithm to avoid congestion,
while also attempting to share the underlying network capacity
equally among the competing users. However, we believe
that there is very little work on the identification of the
underlying delay-based TCP congestion control algorithms
from passive measurements. The work in [22] proposes a
cluster analysis-based method that aims a router to identify
between two versions of TCP algorithms. This method was
meant to be utilized in real-time applications to handle network
traffic routing policies. It performs RTT and cwnd estimation
in order to infer a group of traffic characteristics from the
flow [22]. These characteristics are then clustered into two
groups by applying a hierarchical clustering technique. The
authors show that only 2 out of 14 TCP congestion algorithms
that are implemented in Linux can be identified based on
their method [22]. Another related work [31] presents an
active measurement technique to identify a diverse set of
known congestion control algorithms. However, our work in
this paper relies on a passive measurement technique. In a
closely related previous work [15], we presented a machine
learning-based approach to identify the underlying traditional
loss-based TCP variants which yield accuracies of 93.51%
and 95% on emulated and realistic scenarios respectively. The
cwnd prediction performance result of the loss-based variants
across different scenario settings is presented in Table I.

TABLE I: cwnd prediction accuracy of loss-based TCP
variants under an emulated and realistic settings [14, 15]

Emulated Setting Realistic Setting
TCP Algorithms RMSE MAPE (%) RMSE MAPE (%)
CUBIC 5.839 6.953 3.522 4.738
Reno 3.511 3.140 3.396 5.197

This was achieved by analyzing the β value by averaging
out the window size of loss-based algorithms every time a
peak is detected so that the computation of the multiplicative
decrease factor is not done only on a slow start phase.
However, this work doesn’t address how the β as a function of
queueing delay varies and how the TCP variants of delay-based
congestion control algorithms can be predicted both from
passively measured traffic and real measurements over the
Internet. By design, unlike loss-based algorithms, the β value
of delay-based congestion control algorithms is not fixed which
makes it fundamentally challenging to predict the TCP variant
from passive traffic when there is variability in delay. Hence,

in this paper, we want to substantially address this problem by
building a two-dimensional space model and see if the β is
dependent on queueing delay or not. This helps us to expand
our previous method [15] to address bigger cases covering both
loss-based and delay-based TCP congestion control algorithms.

IV. EVALUATION METHODOLOGY

A. Experimental Setup

Our evaluation experiments are carried out using a cluster
of HPC machines based upon the GNU/Linux operating system
running a modified version of the 4.15.0-39-generic kernel
release. The prediction model is performed on an NVIDIA
Tesla K80 GPU accelerator computing with the following
characteristics: Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz,
64 CPU processors, 128 GB RAM, 12 CPU cores running
under Linux 64-bit. All nodes in the cluster are connected to
a low latency 56 Gbit/s Infiniband, gigabit Ethernet and have
access to 600 TiB of BeeGFS parallel file system storage.

Passive Monitor

Receiver

LSTM
Prediction

LSTM
Methodology

NetEm
loss

bandwidth

delay jitter

Network
Emulator

Outstanding Bytes
Actual cwnd

Verification
Predicted cwnd

192.168.1.2

192.168.2.16
158.36.78.27

Sender

158.36.78.28

Fig. 2: LSTM Methodology for cwnd prediction

B. Validation Experiment

We have conducted a controlled experiment both on
simulated environments and realistic scenario settings.

Emulated Setting: We construct an experimental setup shown
in Figure 2 where we generate the training data and predict the
cwnd from a passively captured traffic using state-of-the-art
deep learning approaches. To evaluate the prediction model
and perform our analysis on both the emulated and realistic
network conditions, we have generated our own training
dataset. In order to capture all sessions on the network when
the client and server are sending TCP packets and measure
the TCP data packets from both directions, we have used
the fully controlled experimental setup shown in Figure 2.
The background TCP stream traffic for all our experiments
are generated using the iperf [9] traffic generator on an
emulated LAN link where we run each TCP variant by adding
a variation of the emulation parameters bandwidth (in Mbit),
delay (in ms), jitter (in ms) and packet loss (%) within a flow.
During a single TCP flow of our experiment, the parameters
bandwidth, and delay are constant with a uniform distribution.
However, since we have the jitter given as an average, its
distribution is normal. The issues of cross-traffic variability
and verification of the popular Linux-based network emulator
we used, Network Emulator (NetEm) [16], are thoroughly
addressed in our previous work [13].

Loss-based

CUBIC

Reno

Delay-based Vegas

Veno

Predicted cwnd TCP Variants

TCP back-off

Fig. 3: Methodology for TCP Variant classification

Realistic Setting: In addition to the simulation validation
described above, we have also evaluated our experiments over
real-world Internet paths using the setup shown in Figure 4 so
that we can further validate our results presented in Figure 9
against other scenario settings. This helps us to carefully test
how well our deep learning-based cwnd prediction model
using an emulated network works by conducting a series of
controlled experiments in a realistic setting. In this way, we
can justify and guarantee how our model could predict the
development of a cwnd pattern and the TCP variant used
with other realistic network traffic scenarios captured from
the Internet. To this end, we created a realistic experimental
testbed where we experiment by running our resources on
Google Cloud platform nodes across the Internet as shown
in Figure 4. In order to create a realistic TCP session, we
uploaded a massive image file to Google Cloud platform site
so that we have a full control of the underlying TCP variant
on the sending node and at the same time run a tcpdump
in the background and capture all sessions on the network
when the client and server are sending TCP packets. Next,
we filtered out the receiving host where we send the TCP
traffic to. Finally, we calculated the number of outstanding
bytes obtained from the captured network traffic and run it
through our learning model to predict the development of the
TCP cwnd. Since we have full control of the sending node, we
can track the system-wide TCP state of every packet that is sent
and received from the kernel to verify our model’s prediction
accuracy against the ground truth by matching with the actual
sending TCP states using the methodology shown in Figure 2.
As it is shown in Figure 10, we found out that our model could
be performing very well with small prediction errors when we
apply it to real-world scenario settings too. The final cwnd
sawtooth pattern prediction performance comparison between
the emulated and realistic settings is presented in Table V.

Passive Monitor

192.168.2.16

158.36.78.28

192.168.1.2

Sender

10.0.1.0/24

35.185.121.103

158.36.78.27

Data Center

InternetGoogle Cloud Platform

Fig. 4: Realistic Scenario Setup

V. OUR APPROACHES

This section presents the concepts and approaches to the
underlying TCP variant classification process.

A. Passive cwnd Prediction

For this task, we are interested in the capabilities and
potentials of Recurrent Neural Networks (RNN) models for
implementing our passive cwnd prediction model for TCP.
Hence, we have explored an approach to investigate and
explore in detail on how an intermediate node (e.g., a network
operator) can identify the transmission state of both loss-based
and delay-based TCP congestion control algorithms associated
with a passively monitored TCP traffic using Long Short-Term
Memory (LSTM)-based RNN architecture. In TCP, the cwnd
is one of the main factors that determine the number of bytes
that can be outstanding at any time. Hence, we assume that
using the observed outstanding sequence of unacknowledged
bytes on the network seen at any point in time in the lifetime
of the connection as an estimate of the sending TCP's cwnd
from tcptrace [23] when there is variability of bandwidth,
delay, jitter and loss is a better approach to estimate the cwnd
and how fast the recovery is. We measure the cwnd for the
end-to-end path between the sender and the receiver basing
our inference on the total amount of outstanding bytes and
run it through our learning model to predict the development
of the TCP cwnd and it’s variant.

Implementation details: Our methodology of the
classification process is depicted in Figure 3. We implemented
our passive cwnd prediction model in Python using the
Keras deep learning framework with Google’s TensorFlow
backend [1] running on NVIDIA Tesla K80 GPU where
we apply an LSTM-based architecture trained over multiple
epochs by taking the cwnd samples as values in time-series.
As shown in Figure 2 at each time-step of t, as a learning
process, the LSTM model takes an entire array of the
outstanding bytes matching based on timestamps captured on
the intermediate monitoring point between the sender and
receiver as an input feature vector indexed by timestamps.
We propagate the input to the model through a multilayer
LSTM cell followed by a dense layer of 15-dimensional
hidden states with Rectified Linear Unit (ReLU) activation
function for the different layers that generates an output
of a sequence dimensional vector of predicted cwnd of the
same size indexed by timestamps. Our LSTM network is
trained using the Truncated Back Propagation Through Time
(TBPTT) training algorithm for modern RNNs applied to
sequence prediction problems [26]. We used this training
algorithm to minimize LSTM’s total prediction error between
the expected output and the predicted output for a given
input of the measured cwnd time-series. We trained our
LSTM-based learning algorithm without the knowledge of the
input features from the TCP sender-side during the learning
phase. We learn the model from the training data and then
finally predict the test labels from the testing instances on all
variations of the emulation parameters. In order to train our
prediction model more quickly, and get a more stable and
robust to changes cwnd estimation model, we have applied
one of the most effective optimization algorithms in the deep
learning community, the Adam stochastic algorithm [19] with
an initial learning rate of 0.001 and exponential decay rates
of the first (β1) and second (β2) moments set to 0.9 and 0.999

respectively. Totally, all of our configurations were trained
for a maximum of 100 epochs with the mini-batch size of
256 samples. We further optimize a wide range of important
optimal hyperparameters related to the neural network
topology to improve the performance of our prediction model.
In order to train and test our prediction model, we employed
every experiment with a ratio of 60% training, 40% testing
split and a 5-fold cross-validation into one learning model.

Why did we use RNN models? As explained above, the cwnd
is a TCP per-connection state internal variable, stored in the
memory of the TCP sender, relevant to congestion control.
However, since the value of the cwnd is not contained in the
TCP header – trying to predict this value somewhere other
than at the TCP sending node is fundamentally challenging.
In our case, let’s consider a situation where a network model is
trained for a specific intermediate node which has been trained
for a specific bandwidth, background load, multiplexing rate,
and a multitude of different router conditions, can predict well
for exactly this node. Hence, we want a model that is able
to train in one scenario setting and apply it as a pre-training
on another setting by leveraging trained knowledge. As it is
presented in Section IV, this paper proofs that it makes sense in
principle to use learning algorithms for TCP state predictions
and this is the reason why we use RNN approach for the
passive cwnd prediction.

B. TCP variant classification based on the β parameter

K-Nearest Neighbor (KNN): The first approach we used to
identify the underlying TCP variants is a distance metrics using
KNN machine learning classification algorithm [6]. Given an
input feature vector of TCP protocols in an n-dimensional
Euclidean space Rn with a set of back-off parameters and
queueing delay instances, {β̂i, d̂iffi} ∈ Rn, training samples of
the form ({xi, yi}, xi ∈ Rn), we want to classify a new TCP
protocol, P, by finding the value of {β̂i, d̂iffi} that is nearest
to P. For the estimation of d̂iff in our evaluations, we applied
the formula proposed in TCP Vegas as shown in Equation 3.

Fig. 5: KNN Prediction of TCP Variants

As shown in Figure 5, our classifier model fits reasonably well
with high accuracy. However, we believe that this approach has
a limitation in classifying TCP Reno [17] and TCP Veno [11]
when the queueing delay is high. For example, if we have many
β̂ points of TCP Veno in a two-dimensional space with low
d̂iff that means we will have more β̂ values with one cluster of
0.8. How do we ensure that the d̂iff is low and how do we tell
the exact difference between TCP Veno and Reno? Hence, to
avoid this shortcoming, we proposed the following methods.

Kullback-Leibler (KL) Divergence: Before fitting our data
into the beta distribution family, we wanted to answer
the question: How do we optimally choose the positive
shape parameters, α and β, of beta distribution given in
Equation 9? Hence, we use the KL divergence [20] to
find the fitting parameters in the beta distribution. KL,
in statistics, information theory and pattern recognition, is
a well-known distance measure between two probability
distribution measures p(y) and q(y) defined as follows:

D(q‖p) := Ey∼q(y)
[
log

q(y)

p(y)

]
=

∫
q(y) log

q(y)

p(y)
dy (8)

In general, the KL divergence is only defined if q(y) > 0 for
any value of y such that p(y) > 0.

Beta Distribution: As shown in Figure 8, the beta distribution
is the best fitting model for the problem we address in this
paper for all the TCP protocols except TCP Veno [11]. Beta
distribution, parametrized by two positive shape parameters,
denoted by α and β, is appropriate for representing the
uncertainty of a continuous probability distribution and is
defined by:

f(K|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
Kα−1(1−K)β−1 (9)

where K ∈ [0, 1] and it represents the support of the
probability distribution, Γ(·) is the gamma function defined
as: Γ(z) =

∫∞
0
tz−1e−tdt.

For TCP Veno, as depicted in Figure 8(a), we used a
sigmoid-based function and the reason why we applied sigmoid
function for TCP Veno is because say that we have 1 million
β̂ points with high d̂iff value (i.e., when the connection is on
a congestive state) and only 1 β̂ point with low d̂iff value. If
we compare this with TCP Reno [17] which has few points
with a fixed β̂ value of around 0.5, the inaccuracy might be
a little higher when we measure it with other metrics. When
we run our experiment on the Internet, we can’t decide how
many β̂ points we get because it depends on the underlying
network. As we can see it on Figures 6 and 7, we have one β̂
point for Veno [11] and we believe this is completely realistic.
Because this means we have one class (cluster) of 1 β̂ point
with low d̂iff and another class of many β̂ points with high
d̂iff and it is possible to classify the protocols based on these
classes. We built our model in such a way that we don’t want
the sender or network change anything with the TCP parameter
values (i.e., α and β) that control increase and decrease ratios
of the cwnd. We simply want to observe things passively from
an intermediate node between the sender and the receiver.
Therefore, to tell the exact difference between the low d̂iff
and high d̂iff, we have to statistically measure how close we
are to the border between the low and high d̂iff. For example,
when we are around a d̂iff threshold of 3, the d̂iff will not
count much but the weight of the β̂ value does. This way, we
can tell the difference between the protocols TCP Veno and
TCP Reno by running a sigmoid-based function on the border
between low and high d̂iff values.

Mixture Distributions: For TCP Veno, we applied a beta
mixture distribution model in a classification setting defined
as follows:

f1(β̂i, d̂iffi) = (1− λ1(d̂iff))d1(β̂i) + λ2(d̂iff)d2(β̂i) (10)

where λi being the mixing weights (density) of the sigmoid
function that depends on the value of d̂iff,

∑
i λi = 1, d1 and

d2 are two different distributions. First, we pick a distribution
of TCP Veno with probabilities given by the mixing weight,
λ and d̂iff, then we generate one observation according to the
selected distribution as shown in Figure 11. Intuitively, the
sigmoid of TCP Veno should be the weights of the two peaks
of the β̂i values, i.e., a beta distribution centered around 0.5
and a beta distribution centered around 0.8. For the other TCP
protocols, we applied a beta distribution of the form fi(β̂i).
We have experimented with different beta mixture distributions
and finally, we have verified that our model yields reasonably
good results. Sample beta mixture distributions of TCP Veno
under different values are shown below in Figure 11.

(a) d̂iff=3 (b) d̂iff=4

Fig. 11: Mixture distributions of TCP Veno [11].

Bayesian Inference: Using the data generated from the
beta distribution, we built a Bayesian inference approach
to machine learning by constructing a set of observations
O1:N = {O1, O2, O3, . . . , ON} in which each element Oi
represents a different set of observations of β̂i and d̂iffi of each
TCP variant, V that is obtained from the beta distribution model
as fi(β̂i, d̂iffi). As shown in Equation 12, the normalization
factor is the sum of the data.

P (V = Vi|Oi) ∝ P (V = Vi)

N∏
i=1

P (Oi|V = Vi) (11)

From the law of probability theory, we know that:∑
Vi

P (V = Vi|{O1, O2, O3, . . . , ON} = 1

V = {V1, V2, V3, V4, . . . , VN}
(12)

where V1 = Veno, V2 = Reno, V3 = CUBIC and V4 = Vegas.
For every Vi, the argmax () of these equations retrieves the
index of the highest likelihood of the probability vector. In
the absence of a priori detailed domain knowledge about the
TCP protocols, from a Bayesian inference perspective we
believe all TCP variants will have the same probability and
hence, P(Veno) = P(Reno) = P(CUBIC) = P(Vegas). Using
Equations 11 and 12, we are able to perform the Bayesian
inference and the results we obtained from both emulated and
realistic scenario settings are presented as follows.

(a) (b) (c) (d)

Fig. 6: Beta analysis in an emulated setting. (a) Veno [11], (b) Reno [17], (c) CUBIC [12], (d) Vegas [4].

(a) (b) (c) (d)

Fig. 7: Beta analysis in a realistic setting. (a) Veno [11], (b) Reno [17], (c) CUBIC [12], (d) Vegas [4].

(a) Sigmoid analysis of TCP Veno [11] (b) (c) (d)

Fig. 8: Sigmoid analysis and beta distributions. (a) Veno [11], (b) Reno [17], (c) CUBIC [12], (d) Vegas [4].

(a) (b) (c) (d)

Fig. 9: TCP cwnd Prediction results of an emulated setting. (a) Veno [11], (b) Reno [17], (c) CUBIC [12], (d) Vegas [4].

(a) (b) (c) (d)

Fig. 10: TCP cwnd Prediction results of a realistic setting. (a) Veno [11], (b) Reno [17], (c) CUBIC [12], (d) Vegas [4].

Emulated setting

• When the ground truth is TCP Veno, P (V =
V eno|O1, O2, O3, O4) gives a probability estimation vector
of (46.28, 38.93, 14.34, 0.45) and from this 46.28 maximizes
the probability that this is being classified as V1 (Veno).

• When the ground truth is TCP Reno, P (V =
Reno|O1, O2, O3, O4) gives a probability estimation vector
of (35.25, 49.81, 14.57, 0.36) and from this 49.81 maximizes
the probability that this is being classified as V2 (Reno).

• When the ground truth is CUBIC, P (V =
CUBIC|O1, O2, O3, O4) gives an estimation vector
of (10.13, 9.02, 71.83, 9.02) and from this 71.83 maximizes
the probability that this is being classified as V3 (CUBIC).

• When the ground truth is Vegas, P (V =
V egas|O1, O2, O3, O4) gives an estimation vector of
(31.85, 0.28, 10.79, 57.08) and from this 57.08 maximizes
the probability that this is being classified as V4 (Vegas).

Realistic setting

• When the ground truth is TCP Veno, P (V =
V eno|O1, O2, O3, O4) gives a probability estimation vector
of (46.83, 39.4, 13.44, 0.34) and from this 46.83 maximizes
the probability that this is being classified as V1 (Veno).

• When the ground truth is TCP Reno, P (V =
Reno|O1, O2, O3, O4) gives a probability estimation vector
of (30.99, 52.05, 16.44, 0.52) and from this 52.05 maximizes
the probability that this is being classified as V2 (Reno).

• When the ground truth is CUBIC, P (V =
CUBIC|O1, O2, O3, O4) gives an estimation vector
of (10.69, 9.53, 70.25, 9.53) and from this 70.25 maximizes
the probability that this is being classified as V3 (CUBIC).

• When the ground truth is Vegas, P (V =
V egas|O1, O2, O3, O4) gives an estimation vector of
(32.18, 0.39, 11.73, 55.7) and from this 55.7 maximizes
the probability that this is being classified as V4 (Vegas).

C. TCP variant classification based on the α parameter

In our classification task of the underlying TCP algorithms,
in contrast to the typical increase-by-one decrease-to-half
scheme of TCP to adjust cwnd growth, we consider the β and
α parameters that control the increase and decrease ratios of
cwnd. This means, the cwnd size is increased by α per window
of acknowledged packets in the congestion avoidance state in
response to every RTT and it is decreased to β times its current
value when there is congestion. Classifying the underlying
TCP variant using the β parameter with different approaches
is discussed above in detail. Here, we will use the α parameter
for the same task by employing a novel non-stationary time
series approach from a stochastic nonparametric perspective.
We believe this approach is appealing because the changing
rate of the cwnd size can be modeled as a stochastic
process [2, 3]. This method is ensuring to work properly
because of the quasi-stationary properties that every TCP
protocol has as it could be easily observed from Figure 12(a)
and Figure 12(b) where the statistical behavior of the signal
remains almost unaltered and note that the distribution in all
of the scenarios is pretty consistent by maintaining the same
property. We use the two-sided Kolmogorov-Smirnov (KS) test
which is a nonparametric statistical test1 for comparing two

1i.e., it does not assume a specific form of the distributions

empirical cumulative distribution functions (ECDFs) [10]. The
KS statistic for a given cumulative distribution function (CDF)
F(x) is given as shown in Equation 13.

Dn(Fn, Gn) = sup
x
|Fn(x)−Gn(x)| (13)

where supx is the supremum of the set of distances over the
given distributions, F and G are two ECDFs.

Our approach is to first estimate the probability distribution
function (PDF) over categories in our classification task of
each given TCP protocol as shown in Figure 12 and then
estimate the 95% confidence interval for the distributions using
bootstrap technique [7, 8] so that we can measure how certain
we are about the predictions of the underlying TCP variant
when its estimated α value changes frequently by comparing
the uncertainty measure of the estimated PDF. We could also
show the corresponding standard CDF for each value, but due
to the limited space in this paper, here we present only the
empirical PDF estimations. As we can see from Table IV, the
stochastic confusion matrix has two values on both emulated
and realistic settings. The first value compares the maximum
difference between the ECDFs and chooses the protocol with
the minimum distance that minimizes the probability of the
log(p-value) as shown in Equation 14.

γ = arg min
γα

∫
ω

∣∣∣P̂γ(α)− P̂y(α)
∣∣∣ dα (14)

where γα represents the set of TCP protocols, ω represents
all the possible values of α, P̂γ(α) represents the empirical
probability of a given TCP protocol (γ), P̂y(α) represents the
estimated probability of α in dataset y. Whereas the second
value compares the KS test values by maximizing the estimated
PDF of each distribution using log(p-value) of the bootstrap
test for a given distribution as shown in Equation 15.

γ = arg max
γ∈{Vi}

logP [Dn(γC , y)], i ∈ {1, 2, 3} (15)

where y is another sampled time series of length M used to
classify the protocols so that we don’t end up using the same
time series and γC are the candidate TCP protocols, V1=Veno,
V2=Vegas, and V3=CUBIC, from which the PDF were initially
estimated. Next, we calculate the distribution function using
the raw time series data of each variant and compare it against
the stochastic template of each TCP protocol using the KS
test value whose result is presented in log(p-value). Finally,
we choose the underlying TCP protocol whose log(p-value)
bootstrap test is higher. In Figure 12, if the α interval between
100 and 160 have too high values, then the TCP variant
is Veno. Otherwise, if the value is too low between these
intervals, the protocol will be identified as CUBIC. Our method
is robust enough to identify each underlying protocol without
the prior domain knowledge of the internal characteristics
of each TCP variant. As it is shown in Figure 12(a) and
Figure 12(b), it is clear that the model performs well in terms
of identifying the underlying TCP variants when applied both
on an emulated and realistic scenario settings.

TABLE II: d̂iff values performances
Emulated Setting

Low-d̂iff High-d̂iff
Precision Recall F1-score Support Precision Recall F1-score Support

Vegas 1.00 0.92 0.96 13 1.00 0.91 0.95 11
CUBIC 1.00 1.00 1.00 10 0.92 1.00 0.96 11
Reno 0.90 1.00 0.95 9 0.90 1.00 0.95 9
Veno 1.00 1.00 1.00 8 1.00 0.89 0.94 9

Avg/Total 0.98 0.97 0.98 40 0.95 0.95 0.95 40
Accuracy 97.5% 95%

Realistic Setting
Low-d̂iff High-d̂iff

Precision Recall F1-score Support Precision Recall F1-score Support
Vegas 1.00 0.93 0.96 12 0.92 0.92 0.92 11

CUBIC 1.00 1.00 1.00 11 1.00 1.00 1.00 10
Reno 0.92 1.00 0.96 9 0.91 1.00 0.95 9
Veno 1.00 1.00 1.00 8 1.00 0.91 0.95 10

Avg/Total 0.98 0.98 0.98 40 0.96 0.95 0.95 40
Accuracy 97.83% 95.46%

TABLE III: d̂iff values confusion matrix
Predicted

Emulated Actual CUBIC Reno Vegas Veno

Low-d̂iff

CUBIC 12 0 1 0
Reno 0 10 0 0
Vegas 0 0 9 0
Veno 0 0 0 8

High-d̂iff

CUBIC 10 0 1 0
Reno 0 11 0 0
Vegas 0 0 9 0
Veno 0 1 0 8

Realistic

Low-d̂iff

CUBIC 13 0 1 0
Reno 0 9 0 0
Vegas 0 0 9 0
Veno 0 0 0 8

High-d̂iff

CUBIC 10 0 1 0
Reno 0 10 0 0
Vegas 0 0 9 0
Veno 1 0 0 9

(a) Emulated Setting (b) Realistic Setting

Fig. 12: Empirical PDF estimations for the TCP protocols with a 95% confidence interval on emulated and realistic settings.

TABLE IV: Stochastic confusion matrix
Emulated Setting

Predicted
Maximum difference KS test

Actual Veno Vegas Cubic Veno Vegas Cubic
Veno 99 0 1 100 0 0
Vegas 0 100 0 0 100 0
Cubic 2 0 98 5 0 95

Realistic Setting
Veno 100 0 0 100 0 0
Vegas 0 100 0 0 100 0
Cubic 1 0 99 3 0 97

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We have conducted several experiments over different
scenario settings. In order to justify and guarantee how our
learning model could predict the development of a cwnd
sawtooth and the underlying TCP variant with other realistic
network traffic scenarios captured from the Internet, we created
a realistic testbed as shown in Figure 4 where we experiment
by running our resources on Google Cloud platform nodes
deployed across the globe. As shown in Figures 9 and 10, our
passive cwnd prediction model works reasonably well when
applied both on an emulated and realistic evaluation scenarios.
We confirm that our model operates correctly and accurately
recognizes the sawtooth pattern for realistic scenario settings
across different Google Cloud platforms. This shows that our
prediction model is general bearing similarity to the concept
of transfer learning in the machine learning community [29].

Evaluation metrics: The passive cwnd prediction was
evaluated for accuracy using the Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE)
metrics. The cwnd prediction performance result of both the
emulated and realistic scenario settings across the Google
Cloud platforms in terms of RMSE and MAPE is presented
in Table V. As stated in Section IV, the ground truth data for
the realistic setting was collected from the kernel of the TCP
sending node. The performance results on both metrics indicate
that our model is able to achieve reasonably accurate passive
predictions of the development of cwnd sawtooth pattern.

TABLE V: cwnd prediction accuracy of delay-based TCP
variants under an emulated and realistic settings

Emulated Setting Realistic Setting
TCP Algorithms RMSE MAPE (%) RMSE MAPE (%)
Vegas [4] 1.8225 2.7618 3.6536 4.8864
Veno [11] 3.1421 3.8644 3.9254 4.8705
CUBIC [12] 4.0775 5.2961 3.6370 4.2774
Reno [17] 4.2484 5.9947 4.7541 5.0322

In our two-dimensional space analysis, we evaluated how
the β̂ varies as a function of the estimated queueing delay (d̂iff)
for all TCP protocols basing our hypothesis on the approaches
presented on Section V. To see if the β̂ is dependent on the
queueing delay d̂iff, let’s consider TCP Veno [11]. Intuitively,
If the value of d̂iff is low (i.e., d̂iff<3), according to the
standard specification Veno sets the β to 0.8 and it means Veno
decreases the cwnd upon packet loss only by 20%. However,

if the delay is high (i.e., d̂iff>3), Veno sets the β to 0.5. In
case of TCP Vegas [4], if the d̂iff threshold is high enough
Vegas increases the cwnd and when the cwnd doesn’t reach the
pipe, it decreases by 1. However, if the cwnd is pretty large,
it converges the β towards 1 because of its Additive Increase
and Additive Decrease (AIAD) strategy. In order to guarantee
the accuracy of our TCP variant prediction model, we run
our experiments where we ensure we have measurements with
high d̂iff and low d̂iff values on different scenario settings. To
this end, the prediction accuracies on emulated and realistic
scenarios with these two measurement cases are 97.5%, 95%,
97.83%, and 95.46% respectively as shown in Table II and
their corresponding confusion matrix is depicted in Table III.
As explained above, our stochastic approach is also robust
enough in terms of classifying the TCP variants based on the α
parameter without the prior domain knowledge of the internal
characteristics of each variant as it is shown in Figure 12.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate and explore in detail
on how an intermediate node (e.g., a network operator)
can identify the transmission state of delay-based TCP
congestion control algorithms associated with a passively
monitored TCP traffic. We present an effective TCP variant
identification methodology from traffic measured passively
by utilizing β, the multiplicative back-off factor to decrease
the cwnd on a loss event, and the queueing delay values.
We further employ a novel non-stationary time series
approach from a stochastic nonparametric perspective using
a two-sided Kolmogorov–Smirnov test to classify delay-based
TCP algorithms based on the α, the rate at which a TCP
sender’s side cwnd grows per window of acknowledged
packets, parameter. Our model is built in such a way that we
don’t want the sender or network change anything with the
TCP parameter values that control increase and decrease ratios
of the cwnd. Through extensive experiments on emulated and
realistic scenarios, we have demonstrated that the data-driven
classification techniques based on probabilistic models and
Bayesian inference for optimal identification of the underlying
delay-based TCP congestion control algorithms give promising
and comparable results in terms of accuracy. In conclusion, we
show that the learned prediction model performs reasonably
well by leveraging trained knowledge from the emulated
network when it is applied and transferred on a realistic
scenario setting. Finally, we have shown that our model can
also be applied equally well to loss-based TCP variants using
the presented approaches. To the best of our knowledge, this
paper is the first to study how the variability of the β parameter
as a function of queueing delay and the α parameter can be
used for passive TCP variant identification in real-time.

As part of our future work, we would like to substantially
extend this work in terms of devising a generic learning model
for operating system fingerprinting from passive measurements
by combining the basic TCP/IP features and the underlying
TCP variant as input vectors.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow:
A System for Large-Scale Machine Learning. In OSDI, 2016.

[2] A. A. Abouzeid and S. Roy. Stochastic modeling of TCP in
networks with abrupt delay variations. 2003.

[3] E. Altman, K. Avrachenkov, and C. Barakat. A stochastic model
of TCP/IP with stationary random losses. ACM SIGCOMM
Computer Communication Review, 30(4):231–242, 2000.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New techniques for congestion detection and avoidance,
volume 24. ACM, 1994.

[5] D.-M. Chiu and R. Jain. Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks.
Computer Networks and ISDN systems, 1989.

[6] T. M. Cover, P. E. Hart, et al. Nearest neighbor pattern
classification. IEEE transactions on information theory, 1967.

[7] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E.
Meester. A Modern Introduction to Probability and Statistics:
Understanding why and how. Springer, 2005.

[8] B. Efron and R. J. Tibshirani. An introduction to the bootstrap.
CRC press, 1994.

[9] ESnet. iperf3. https://iperf.fr/iperf-servers.php, 2017.
[10] G. Fasano and A. Franceschini. A multidimensional version of

the Kolmogorov–Smirnov test. 1987.
[11] C. P. Fu and S. C. Liew. TCP Veno: TCP enhancement for

transmission over wireless access networks. IEEE, 2003.
[12] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly

high-speed TCP variant. ACM SIGOPS, 2008.
[13] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. General

TCP State Inference Model from Passive Measurements Using
Machine Learning Techniques. IEEE Access, 2018.

[14] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. Recurrent
Neural Network-Based Prediction of TCP Transmission States
from Passive Measurements. In NCA. IEEE, 2018.

[15] D. H. Hagos, P. E. Engelstad, A. Yazidi, and O. Kure. Towards a
Robust and Scalable TCP Flavors Prediction Model from Passive
Traffic. In ICCCN. IEEE, 2018.

[16] S. Hemminger et al. Network emulation with NetEm. 2005.
[17] V. Jacobson. Congestion avoidance and control. In ACM

SIGCOMM computer communication review. ACM, 1988.
[18] R. Jain. A delay-based approach for congestion avoidance

in interconnected heterogeneous computer networks. ACM
SIGCOMM Computer Communication Review, 1989.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[20] S. Kullback. Information theory and statistics. 1997.
[21] D. J. Leith, R. N. Shorten, G. McCullagh, L. Dunn, and

F. Baker. Making available base-RTT for use in congestion
control applications. IEEE Communications Letters, 2008.

[22] J. Oshio, S. Ata, and I. Oka. Identification of different TCP
versions based on cluster analysis. In ICCCN 2009. IEEE, 2009.

[23] S. Ostermann. Tcptrace. http://www.tcptrace.org, 2000.
[24] M. Panda, H. L. Vu, M. Mandjes, and S. R. Pokhrel.

Performance analysis of TCP NewReno over a cellular last-mile:
Buffer and channel losses. IEEE Transactions, 2015.

[25] J. Postel et al. Transmission control protocol. RFC 793, 1981.
[26] H. Tang and J. Glass. On Training Recurrent Networks

with Truncated Backpropagation Through Time in Speech
Recognition. arXiv preprint arXiv:1807.03396, 2018.

[27] Z. Wang and J. Crowcroft. A new congestion control scheme:
Slow start and search (Tri-S). ACM SIGCOMM, 1991.

[28] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP:
motivation, architecture, algorithms, performance. IEEE/ACM
transactions on Networking, 2006.

[29] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of
transfer learning. Journal of Big Data, 2016.

[30] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion
control (BIC) for fast long-distance networks. In INFOCOM.
IEEE, 2004.

[31] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP
congestion avoidance algorithm identification. IEEE, 2014.

https://iperf.fr/iperf-servers.php
http://www. tcptrace. org

