
1

The Hierarchical Continuous Pursuit Learning
Automation: A Novel Scheme for Environments

with Large Numbers of Actions
Anis Yazidi, Xuan Zhang, Lei Jiao, and B. John Oommen, Life Fellow, IEEE

Abstract—Although the field of Learning Automata (LA)1 has
made significant progress in the last four decades, the LA-
based methods to tackle problems involving environments with a
large number of actions is, in reality, relatively unresolved. The
extension of the traditional LA to problems within this domain
cannot be easily established when the number of actions is very
large. This is because the dimensionality of the action probability
vector is correspondingly large, and so, most components of the
vector will soon have values that are smaller than the machine
accuracy permits, implying that they will never be chosen. This
paper presents a solution that extends the continuous pursuit
paradigm to such large-actioned problem domains. The beauty
of the solution is that it is hierarchical, where all the actions
offered by the environment reside as leaves of the hierarchy.
Further, at every level, we merely require a two-action LA which
automatically resolves the problem of dealing with arbitrarily
small action probabilities. Additionally, since all the LA invoke
the pursuit paradigm, the best action at every level trickles
up towards the root. Thus, by invoking the property of the
“max” operator, in which, the maximum of numerous maxima
is the overall maximum, the hierarchy of LA converges to the
optimal action. This paper describes the scheme, and formally
proves its ε-optimal convergence. The results presented here
can, rather trivially, be extended for the families of discretized
and Bayesian pursuit LA too. The paper also reports extensive
experimental results (including for environments having 128 and
256 actions) which demonstrate the power of the scheme and
its computational advantages. As far as we know, there are no
comparable Pursuit-based results in the field of LA. In some cases,
the HCPA requires less than 18% of the number of iterations than
the benchmark LR−I scheme, which is, by all metrics, phenomenal.

Keywords : Learning Automata (LA), Pursuit LA, Estimator-
based LA, Hierarchical LA, LA with large number of actions.

Author’s status: Professor. This author can be contacted at: Oslo Metropoli-
tan University, Department of Computer Science, Pilestredet 35, Oslo, Nor-
way. E-mail: anisy@oslomet.no.

Author’s status: This author can be contacted at: Centre for Artificial
Intelligence Research, University of Agder, Grimstad, Norway. E-mail:
xuan.z.jiao@gmail.com. This author is also a Data Analyst in Confirmit
AS, Norway.

Author’s status: Associate Professor. This author can be contacted
at: Department of ICT, University of Agder, Grimstad, Norway. E-mail:
lei.jiao@uia.no.

Author’s status: Chancellor’s Professor; Life Fellow: IEEE and Fellow:
IAPR. This author can be contacted at: School of Computer Science, Carleton
University, Ottawa, Canada : K1S 5B6. This author is also an Adjunct
Professor with the University of Agder in Grimstad, Norway. E-mail address:
oommen@scs.carleton.ca.

1The work of the last author was partially supported by NSERC, the Natural
Sciences and Engineering Council of Canada. A preliminary version of this
paper was published in the Proceedings of AIAI’2018, the 2018 International
Conference on Artificial Intelligence Applications and Innovations, held in
Rhodes, Greece, in May 2018. We are very grateful for the feedback from
the anonymous Referees of the original submission. Their input significantly
improved the quality of this final version.

I. INTRODUCTION

In this paper, we deal with field of the Learning Automata
(LA) 2. The area of LA has been initiated for several decades
ago by Tsetlin [54] who pioneered the first learning models
able to operate in random environments. The work of Tsetlin
and subsequent development in the field LA has served as the
precursor for the area of reinforcement learning. In contrast
to other fields within the area of Artificial Intelligence (AI)
in which the Environment is deterministic and consistently
provides the same answer to the same query, an LA interacts
in general with a random Environment where the “Teacher”
can provide different random responses to the same query over
time. An LA is by definition a decision making mechanism
that has a learning capability. The aim of the LA is to
sequentially learn the optimal action among a set of actions
provided by the Environment. In general, the Environment is
usually stochastic. At each time instant, an action is chosen
by the LA and given as input to the Environment. The
Environment in turn returns an output which is the response
to the action provided by the LA, this response is usually
a Reward or Penalty. Based on both the response of the
Environment and the internal state of the LA, the LA adjusts
its action selection strategy in a deterministic or stochastic
manner. This adjustment is hopefully designed carefully so
that the LA converges over to the optimal action with both
high accuracy and speed.

Brief overview of LA: Initial LA were designed to be Fixed
Structure Stochastic Automata (FSSA), whose state update and
decision functions are time invariant [32, 54]. Later, Variable
Structure Stochastic Automata (VSSA), such as the Linear
Reward-Penalty (LR−P) scheme, the Linear Reward-Inaction
(LR−I) scheme, the Linear Inaction-Penalty (LI−P) scheme and
the Linear Reward-εPenalty (LR−εP) scheme [25, 32] (which
are characterized by functions that update the action selec-
tion probabilities), were developed. Schemes which invoke
nonlinear functions have also been designed and analyzed
[25, 26, 32]. These updating functions can be either continuous
or discretized, where the latter are, generally speaking, faster
than their continuous counterparts [27, 28, 35, 36, 39, 39, 50,
63]. Further, the Markovian representation of the LA can be

2The initial version of this paper had a more detailed overview of the
field including FSSA, VSSA, the Continuous/Discretized families, and the
Ergodic/Absorbing families. We are grateful to the anonymous Referee who
requested abridging it with the fair assumption that the reader will be familiar
with the fundaments of LA. However, comprehensive surveys are available in
[25, 31, 32, 33, 44, 49].

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

either absorbing or ergodic [25, 31, 32, 33, 35, 44], where the
latter are known to better adapt to non-stationary environments
where the reward probabilities are time dependent.

Estimator-based LA: The fastest LA to-date are those
which also involve the estimates of the reward probabilities,
and these are referred to as Estimator Algorithms (EAs). They
work with a noticeably different paradigm, namely one in
which the phases of “Exploration” and “Exploitation” are
continuously and constantly interleaved. During each learning
cycle, these algorithms incorporate an estimation phase, in
which they update the estimates of the reward probabilities of
the various actions, thus maintaining the so-called “Estimator”
vector. These LA, pioneered by Thathachar and Sastry [52],
render the learning process to be more goal-directed, and the
probability updating of the action probability vector involves
an updating function and the “Estimator” vector. This, in turn,
also leads to a much faster convergence – almost an order of
magnitude faster than the continuous and discretized VSSA.
More recently, PAs that use the Bayesian estimates (instead
of the ML estimates) in the “Estimator” vector have also been
designed and analyzed. They probably constitute the fastest
LA to-date [64, 67]. This present paper further enhances the
field of EAs, and in particular, the Pursuit Algorithms (PAs)
described below.

Pursuit-based LA: Within the family of EAs, the set of
Pursuit Algorithms (PAs) were the pioneering schemes, whose
design and analysis, as mentioned earlier, were initiated by
Thathachar and Sastry [52]. Until the last few years, the
“Estimator” vector contained the Maximum Likelihood (ML)
estimates of the actions’ reward probabilities. The first Pursuit
Algorithm (PA) was designed to operate by updating the action
probabilities based on the LR−I paradigm. In each iteration,
the PA determines the current “Best” action based on the
estimates of the reward probabilities, and then pursues the
“Best” action by linearly increasing its action probability.
The Continuous Pursuit Algorithm (CPA), which invokes the
LR−I updating paradigm, was the pioneering member of these
EAs. Oommen and Lanctot [39] presented the Discretized
Pursuit Algorithm (DPA) by discretizing the action probability
space. The DPA was shown to be superior to its continuous
counterpart. PAs have also been extended by allowing them
to be of the Reward-Penalty paradigms [36]. All the families
of the reported Pursuit LA (please see [1, 62, 63, 64]) have
been shown to be faster than VSSA. Besides, faster and more
efficient discretized versions of all the reported EA schemes
have also been devised [36, 64].

Proofs of Convergence for LA: The most difficult part in
the design and analysis of LA consists of the formal proofs
of their convergence accuracies. Of these, understandably, the
most difficult proofs involve the family of EAs. This is because
the convergence involves two intertwined phenomena, i.e., the
convergence of the reward estimates and the convergence of
the action probabilities themselves. Ironically, the combination
of these in the updating rule is what renders the EA fast.
However, if the accuracy of the estimates are poor because
of inadequate estimation (i.e., the sub-optimal actions are not
sampled “enough number of times”), the convergence accuracy
can be diminished, which is really a dilemma! The original

proofs of convergence of PAs, which erroneously invoked
the monotonicity property, have been rectified to use the
martingale property in [1, 62, 63, 64].

Applications of LA: With regard to applications, the entire
field of LA and stochastic learning has had a myriad of
applications [25, 31, 32, 44, 49], which (apart from the
many applications listed in these books) include solutions
for problems in network and communications [30, 34, 43],
network call admission, traffic control, quality of service
routing [2, 3, 57], distributed scheduling [47], training hidden
Markov models [24], neural network adaptation [29], intelli-
gent vehicle control [55, 56], service selection [60] and even
fairly theoretical problems such as graph partitioning [37] and
string taxonomy [38]. Besides these fairly generic applications,
with a little insight, LA can be used to assist in solving
(by, indeed, learning the associated parameters) the stochastic
resonance problem [12], the stochastic sampling problem in
computer graphics [13], the problem of determining roads
in aerial images by using geometric-stochastic models [7],
and various location problems [9]. Similar learning solutions
can also be used to analyze the stochastic properties of the
random waypoint mobility model in wireless communication
networks [8], to achieve spatial point pattern analysis codes for
GISs [46], to digitally simulate wind field velocities [40], to
interrogate the experimental measurements of global dynamics
in magneto-mechanical oscillators [16], and to analyze spatial
point patterns [6] – to mention a few other applications.

Other related Research Directions: There are various
alternate direction of research that are closely to the field
of LA, and one of them involves the Multi-Armed Bandit
Problem (MABP)3. The MABP problem consists of working
with multiple “arms”, and “pulling” each of them yields a
“reward” with some unknown probability. The goal is to
determine the optimal arm that is to be pulled at each trial, so
as to maximize the rewards within a time span.

Classical exact solutions to the MABP for discounted
rewards rely on invoking on the so-called Gittins Indices
[19, 20, 59], i.e., by always pulling the arm associated with
the largest Gittins index. However, calculating these Gittins
Indices in a computationally efficient manner is not an easy
task. Consequently, a number of approximate solutions to the
MABP have been proposed. The e-greedy strategy [58], is
one of the early examples. In this strategy, the parameter
ε is essential to balance between the exploration and the
exploitation phases of the learning exercise. Here, the arm
that is thus far being perceived as being the best is pulled
with probability 1−ε, and a randomly chosen action is pulled
with probability ε. However, the latter scheme is not absorbing
as in the case of LA algorithms that are mainly designed for
stationary environments. Consequently, sub-optimal actions
will be chosen with strictly positive probability, unlike in the
field of LA, where the probability mass associated to non-
optimal actions asymptotically tends to zero. Variants of e-
greedy strategy include the e-decreasing strategy [4, 11], and

3We are very grateful to the anonymous Referee who requested this section.
The relationship between the field of LA and MABP has been well recorded
in the literature. One should note, however, that the methods used in solving
them and the metrics for the respective fields are quite distinct.

3

the e-greedy strategy based on reward Value Differences (VDs)
[53]. All these gradually decrease the losses as they try to
shift the scheme’s focus from exploration to exploitation even
as the trial process proceeds. The ultimate goal, of course,
is that of obtaining a better balance between the exploration
and exploitation phases. Furthermore, from a philosophical
perspective, the mathematical tools used in the field of LA are
totally different from those used in bandit problems. In bandit
problems, the main focus is to usually bound the maximal
regret which is the loss induced by choosing the non-optimal
actions, deduced over a finite time horizon. In the field of LA,
the main focus is the asymptotic convergence of the scheme
where the main tool is the theory of martingales.

Families of approximate solutions include confidence-
interval based algorithms useful in similar learning settings.
These algorithms estimate confidence intervals for the reward
probabilities, and identify an “optimistic” estimate of the
reward probability for each arm. The arm with the most
optimistic reward probability estimate is then greedily se-
lected. Auer et al. [4] have shown that variants of confidence
interval based algorithms, the so-called UCB and UCB-Tuned
schemes, provide a logarithmic regret bound.

Few notable solutions for handling large numbers of actions
in bandit problems are found in the literature. A well-known
scheme [17] uses the idea of “median” elimination, where
the estimates of the arms’ rewards are updated in epochs
composed of a number of iterations, and in each round, arms
with reward estimates that are less than the median arm are
eliminated. The algorithm falls under the class of Probably
Approximately Correct (PAC) learning. It is clear that this
algorithm has a different objective from our LA schemes.
Being PAC, it can eliminate the optimal arm at an early stage.

When it comes to multi-armed bandit problems involving a
large number of actions and which use tree-based solutions, we
identify two main families of solutions. The first family which
fueled a lot of research interest is called the Monte-Carlo
Tree Search (MCTS) bandit solution due to Kocsis et al. and
which was extended in several studies such as [14, 15]. The
algorithm uses a tree-structured search space and extends the
UCB algorithm proposed by Auer et al. [4]. The intuitive idea
is to dynamically grow a tree and to bias its growth towards
the most promising regions which reduces the search space.
However, the algorithm is more suitable to games where a path
in a tree represents a sequence of moves of different players,
and it has thus found applications in computerized games as
for “Go” [18]. The algorithm proposed in this paper cannot
be compared to this class of MCTS-based algorithm because
in our solution, the reward of a path in the tree, corresponds
to the reward obtained at the leaf node and not to the sum of
rewards along the path.

A second family of work involving trees is reported in
[10] and involves the concept of Hierarchical Optimistic
Optimization [10]. The latter work also deals with a large
set of actions but in a continuous space. Here rewards are
maintained for each subtree. Since the numbers of actions are
infinite and correspond to the interval, the tree grows in regions
with high rewards in order to construct estimates at a higher
resolutions over the line in the promising regions. The work

can be considered as a class of stochastic global optimizations
with a Lipschitz reward function that has to be optimized.

The primary difference between the strategies described
above and the LA-based methods are that the latter (within
the VSSA category) use the action probability vector to
choose the actions. Thus, the more optimal ones, with higher
reward probabilities will, as time passes, be chosen more
often. In this way, inferior actions are chosen with decreasing
likelihood, implying that the estimates and other characterizing
factors (such as the above-mentioned indices) need not be
computed so frequently for these. The metrics that quantify the
performance of the algorithms in the respective fields are also
different. Thus, to ensure that this current paper is streamlined,
we have chosen to restrict ourselves to methodology, metrics
and comparisons of the LA-based methods.

A. Problem Statement: LA when R is large

Devising LA for specially dealing with a large number R
of actions is a very pertinent LA problem but in the same
time it is one of the hardest problems, for the reasons that we
enumerate here:

1) In the case of FSSA, one requires N-states for each of
the R actions. As the environment responds, the LA,
for the most part (i.e., except at the so-called boundary
states) moves within the states of a single action, and
it can take a large number of iterations (for example,
in the Krinsky LA) for the machine to even enter the
boundary state of another action. Before all the actions
are even visited, in certain environments, it could take
tens of thousands of iterations for all the actions to be
visited.

2) In the case of FSSA, since the machines are almost
always ergodic, the Markov chain lingers in its transient
behavior for a long period of time before convergence.
In this case, when the number of actions is large, one
deals with an R ·N×R ·N-sized Markov chain, and this
adds to the sluggishness of the machine.

3) In the case of VSSA, the above two concerns are
mitigated by the use of the action probability vector.
This has noticeable advantages, when R is relatively
small, for example, of the order of 10. In this case,
the action probability vector has the dimension R, and
all the actions have a reasonable probability of being
chosen. This permits the LA to discriminate between
the various actions, and to converge to the superior one.
However, when R becomes high, most of the action
choice probabilities can have very small values and may
not even be chosen, thus rendering the principle behind
VSSA to be void.

4) In the context of VSSA, for example, in the linear
scheme, the probabilities which are decreased are mul-
tiplied by a constant. Thus for any R, typically R− 1
of these probabilities may have to be decreased. Notice
that when R is large, the decrement of these R− 1
probabilities can make a “non-small-step” change in
the probability that is being increased. This will, con-
sequently, significantly hinder the convergence of the

4

machine, inasmuch as all the convergence proofs depend
on the theory of “small-step” random process. The same
assertion is valid for the discretized families of LA.

5) The families of continuous and discrete pursuit algo-
rithms, described above, are universally accepted to be
the fasted reported LA. This is because, as mentioned
above, they augment the action probability vector with a
vector of the estimates of the reward probabilities. When
R is large, this poses a problem of a disproportionate
magnitude, because all the R actions have to be sampled
a reasonably large number of times so that the inferior
actions can be filtered out. Thus, pursuit LA are also
quite sluggish when, R, the number of actions are large.

6) Hierarchical systems of LA have also been studied in
[51], where the authors presented a complexity analysis
and showed that the maximum computational saving
is obtained if the number of actions for each LA in
the hierarchical system is either 2 or 3. Analogous
hierarchies were also discussed in [32] and [41], where
the basis of the schemes was the use of “traditional” LA
at every level (parent and sibling) of the hierarchy. That
being said, the uniqueness of the present scheme is that
unlike the previous works, in this paper, we have used
“Pursuit”-based LA in the hierarchy. The consequence of
this is that we do not have to wait till the various action
probability vectors at the various levels converge at every
level, to “trickle” the solution up the hierarchy. Rather,
we can utilize the property of the “Max” operator to
choose the currently superior estimated action at every
level, and merely pursue its action probability. All of
these issues will be clear in the subsequent sections.

The solution that we advocate in this article adresses all the
aforementioned issues.

B. Contributions of the Paper

We summarize the contributions of this papers as follows:
1) We suggest a novel hierarchical LA solution which uses

a tree structure as a part of the learning process. Unlike
the main stream of LA solutions, we do not use the
FSSA or VSSA to design the learning.

2) Our scheme is based on multi-level hierarchy composed
of two actions CPA LA at each of the levels. Inter-
estingly, both the estimation and interaction take solely
place at the leaf of the hierarchy.

3) We propose a manner by which individual LA perform
the learning locally and then the estimates are trickled-
up in recursive manner by only considering a node and
its sibling in order to achieve global learning.

4) Our scheme solves the problem of having actions prob-
abilities below machine accuracy. Our estimates are
manageable to accomplish even with a low machine
accuracy.

5) The convergence speed of this novel LA proposed in
this paper is many order magnitude faster than any other
legacy LA. Therefore, we establish that the proposed LA
improves over convergence accuracy and speed which
are two properties that are known to be hard to jointly

improve since improving one affects usually negatively
the other one. We have tested our schemes for an
environment compromising large numbers of actions:
128 and 256 actions. To the best of our knowledge,
those experimental results document the largest number
of actions deployed in any LA study reported in the
literature.

C. Organization of the Paper

First of all, in Section II we describe the above-mentioned
HCPA in detail. Section III then proves the convergence of
the scheme. The experimental results and the comparison of
its performance in benchmark Environments is presented in
Section IV. Section V concludes the paper.

II. THE HCPA LA

A. Rationale for Our Solution

The rationale for our solution is akin to the philosophy
behind the acclaimed binary search paradigm. If we have to
search for a record in a list of unsorted records, it will require
a linear number of searches. However, if there is a mechanism
by which half the records can be discarded, for example, in
a sorted list, the number of probes reduces to be logarithmic.
This is, precisely, what we shall endeavor to do.

The philosophy motivating our new scheme resorts to
superimposing the actions onto a binary tree4, in which, the
leaves are the actual actions themselves. Further, each internal
node represents the best action in the entire subtree below
that node. By performing comparisons between the actions
in a pairwise manner, i.e., at the leaves of the tree, only the
superior actions are trickled up towards the root. By doing this,
one always deals with 2-action LA. Here, however, unlike the
work of previous researchers [5], we do not resort to FSSA or
traditional VSSA, to differentiate between the various pairs
of actions at the leaves. Rather, we shall use the 2-action
continuous pursuit LA [66]. Since R = 2 at every level, the
number of iterations required to achieve the estimation is
considerably less. Further, the estimation that is achieved at
the leaf level, is all that is required for the entire tree – no
estimation operations are required at the internal nodes.

A notable attempt to devise hierarchical LA is due to
Papadimitriou [42]. Before we comment on this work, we
mention that the Pursuit concept can be used in a Continuous
or Discretized paradigm, and that the action probabilities
can be changed on Reward-Penalty (RP), Reward-Inaction
(RI) and Inaction-Penalty (IP) scenarios. Consequently, we
would have six Pursuit variants: CPRP, DPRP, CPRI , DPRI ,
CPIP and DPIP, and among these, Agache and Oommen [36]
has reported that the DPRI is the most performant scheme.
Papadimitriou in his seminal work on hierarchical LA [42]
has indeed used this latter machine, and this is meritorious.
Nevertheless, the differences between our work and the work
due to Papadimitriou [42] are fundamental and notable. The
first major difference revolves around the tree model and the

4The tree is assumed to be binary only for the sake of convenience. In a
more general setting, each node may have, for example, three children.

5

placement of the actions. The second difference lies in the way
we trickle up and propagate the estimates at different levels of
the tree by considering the concept of the “maximum” among
the siblings, and by this manner, we do not need to probe
the environment at each iteration for efficiently updating the
estimates. Furthermore, the interactions only take place at the
leave nodes. Furthermore, our proof is completely different -
it asserts the submartinagle property at every node. Because of
this, our scheme is superior to the state-of-the-art LA schemes
and this was further demonstrated through a large experiment
including more actions than any other reported stduies – of
even 256 actions 5

All these issues will be clarified presently.

B. Construction of the Hierarchy

We shall explain the way according to which the search
space is constructed. The hierarchy is organized as a balanced
full6 binary tree with maximal depth K. In order to simplify
the notation and to ease the formal description of the scheme,
we will adhere the notation used in [23, 61], and use jointly
two indexes to refer to a node in a tree, one index related to
the depth and one index related to the relative order of the
node in question among the nodes located at the same tree
depth. We shall give the details of the hierarchy as follows.

1) Root node: At depth 0 lies one single LA that corre-
sponds to the root of the hierarchy.

2) The various LA: To each node in the tree, we attach a
a 2-action LA A , with actions denoted as 0 and 1.

3) Activations of LA for K levels: from 0 to K-1:
• The different LA at depth k: The LA j ∈
{1, ...,2k} at depth k, is denoted by A{k, j}, where
0 ≤ k < K − 1, and it possesses two actions
α{k+1,2 j−1} and α{k+1,2 j}.
– In the case where the action α{k+1,2 j−1} is se-

lected, the LA A{k+1,2 j−1} becomes active.
– In the case where the action α{k+1,2 j} is selected,

the LA A{k+1,2 j} becomes active.
– Informally stating, A{k+1,2 j−1} and A{k+1,2 j} rep-

resent the Left Child and Right Child of their
parent LA A{k, j} respectively.

• The LA at depth K−1: The LA residing at depth
K − 1, i.e., one level just above the leave nodes,
is responsible for choosing the action from the
stochastic environment.
– This LA in question has the two actions α{K,2 j−1}

and α{K,2 j}.

5In [42], Papadimitriou has conducted experiments with a maximum of 64
actions. Unfortuantely, we were not able to perform a fair comparison between
our scheme and the work done in [42] because the authors does not state the
size of the ensemble runs he tested [42]. In this paper, we use an ensemble
as large as 400, and we opted for the best parameter that achieved “absolute”
convergence which means correct convergence in each single run. However,
we should applaud the work [42] as it is the first work that pioneered the idea
of hierarchical Pursuit-based LA !!

6It is easy to generalize the structure by assuming that whenever the number
of actions is less than 2K , some dummy actions can be added to the hiearcy to
round up the number and those dummy actions are constucted using reward
probability zero.

– At this level K−1, the total number of actions is
2K actions: α{K, j} where j ∈ {1, ...,2K} at depth
K.

– Please note that α{K, j} is associated with its
“parent LA” A{K−1,d j/2e}.

4) At level K: Finally, the nodes residing at depth K, which
is the maximal depth of the tree, do not have children.

C. The Proposed Solution

Based on the above description of the hierarchy and the
tree, the HCPA works as described below.

At the bottom-most level, we resort to a two-action CPA
to identify the superior action among the two siblings actions
at this level. To achieve this goal, we resort to two pieces of
information, a two-dimensional estimate vector and the two-
action probability vector from the last time step in order to
update the current probability vector. The maximum of these
estimates is trickled to the parent, and this newly adopted
estimate by the parent is compared to the estimate of the
sibling of this parent. The procedure is continued recursively
until reaching the root node where each time the estimate is
update and the probability vector is updated too.

D. The Proposed Solution: An Example

By way of example, consider Figure 1 which involves a
three-level problem.

Fig. 1: The operation of the HCPA, where each node is an LA.
The leaf nodes are the real actions that directly interact with the
Environment itself.

These 8 actions are at the leaves of the tree, and are denoted
by {3,1}, . . . ,{3,8}. At the second level, we have the LA
denoted by {2,1}, . . .{2,4}. Consider the operation of the LA
denoted by {2,1}. For its operation, the estimates of the reward
probabilities of the actions {3,1} and {3,2} are first obtained,
and the CPA performs the corresponding updating rule. Let
us assume that the reward probability estimate of {3,1} is
the superior estimate. This value is then trickled up to {2,1}.
Similarly, if the reward probability estimate of the action
{3,4} is greater than that of {3,3}, the estimate of {3,4} is
trickled up to {2,2}. The reward probability estimates of the
actions {2,1} and {2,2} are compared, and the larger one is
trickled up to {1,1}. Informally, one can easily see that if this
process is done recursively and correctly, the LA represented
by the root will converge if the CPA uses a parameter that
is arbitrarily close to zero. In this case, as we shall prove

6

formally, the LA at the root will converge to the overall best
action with an arbitrarily high probability.

The process described informally here is formalized in the
Algorithm below, and its convergence properties are proven in
Section III. The experimental proofs of its superiority to the
various families of LA is demonstrated in Section IV.

E. The Algorithm of the Proposed Solution

1) Notation and Definitions: At this juncture, we shall
present our notation:
• The 2K actions that interact with the Environment lie

in the set
{

α{K,1}, . . .α{K,2K}

}
. Further, the actions{

α{K,2 j−1},α{K,2 j}
}

are the two only possible actions to
choose among at level K−1, namely A{K−1, j}.

• Each LA j ∈ {1, ...,2k} at depth k, called A{k, j}, where
0 ≤ k ≤ K− 1 has two actions, namely, α{k+1,2 j−1} and
α{k+1,2 j}.

• P{k, j}= [p{k+1,2 j−1}, p{k+1,2 j}]
T corresponds to the action

probability vector of LA A{k, j}, where 0≤ k ≤ K−1.

Begin Algorithm HCPA
Parameters:
λ: The learning parameter, where 0 < λ < 1, where λ is close to
zero.
u{K,2 j−1}, u{K,2 j} : The number of times α{K,2 j−1}, α{K,2 j} have
been rewarded when it has been selected.
v{K,2 j−1}, v{K,2 j}: The number of times α{K,2 j−1}, α{K,2 j}, has
actually been selected.
d̂{K,2 j−1}, d̂{K,2 j}: The estimate of the reward probabilities of
d{K,2 j−1}, d{K,2 j}, computed as:
d̂{K,2 j−1} =

u{K,2 j−1}
v{K,2 j−1}

, d̂{K,2 j} =
u{K,2 j}
v{K,2 j}

.

D̂ is the vector of the estimates {d̂}.
m: The index of the optimal action.
h: The index of the greatest element of D̂.
R: The response from the Environment, where R = 0 corresponds to
a Reward, and R = 1 to a Penalty.
T : A Threshold, where T ≥ 1− ε.
Initialization: The traditional manner to initialize the estimates in any
pursuit algorithm is to choose each action for the same fixed number
of times to obtain a rough estimate of the reward probability of each
action. This step is not really important and can be skipped and we
rather can start from a reward estimate of 0.5 for each action in the
absence of any priori information.
Initialization:
t = 0
For i= 1 to 2K Do:

u{K,i}(0) = 1
v{K,i}(0) = 2

d̂{K,i}(0) =
u{K,i}(0)
v{K,i}(0)

EndFor
Loop

1) 0≤ k < K−1: Levels 0 to K−1
• LA A{0,1} selects an action by randomly sampling accord-

ing to the action probability vector [p{1,1}(t), p{1,2}(t)].
• Let j1(t) denote the index of the chosen action where

j1(t) ∈ {1,2}.
• The next LA becomes consequently activated A{1, j1(t)}

which in turn chooses an action according to its probabil-
ity vector and thus activates the next LA at level ’2’.

• The procedure continues recursively until reaching an LA
at level K−1.

• Let A{k, jk(t)} denote the set of activated LA, where jk
denotes the activated LA at level k.

2) k = K: Level K
• Update D̂{K, jK(t)} based on the response from the Envi-

ronment at the leaf level, K:
u{K, jK(t)}(t) = u{K, jK(t)}(t−1)+(1−R(t))

v{K, jK(t)}(t) = v{K, jK(t)}(t−1)+1

d̂{K, jK(t)}(t) =
u{K, jK (t)}(t)
v{K, jK (t)}(t)

.

• For all other “leaf actions”, where j ∈ {1, ...,2k} and j 6=
jK(t),

u{K, j}(t) = u{K, j}(t−1)
v{K, j}(t) = v{K, j}(t−1)

d̂{K, j}(t) =
u{K, j}(t)
v{K, j}(t)

.

3) The reward estimates for all other actions along the path from
root to the leaf node, 0 < k < K−1 are defined according to
a recursive procedure7, where the LA at any one level inherits
the feedback from the LA at the next level:

d̂{k, j}(t) = max
(

d̂{k+1,2 j−1}(t), d̂{k+1,2 j}(t)
)

.
4) Proceed to updating the probability vectors in question along

the path leading to the chosen action as follows:
• By definition, each LA j ∈ {1, ...,2k} at depth k, denoted

by A{k, j}, where 0 ≤ k ≤ K − 1, possesses two actions
α{k+1,2 j−1} and α{k+1,2 j}. Let jh(t) ∈ {2 j − 1,2 j} be
the biggest of the elements between d̂{k+1,2 j−1}(t) and
d̂{k+1,2 j}(t).

• Let jh(t) = {2 j− 1,2 j} \ jh(t) be the opposite action to
jh(t), i.e., the other action that has the lower reward
estimate among the two.

• Update p{k, jh(t)} and p{k, jh(t)} using the estimates

d̂{k+1,2 j−1}(t) and d̂{k+1,2 j}(t) as:
If R(t) = 0 Then

p{k, jh(t)}(t +1) = (1−λ)p{k, jh(t)}
p{k, jh(t)}(t +1) = 1− p{k, jh(t)}(t +1).

Else
p{k, jh(t)}(t +1) = p{k, jh(t)}(t)
p{k, jh(t)}(t +1) = p{k, jh(t)}(t).

EndIf

• For each A{k, j}, we consider its probability vector and test
if one of the action probabilities p{k+1,2 j−1} and p{k+1,2 j}
overpasses a threshold T , where T is an arbitrarily close
to unity strictly positive number, the probability vector
for this LA is frozen in terms of updates, with the larger
action probability rounded to unity.

5) t = t +1
EndLoop
End Algorithm HCPA

F. Remarks

Based on the above formulation of the problem and the
solution that we have proposed, the following remarks are
pertinent:

1) The reader will observe that we have used the CPA,
and its operations at the lower level of the tree have
been trickled up to discard the less optimal actions. One
can then wonder if such a paradigm can be applicable
to design LA solutions for a large number of actions

7To be more precise, the LA found at level K−2, integrates the feedback
from the parent LA at level K−1 as:

d̂{K−2, j}(t) = max
(
d̂{K−1,2 j−1}(t), d̂{K−1,2 j}(t)

)
and so on. As a consequence, notice that at every level, the reward vector
estimates of the actions of every LA, are composed of the respective maxima
of the rewards of all the actions of the entire subtrees rooted at their children.

7

when the primitive machine is an FSSA, a VSSA (like
the LR−I), or any of the descritized LA like the (DLRI).
The answer to this question is in the negative. The
reason for this is the following: If a two-action VSSA
is used to distinguish between two actions at the leaves,
the decision of the superior action can be trickled up
only after the LA has converged. This implies that all
the LA at any lower level must converge before the
computations at a higher level can take place. Of course,
this is because of the absence of the estimates of the
corresponding reward probabilities.

2) The use of hierarchies of LA is not completely new.
The most noteworthy example is the result of Baba et
al in [5]. However, the latter paper does not utilize the
pursuit concept, but rather the relative reward strength
strategy proposed by Simha and Kurose in [48]. As
one observes, we have advocated the coordinated use of
the estimates of the reward probabilities and the action
probability vector that have been used to design the
pursuit families of LA, and which are far superior to
merely using the action probability vectors, and/or the
rewards and/or their relative strengths.

3) A consequence of the above remarks is that since we
are using the estimates of the corresponding reward
probabilities at each level, and trickling them up the tree,
any other pursuit algorithm could have been used just
as effectively as the CPA. Indeed, instead of the CPA,
one could have used the DPA [27, 28, 36, 39, 63] or
any of the members of the family of Bayesian pursuit
algorithms [64, 67]. In the former case, the probability
updates given in Step 4 of the algorithm will be done
in a discretized manner. In the latter case, the estimates
will not be obtained using a ML scheme as in Step 2,
but rather using a Bayesian updating method.

4) We have all along assumed that the tree structure is a
binary tree. However, we can easily extend the design
to have a fixed number of children at each nodes, say Z.
In that case, we will invoke a Z-action CPA or DPA at
each level, and the corresponding proofs would involve
the Z-action Hoeffding inequality instead of the 2-action
Hoeffding inequality. The details of how this is done are
rather trivial and thus omitted in the interest of brevity.

5) The story is not complete without mentioning that the
algorithm above can be trivially parallelized. The details
of such a parallelized solution are omitted.

The proof of convergence of the algorithm follows.

III. PROOF OF CONVERGENCE

To prove the convergence of the algorithm, we follow the
same four-step method as in [65] and [66]. The reader will
observe that the kernel of the proof of the algorithm follows
the proofs used for the CPA. The finer details essentially deal
with understanding that the proof now works level-by-level,
and that the trickling up process is, indeed, effective by virtue
of the properties of the “max” operator.

A. The Moderation Property of HCPA

The property of moderation can be described precisely by
Theorem 1. This implies that under the HCPA, by utilizing
a sufficiently small value for the learning parameter, λ, each
action will be selected an arbitrarily large number of times.

Theorem 1: For any given constants δ > 0 and M < ∞, there
exist a positive learning parameter λ0 < 1 and a time instant
t0 < ∞, such that under the HCPA algorithm, for all λ < λ0,

Pr{All actions are selected at least M times each before time t0}
> 1−δ.

Proof: The way that we prove the moderation property for
HCPA is similar to the proof of the corresponding moderation
property for the CPA in [45].

Observe that there are 2K actions at depth K, denoted as
α{K, j}, where j ∈ {1, ...,2K}.

Let Y t
{K, j} be the number of times action α{K, j} is chosen

up to time t.
We want to prove Pr

(
Y t
{K, j} > M

)
≥ 1−δ, and this equiv-

alent to proving Pr
(

Y t
{K, j} ≤M

)
≤ δ.

As the events
{

Y t
{K, j} = l

}
and

{
Y t
{K, j} = n

}
are mutually

exclusive for l 6= n, we have:

Pr
(

Y t
{K, j} ≤M

)
=

M
∑

l=1
Pr
(

Y t
{K, j} = l

)
.

Pr
(
α{K, jK}is chosen

)
= p{K, jK}p{K−1, jK−1}...p{0, j0}, where:

jK−1 = d jK/2e, jK−2 = d jK−1/2e, ..., and j0 = d j1/2e.

Pr
(
α{K, jK}is chosen at time t

)
= p{K, jK}(t)p{K−1, jK−1}(t)...p{0, j0}(t).

To simplify arguments, we assume that all the LA have same
value for the corresponding action probability vector, P(0), at
the beginning. Then:

Pr
(
α{K, jK}is chosen at time t

)
≥ p(0)K(1−λ)tK

Pr
(
α{K, jK}is not chosen at time t

)
< (1− p(0)K(1−λ)tK)

The probability that action α{K, j} is chosen at most M times
among t choices has the upper bound:

Pr
(

Y t
{K, j} ≤M

)
=

M
∑

l=1
Pr
(

Y t
{K, j} = l

)
≤

M
∑

l=1

(t
l

)
(1)lψt−l ,

where ψ =
(
1− p(0)K(1−λ)tK

)
. By definition, 0 < λ < 1,

therefore ψ < 1. We can also choose to avoid dependence
in the number levels K of the tree: (1− λ)tK = p(0), then
λ = 1− p(0)−(tK), and ψ = 1− p(0)K p(0) = 1− p(0)K+1.

As
(t

l

)
≤ t l , we have Pr

(
Y t
{K, j} ≤M

)
≤

M
∑

l=1
t lψt−l ≤

MtMψt−M .
When t→∞, limt→∞ MtMψt−M =M limt→∞

tM

(1/ψ)t−M , and by
L’Hopital’s rule,

M limt→∞
tM

(1/ψ)t−M = M limt→∞
M!

(ln(1/ψ))M(1/ψ)t−M = 0.
Therefore, for every leaf action α{K, j}, there exists t = t(j)

such that Pr(Y t
{K, j} ≤M)≤ δ.

Since t > t(j) then
Y t(j)
{K, j} ≥M gives Y t

{K, j} ≥M. Therefore Pr
(

Y t
{K, j} ≥M

)
≥

Pr
(

Y t(j)
{K, j} ≥M

)
.

8

Therefore Pr
(

Y t
{K, j} ≤M

)
≤ δ for all t > t(j).

To complete the proof, let t0 = max1≤ j≤2K{t(j)}. Then
for all t > t0 and for all j such that 1 ≤ j ≤ 2K , we have
Pr
(

Y t
{K, j} ≤M

)
≤ δ. Theorem 1 is thus proven. 2

B. Marginality at each level along the optimal path

Given that each action α{K, j} will be selected a sufficiently
large number of times, we now prove that along the optimal
path, the reward estimate of the optimal action will remain the
largest with a sufficiently large probability.

We denote q{k, j∗k}
8 as the probability that the reward esti-

mate of the optimal action, d̂{K, j∗K}, is the largest among all
actions of the tree rooted at LA A{k, j∗k}. More specifically:

• At the root level LA: q{0,0} is the probability that d̂{K, j∗K}
is maximum among all the actions whose tree is rooted
at the root LA A{0,0}. Note that there are 2K actions that
compete for having the best reward estimate.

• Second Level LA: q{1, j∗1} is the probability that d̂{K, j∗K} is
max among all actions of the tree rooted at LA A{1, j∗1}.
Note that there are 2(K−1) actions that compete for having
the best reward estimate at this level.

• Interior Level LA: Without belaboring the point, we
mention that the above statements are recursively true as
one follows the path down the tree at every level.

• The last level LA: q{K−1, j∗K−1} is the probability that
d̂{K, j∗K} is maximum among the two actions at the last
level, i.e., the maximum of the two actions of the LA
A{K−1, j∗K−1}. Thus, there are exactly 2 actions that com-
pete for having the best reward estimate at this level.

Theorem 2: Given a δ ∈ (0,1), there exists a time instant
t0 < ∞, such that ∀t > t0 and ∀k ∈ {0,1, ...,K−1}:

q{k, j∗k} > 1−δ.
Proof: To prove this result we first note that q{0,0} < q{1, j∗1} <
... < q{K−1, j∗K−1}, since the probability to be the best from
among a set of actions is less than that from among a subset
of the actions. Therefore, to prove Theorem 2, we only need
to prove that q{0,0} > 1− δ. In other words, our goal is to
prove that after a sufficiently large number of times, the reward
estimate of the optimal action will remain the greatest among
all actions with an arbitrarily large probability. Given the fact
that Theorem 1 is proven, the assertion and proof for Theorem
2 become identical to the corresponding assertion and proof
for the CPA given in [65] and [66]. To avoid unnecessary
repetition, we omit the additional details of the proof. 2

C. Submartingale Property

Theorem 3: Under the HCPA, the quantity{
p{k, j∗k}(t)t>t0

}
,k ∈ {0,1, ...,K−1} is a submartingale.

8To render the notation less cumbersome, we use the symbol ∗ to mark the
index along the path.

Proof: To formalize prove this assertion, we first explicitly
calculate E

[
p{k, j∗i k}(t)

]
. Using the HCPA’s updating rule, we

have Eq (1):

E
[

p{k, j∗k}(t +1)|P(t)
]

=∑
j

p{k, j}
(

d j

(
q{k, j∗k}

[
(1−λ)p{k, j∗k}+λ

]
+
(

1−q{k, j∗k}
)[

(1−λ)p{k, j∗k}
])

+(1−d j)p{k, j∗k}
)

=p{k, j∗k}+λ

(
q{k, j∗k}− p{k, j∗k}

)
∑

j=1,2
p{k, j}d j, (1)

where, in the interest of conciseness, we omit the reference
to time and represent p{k, j∗k}(t) and q{k, j∗k}(t) as p{k, j∗k} and
q{k, j∗k} respectively. Thus,

Di f fp{k, j∗k }
(t) = E

[
p{k, j∗k}(t +1)|P(t)

]
− p{k, j∗k}(t)

= λ

(
q{k, j∗k}− p{k, j∗k}

)
∑

j=1,2
p{k, j}d j.

Invoking the definition of a submartingale, we know that if
for all t > t0, we have Di f fp{k, j∗k }

(t), i.e., q{k, j∗k}(t)− p{k, j∗k}(t)>

0, then
{

p{k, j∗k}(t)t>t0

}
is a submartingale. We now invoke

the terminating condition for the HCPA, in which we force
the learning process to jump to the absorbing state and attain
convergence if p{k, j}(t)> T = 1− ε,(k ∈ {0,1, ...,K−1}, j ∈
{1,2}). Therefore, if we set the quantity (1− δ) defined in
Theorem 2 to be greater than the threshold T , then as per
Theorem 2, there exists a time instant t0 < ∞, such that for
every single time instant subsequent to t > t0, and for all k ∈
{0,1, ...,K−1}, q{k, j∗k}(t) > 1−δ > T > p{k, j∗k}(t), which, in
turn, guarantees that {p{k, j∗k}(t)t>t0} is a submartingale. Hence
the theorem! 2

We can now finally prove the ε-optimality of the HCPA.

D. Pr
(

p{k, j∗k}(∞) = 1
)
→ 1 under the HCPA

When the action probabilities of selecting the optimal action
along the path, p{k, j∗k}, converges, the HCPA converges to the
optimal action with a probability that is arbitrarily close to
unity. We shall formally assert and prove this.

Theorem 4:
The HCPA is ε-optimal in all random Environments. More

formally, let T = 1− ε be a value arbitrarily close to 1, with
ε being arbitrarily small. Then, given any 1− δ > T , there
exists a positive integer λ0 < 1 and a time instant t0 < ∞,
such that for all learning parameters λ < λ0 and for all t > t0,
q{k, j∗k}(t) > 1− δ, and the quantity Pr

(
p{k, j∗k}(∞) = 1

)
→ 1,

where k ∈ {0,1, ...,K−1}.
Proof: We prove Theorem 4 level-wise. Firstly consider the
case when k = 0, in which case j0 = 0 or 1. We denote the
index of the optimal action at this level as m, and then prove
that Pr

(
p{0,m}(∞) = 1

)
→ 1.

According to Theorem 3, {p{0,m}(t)t>t0} is a submartingale,
and thus, invoking the submartingale convergence theory [32]:

p{0,m}(∞) = 0 or 1.

9

If we denote e j as the unit vector with the jth element being 1,
then p{0,m}(∞)= 1 is equivalent to the assertion that P{0}(∞)=
em. If we define the convergence probability

Γm(P) = Pr
(
P{0}(∞) = em|P{0}(0) = P

)
,

our task is to now prove:

Γm(P)→ 1. (2)

Similar to the proof in [65] and [66], Γm(P) can be observed
by investigating a Regular function of P. As before, the goal
is to find a proper Subregular function of P, denoted as
Φ(P), which also satisfies the boundary conditions Φ(em) =
1 and Φ(e j) = 0,(for j 6= m), which will then guarantee to
bound Γm(P) from below.

Let Φ(P) as a function of P. We now define an operator U
as

UΦ(P) = E[Φ(P(t +1))|P(t) = P].

We now repeatedly apply U to get the result of the t-step
invocation of U as:

U tΦ(P) = E[Φ(P(t))|P(0) = P].

Consider a specific instantiation of Φ to be the function Φm,
defined below as:

Φm(P) = e−xm p{0,m} ,

where xm is a positive constant. Then, under the HCPA,

U(Φm(P))−Φm(P)

= E[Φm(P(t +1))|P(t) = P]−Φm(P)

= E
[
e−xm p{0,m}(t+1)|P(t) = P

]
− e−xm p{0,m}

= ∑
j=1,2

e−xm((1−λ)p{0,m}+λ)p{0, j}d jq{0,0}

+ ∑
j=1,2

e−xm((1−λ)p{0,m})p{0, j}d j
(
1−q{0,0}

)
+ ∑

j=1,2
e−xm p{0,m} p{0, j}(1−d j)− e−xm p{0,m}

= ∑
j=1,2

p{0, j}d je
−xm p{0,m}

(
q{0,0}e

−xm(1−p{0,m})λ

+
(
1−q{0,0}

)
exm p{0,m}λ−1

)
.

Our task is to determine a proper value for xm such that Φm(P)
is superregular, i.e.,

U(Φm(P))−Φm(P)≤ 0.

This is equivalent to solving the following inequality:

q{0,0}e
−xm(1−p{0,m})λ +

(
1−q{0,0}

)
exm p{0,m}λ−1≤ 0, (3)

which, is equivalent to

xm

(
xm−

2(q{0,0}(1−p{0,m})+p{0,m}(1−q{0,0}))
λ(q{0,0}−2q{0,0}p{0,m}+p2

{0,m})

)
≤ 0.

As xm is defined as a positive constant, we have

0 < xm ≤
2
(
q{0,0}

(
1− p{0,m}

)
+ p{0,m}

(
1−q{0,0}

))
λ

(
q{0,0}−2q{0,0}p{0,m}+ p2

{0,m}

) . (4)

If we denote

xm0 =
2(q{0,0}(1−p{0,m})+p{0,m}(1−q{0,0}))

λ

(
q{0,0}−2q{0,0}p{0,m}+p2

{0,m}

) ,

we have xm0 > 0, implying that when λ→ 0, xm0 → ∞.
To satisfy the bounday conditions, we now introduce an-

other function

φm(P) = 1−e
−xm p{0,m}

1−e−xm ,

where xm is the same as defined in Φm(P). As per the property
that if Φm(P) = e−xm pm is a superregular (subregular), then
φm(P) = 1−e−xm pm

1−e−xm is a subregular (superregular) [32], the
quantity xm, as defined in Eq. (4), which renders Φm(P) to
be superregular, makes the φm(P) to be subregular.

Obviously, φm(P) satisifes the boundary conditions, i.e.,

φm(P) =
1− e−xm p{0,m}

1− e−xm
=

{
1, when P = em,

0, when P = e j.

Therefore, as per the property of Regular functions,

Γm(P)≥ φm(P) =
1− e−xm p{0,m}

1− e−xm
. (5)

As Eq. (5) holds for every xm bounded by Eq. (4), we take
the greatest value xm0 . Moreover, as λ→ 0, xm0 →∞, whence
Γm(P)→ 1. We thus shown that Pr

(
p{0,m}(∞) = 1

)
→ 1.

With little imagination, the reader will observe that the
same proof methodology can be applied for cases where
k = 1,2, ..,K−1, thus proving Theorem 4. 2

Having established the theoretical properties of the HCPA
we shall now demonstrate its power by simulating and com-
paring it with the benchmark reported LA.

IV. EXPERIMENTAL RESULTS

In order to assess the performance of the LA-based schemes,
we have conducted thorough experiments involving different
“large” sets of actions. The main finding that we would like
to crystallize is that the traditional VSSA are inferior to our
hierarchical solutions both in terms of speed and accuracy. The
reason behind this as explained throughout the article is that as
the number of actions becomes lager, many of the actions will
suffer from the fact that their action probabilities are small and
thus they will be chosen quite rarely. In this manner, a direct
usage of VSSA in the context of estimator LA will imply that
each action should be chosen for a very large number of trials.
In addition, the estimates will be consequently inaccurate. Our
HCPA remediates to those two aforementioned issues. In the
simulation, we have focused on two key performance metrics:
the accuracy of convergence and the speed of the convergence.
We use those two key performance criteria in the comparisons
against legacy LA solutions.

The simulations that we conducted were intended to capture
two important metrics, namely, the accuracy of the conver-
gence of HCPA, and its speed of the convergence. Our goal
was also to compare its convergence with the existing LA
solutions.

10

TABLE I: In this table we provide the reward probabilities of the 64 actions used in our experiments. For the case of 16 and 32 actions-
environments, the reward probabilities correspond to the 16 and 32 first entries in the table, respectively.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
0.3934 0.9902 0.4883 0.5768 0.2023 0.2390 0.5887 0.8894 0.0333 0.4323 0.6926 0.3474

A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24
0.6152 0.0900 0.0850 0.5652 0.7362 0.7603 0.5142 0.2273 0.6080 0.4791 0.9339 0.3808

A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36
0.02152 0.2399 0.7509 0.8773 0.4962 0.5649 0.9202 0.1335 0.6214 0.9777 0.4232 0.02773

A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48
0.1255 0.5650 0.1660 0.0148 0.0970 0.1319 0.1738 0.8901 0.3511 0.8945 0.6133 0.4813

A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60
0.2413 0.1714 0.8512 0.9791 0.7443 0.3469 0.8707 0.3863 0.4763 0.4446 0.9617 0.0329

A61 A62 A63 A64
0.5004 0.3784 0.6553 0.9737

A. The Data Sets for the Environment

In the field of LA, the adopted datasets in the literature are
usually characterized by a number of actions not exceeding ten
actions at most. When it comes to higher number of actions,
there is no existing established benchmark and therefore we
propose a benchmark that can be adopted by other researchers.
To make our problem far from being trivial, the total numbers
of actions was fixed to be 16, 32 and 64. Once the number of
actions was set, the reward probabilities associated with the
different actions are drawn uniformly from the unit interval.
Obviously, the higher the number of actions, the more difficult
is the Environment. The first 16 and 32 elements in Table I
give the reward probabilities for an Environment with 16 and
32 actions respectively. The whole 64 elements of the Table
I give the reward probabilities for an Environment consisting
of 64 actions.

B. Convergence of the HCPA Algorithm

As the convergence of the HCPA algorithm has already been
formally proven in Section III, our task in this sub-section, is
to validate this proof through simulations.

From the mathematical proof, one understands that if λ

is sufficiently small, we are guaranteed that the HCPA will
converge to the action with the maximum reward probability
with a probability increasingly close to 1. We define the
optimal λ value as the maximum λ value for which the LA
to consistently converge to the optimal action, i.e., the action
with highest reward. Intuitively, the optimal λ depends on
the configurations for the Environment. We started decreasing
the value λ until we found a value that consistently yields
convergence for 400 consecutive runs to the optimal action.
The obtained λ for which this takes place is denoted the
optimal λ. From our experimental tests, for 64 actions, the
optimal λ was found to be 0.000051. For 32 and 16 actions,
we found that the the optimal values for λ are respectively
0.00085 and 0.0065. We notice that the optimal λ tends to
increase as the Environment becomes more challenging.

C. Average Convergence Iterations

We investigate in this experiment the average number of
iterations required for accomplishing convergence 9 in Tables

9We conducted different experiments for different randomly-generated
environments. However, due to space limitations, we only report the results
for a single settings that is a representative for other settings.

II. Furthermore, we report the standard deviation of the
iterations required for convergence. We compare the results of
the HCPA with the legacy LA schemes namely LR−I and CPA.
The optimal λ values utilized for the HCPA in this experiment
focusing on average convergerence time are the ones reported
in Section IV-B while we use the same procedure for obtaining
the optimal λ values for both CPA and LR−I based on the same
approach explained in Section IV-B.

We reckon that the HCPA has converged when all the LA
along the optimal path leading to the correct leaf node have
converged to an action probability larger than 0.99. In a similar
manner, we deem that the the CPA and the LR−I have con-
verged correctly if the LA had converged to the correct action
with an action probability larger than 0.99. The results in the
table represent the average of an ensemble of 400 independent
replications using the optimal λ obtained from the previous
experiment. As we can be see from Table II, the HCPA
yields superior performance to CPA and LR−I . This superiority
becomes more clear as the number of actions increases. For
instance, for the 64-action environment,the HCPA required
115,295 iterations in average while LR−I required 644,234
iterations. In other terms, the HCPA was able to converge in
less than 18% of the corresponding time for the LR−I . Since
those results are recurrent and general we should not detail
more those numbers here. Such numbers clearly confirm the
efficiency of the hierarchical structure of the HCPA as the
number of actions becomes larger.

D. Convergence for 128 Actions

The premise of this paper was to devise an LA-based
scheme that could be effective when the number of actions
was, indeed, large. To clearly demonstrate the power of
the HCPA for an even larger number of actions than those
reported in the previous subsections, we also tested it for two
environments with 128 actions (and in the next sub-section
we report for one environment with 256 actions). To the best
of our knowledge, extremely sparse results are reported in the
field of LA for large environments and specially when it comes
to results of experimental nature, and therefore, we consider
the experiments and the scheme reported here as truly quite
ground-breaking.

We first report the results for which the HCPA was tested
in two environments with 128 actions. In both the cases,
the reward probabilities were randomly chosen in the interval

11

TABLE II: The simulation results obtained for various environments with different numbers of actions.

Number of Actions 16 32 64
Parameters Mean SD Mean SD Mean SD

HCPA 904.5 103.6 6,812.3 614.6 115,295.5 11,346.2
CPA 1,584.2 62.3 7,260.0 529.1 156,616.3 6,985.0
LR−I 3,920.8 1,629.2 28,618.2 7,911.3 644,234.0 20,0625.4

[0,1]. In these cases, unlike the environments in the previous
sub-section, instead of listing the reward probabilities, we have
opted to an alternative representation by depicting them along
the line in Figures 2 and 3 respectively.

For the first environment illustrated by Figure 2, the LR−I
converged in 734,474 iterations in average while the CPA
achieved convergence within 543,529 steps, which means
26% less time than the LR−I . Amazingly, the HCPA only
needed 266,257 steps in average over 400 experiments for
convergence. This makes the HCPA 51% faster than CPA and
almost 64% faster than the LR−I . The results are representative
and confirm the superiority of the HCPA over legacy LA
schemes.

In the case of the second environment plotted in Figure 3,
the LR−I required 3,760,704 steps for absolute convergence
for an ensemble of 400 trials. This, in and of itself, shows
that this learning problem was much more difficult than the
one displayed in Figure 2. In this case, the CPA required
682,853 steps - which represented a decrease of about 81%.
Astonishingly, the HCPA needed only 476,511 steps. This is
equivalent to an advantage of about 30% over the CPA and
more than 87% over the LR−I! The advantage of the current
HCPA cannot be disputed.

E. Convergence for 256 Actions

The reason why we have, in the first instance, only gone
for a maximum of 128 actions is because while the newly in-
troduced LA converge “relatively” quickly, the traditional LA
converge very slowly, both in terms of the number of iterations
and the number of computations needed per iteration. Running
an ensemble of experiments for environments with even larger
numbers of actions, would takes weeks of computational
power. However, in the interest of completeness, we have
also included the results for an environment with 256 actions.
Again, rather than list the reward probabilities, we have plotted
them in Figures 4. In this case, of the many environments that
we considered, we selected a case where the “distance” in
the probability space between the largest reward probability
and the second largest reward probability was relatively large.
This rendered the learning environment to be much easier
than the ones encountered in the Section IV-D, permitting the
computations to be achieved in a reasonable time-frame. We
report the consequence of this choice presently.

For this 256-action environment, the LR−I required
1,196,918 steps for absolute convergence for an ensemble of
400 trials. In this case, the CPA required 542,042 steps - which
represented a decrease of about 55%. However, the HCPA
needed only 253,739 steps. Clearly, the HCPA is the winner.
This is equivalent to an advantage of about 57% over the CPA
and more than 79% over the LR−I . The fact that we selected

a case where the “distance” in the probability space between
the largest reward probability and the second largest reward
probability was relatively large, explains why the HCPA with
256 actions required less number of steps (253,739 than in the
first 128 case, where we needed 266,257 steps), because the
128 case represented a more challenging learning task.

F. Discussions

There are also conceptual differences between taking esti-
mates and using them in the Pursuit paradigm, and directly
making decisions based on these estimates10. First of all,
the power of the LA-paradigm precisely works with the
understanding that one does not make decisions solely based
on the estimates of the reward probabilities. This is because,
we would like to choose the actions even while we do the
estimation, and this is achieved by simply maintaining the
additional (linear space and time) Action Probability Vector.
This, in turn, means that we can minimize the number of times
that the inferior actions are chosen for the estimation phase.
In a typical Pursuit scheme, some of the very inferior actions
will scarcely be chosen subsequent to a few iterations after
the initialization stage. Rather, the learning scheme spends
more effort in taking more accurate estimates for the superior,
competitive actions. This makes the algorithm converge much
more rapidly, as reported by the LA community.

One additional difference between our method and one that
makes decisions after merely taking estimates of each action,
say 2,000 times, is that the latter would rarely guarantee
a 100% convergence over the entire ensemble. This is ex-
actly our experience in these Environments. When we use
the configuration of Figure 3 with 128 actions, the HCPA
required 226,257 steps to converge, which is approximately
2,080 trials for each action. However, when we attempt to
estimate for each action, with the same configuration 2,080
times the system does not converge with 100% accuracy to
the correct action (i.e., to the one which has the maximum
reward probability). It is very interesting to observe that if we
enforce the condition to have 100% convergence to the best
action, the number of estimates required per action is around
3,000! This demonstrates why researchers have opted to use
the LA paradigm over the straightforward estimation methods
for over four decades!

When we discuss the actual simulations, it is also very
important that the following is highlighted. The reason behind
this seemingly slow convergence is the way by which we
have done the simulation. In fact, we have chosen a value
of λ that gives us a consistent convergence11 to the optimal

10We are grateful for the Referee who requested this explanation.
11Obviously, we could have determined the optimal tuning parameter that

guaranteed convergence with a certain confidence, e.g., 99% of the time.

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2: The first 128-action Environment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3: The second 128-action Environment.

Fig. 4: The 256-action Environment that we have studied.

action over the entire ensemble of experiments. We can
refer to such a procedure as a “Fine Tuning Procedure for
Consistent Convergence”. The reason for us working with
such a “Fine Tuning Procedure for Consistent Convergence”
philosophy is that it boasts a more fair comparison of the the
different LA algorithms. In fact, in order to compare two LA
algorithms we need to consider both speed of convergence
and accuracy. Our comparison methodology tries to compare
the speed of the LA algorithms when their accuracy is fixed,
i.e., after obtaining the corresponding tuning parameters to
obtain consistent convergence. Observe that the “Fine Tuning
Procedure for Consistent Convergence” led us to very low
values of λ – as small as 0.000051 for the case of 64 actions -
which is much smaller that the smallest values for λ commonly
used in the literature (usually around 0.001). By adopting
such a comparison mechanism, we can guarantee that the
comparisons are done on a level field, where we can obtain
the average number of iterations needed for all the schemes
tested to yield the same accuracy.

Finally, the distribution of the reward probabilities around
the optimal actions plays a crucial rule in the convergence.
In fact, whenever there are competing actions to the optimal
action, i.e., actions that have a reward probability close to
the optimal action reward probability, the convergence time
increases significantly due to two reasons. The first reason is
that our hierarchical pursuit LA needs more time to distinguish
between the actions by their estimates. Secondly, the “Fine
Tuning Procedure for Consistent Convergence” leads to even
lower values for λ when compared to a simpler environment
with well-separated optimal and second sub-optimal actions.

V. CONCLUSIONS

In this paper, we laid the foundations of a new model
for devising efficient and rapid Learning Automata (LA)
schemes specially adequate for a large number of actions. The
settings in which the number of actions is large is particularly
challenging since the dimensionality of the probability vector
becomes consequently large and many of its components tend
to decay in few iterations to small values under what the
machine accuracy can permit leading to the fact that they cease
to be selected. In this case, the LA will be inaccurate and the
theoretical assumption that each action will be probed for a
large number of times will not be fulfilled in practice if we use

the family of estimator LA. In this paper, we introduce a novel
paradigm that extends the Continuous Pursuit Algorithm’s
(CPA’s) to the large set of actions. The most distinguishing
characteristic of our scheme is the fact that is hierarchical
and all the actions reside in the leave nodes. Further, at each
level of the hierarchy we only need a two-action LA and
thus we can easily eliminate the problem of having extremely
low action probability. By design, all the LA of the hierarchy
resort to the pursuit paradigm, and therefore the optimal action
of each level trickles up towards the root. Thus, by recur-
sively applying the “max” operator, in which, the maximum
of several local maxima is a global maximum, the overall
hierarchy converges to the optimal action. We also provide
sound theoretical results that demonstrated that our scheme has
ε-optimal convergence. Furthermore, we report comprehensive
experiments with large set of actions namely 128 and 256
actions that demonstrate the power of our schemes both in
terms of accuracy and convergence speed.

While the present paper has used the CPA as its kernel, we
emphasize that the results presented here can, rather trivially,
be extended for the families of discretized and Bayesian
pursuit LA too. Indeed, as far as we know, there are no
comparable results in the field of LA, in which the set of LA
are superimposed on a tree-like structure and where each LA
works with a pair of actions, rendering the action probability
vector to be of dimension two, and the estimates to also always
involve a pair of actions.

There are also algorithms that are based on Bayesian
reasoning and Thompson Sampling [21, 22]. By adopting the
concept of conjugate priors, these authors have shown that
invoking Bayesian reasoning within the field of LA becomes
computationally tractable. This concept has, thus, been used to
construct the Bayesian LA (BLA). The question of cascading
BLAs in a hierarchy, as we have done here, remains open.

There is also a significant difference between LA-based
methods and those that are generally considered as Subspace
Learning and Deep Learning methods. However, when the
number of dimensions in the feature domain is large, we
believe that the feature indices can be used as actions and that
one can learn the best dimensions by invoking hierarchical LA
like the HCPA to learn the best features. This will, certainly,

13

prove to be a valuable area for future research12.
With regard to future work. we also note that, in this paper,

we have not taken advantage of the concept of discretizing
the probability space. This option would lead to even faster
hierarchical CPA, inasmuch as discretized LA are known to
yield the fastest LA schemes. The speed of the Discretized
HCPA would be even faster than the HCPA presented here.

REFERENCES

[1] M. Agache and B. J. Oommen. Generalized pursuit learn-
ing schemes: new families of continuous and discretized
learning automata. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 32(6):738–749,
2002.

[2] A. F. Atlassis, N. H. Loukas, and A. V. Vasilakos.
The use of learning algorithms in ATM networks call
admission control problem: A methodology. Computer
Networks, 34:341–353, 2000.

[3] A. F. Atlassis and A. V. Vasilakos. The use of reinforce-
ment learning algorithms in traffic control of high speed
networks. Advances in Computational Intelligence and
Learning, pages 353–369, 2002.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The non-stochastic multi-armed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

[5] N. Baba and Y. Mogami. A new learning algorithm for
the hierarchical structure learning automata operating in
the nonstationary S-model random environment. IEEE
Transactions on Systems, Man and Cybernetics - Part B:
Cybernetics, 32(6):750–758, 2002.

[6] A. Baddeley and R. Turner. Spatstat: An R package for
analyzing spatial point patterns. Journal of Statistical
Software, 12:1–42, 2005.

[7] M. Barzohar and D. B. Cooper. Automatic finding
of main roads in aerial images by using geometric-
stochastic models and estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 7:707–722,
1996.

[8] C. Bettstetter, H. Hartenstein, and X. Pı̈¿ 1
2 rez-Costa.

Stochastic properties of the random waypoint mobility
model. Journal Wireless Networks, 10:555–567, 2004.

[9] M. L. Brandeau and S. S. Chiu. An overview of rep-
resentative problems in location research. Management
Science, 35:645–674, 1989.

[10] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-
armed bandits. Journal of Machine Learning Research,
12(May):1655–1695, 2011.

[11] N. Cesa-Bianchi and P. Fischer. Finite-time regret bounds
for the multiarmed bandit problem. In ICML1998, pages
100–108, Madison, Wisconsin USA, Jul. 1998.

[12] J. J. Collins, C. C. Chow, and T. T. Imhoff. Aperiodic
stochastic resonance in excitable systems. Physical
Review E, 52:R3321–R3324, 1995.

[13] R. L. Cook. Stochastic sampling in computer graphics.
ACM Trans. Graph., 5:51–72, 1986.

12We are grateful for the anonymous Referee who suggested this.

[14] P.-A. Coquelin and R. Munos. Bandit algorithms for tree
search. arXiv preprint cs/0703062, 2007.

[15] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud,
and N. Bonnard. Continuous upper confidence trees.
In International Conference on Learning and Intelligent
Optimization, pages 433–445. Springer, 2011.

[16] J. P. Cusumano and B. W. Kimble. A stochastic interro-
gation method for experimental measurements of global
dynamics and basin evolution: Application to a two-well
oscillator. Nonlinear Dynamics, 8:213–235, 1995.

[17] E. Even-Dar, S. Mannor, and Y. Mansour. Pac bounds
for multi-armed bandit and markov decision processes.
In International Conference on Computational Learning
Theory, pages 255–270. Springer, 2002.

[18] S. Gelly and D. Silver. Monte-carlo tree search and
rapid action value estimation in computer go. Artificial
Intelligence, 175(11):1856–1875, 2011.

[19] J. C. Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series
B (Methodological), 41(2):148–177, 1979.

[20] J. C. Gittins and D. M. Jones. A dynamic allocation
index for the discounted multiarmed bandit problem.
Biometrika, 66(3):561–565, 1979.

[21] O.-C. Granmo. Solving two-armed bernoulli bandit
problems using a Bayesian learning automaton. Interna-
tional Journal of Intelligent Computing and Cybernetics,
3(2):207–234, 2010.

[22] O.-C. Granmo and S. Berg. Solving non-stationary ban-
dit problems by random sampling from sibling kalman
filters. In Proceedings of IEA-AIE 2010, pages 199–208,
Cordoba, Spain, Jul. 2010.

[23] O.-C. Granmo and B. J. Oommen. Solving stochastic
nonlinear resource allocation problems using a hierarchy
of twofold resource allocation automata. IEEE Transac-
tions on Computers, 59:545–560, 2009.

[24] J. Kabudian, M. R. Meybodi, and M. M. Homayounpour.
Applying continuous action reinforcement learning au-
tomata (CARLA) to global training of hidden markov
models. In Proceedings of the International Conference
on Information Technology: Coding and Computing ,
ITCC’04, pages 638–642, Las Vegas, Nevada, 2004.

[25] S. Lakshmivarahan. Learning Algorithms Theory and
Applications. New York Springer-Verlag, 1981.

[26] S. Lakshmivarahan and M. A. L. Thathachar. Absolutely
expedient algorithms for stochastic automata. IEEE
Transactions on Systems, Man, and Cybernetics, 3:281–
286, 1973.

[27] J. K. Lanctot and B. J. Oommen. On discretizing
estimator-based learning algorithms. IEEE Trans. on
Systems, Man, and Cybernetics, Part B: Cybernetics,
2:1417–1422, 1991.

[28] J. K. Lanctot and B. J. Oommen. Discretized estima-
tor learning automata. IEEE Trans. on Systems, Man,
and Cybernetics, Part B: Cybernetics, 22(6):1473–1483,
1992.

[29] M. R. Meybodi and H. Beigy. New learning automata
based algorithms for adaptation of backpropagation al-
gorithm pararmeters. International Journal of Neural

14

Systems, 12:45–67, 2002.
[30] S. Misra and B. J. Oommen. GPSPA: A new adaptive

algorithm for maintaining shortest path routing trees in
stochastic networks. International Journal of Communi-
cation Systems, 17:963–984, 2004.

[31] K. Najim and A. S. Poznyak. Learning Automata: Theory
and Applications. Pergamon Press, Oxford, 1994.

[32] K. S. Narendra and M. A. L. Thathachar. Learning
Automata: An Introduction. Prentice Hall, 1989.

[33] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis.
Learning automata: Theory, paradigms, and applications.
IEEE Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, 32(6):706–709, December 2002.

[34] M. S. Obaidat, G. I. Papadimitriou, A. S. Pomportsis, and
H. S. Laskaridis. Learning automata-based bus arbitra-
tion for shared-edium ATM switches. IEEE Transactions
on Systems, Man, and Cybernetics: Part B, 32:815–820,
2002.

[35] B. J. Oommen. Absorbing and ergodic discretized two-
action learning automata. IEEE Transactions on Systems,
Man, and Cybernetics, 16:282–296, 1986.

[36] B. J. Oommen and M. Agache. Continuous and dis-
cretized pursuit learning schemes: various algorithms and
their comparison. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 31(3):277–287,
2001.

[37] B. J. Oommen and T. D. S. Croix. Graph partitioning us-
ing learning automata. IEEE Transactions on Computers,
45:195–208, 1996.

[38] B. J. Oommen and T. D. S. Croix. String taxonomy using
learning automata. IEEE Transactions on Systems, Man,
and Cybernetics, 27:354–365, Apr. 1997.

[39] B. J. Oommen and J. K. Lanctot. Discretized pursuit
learning automata. IEEE Transactions on Systems, Man,
and Cybernetics, 20:931–938, 1990.

[40] M. Paola. Digital simulation of wind field velocity. Jour-
nal of Wind Engineering and Industrial Aerodynamics,
74-76:91–109, 1998.

[41] G. Papadimitriou. Hierarchical discretized pursuit nonlin-
ear learning automata with rapid convergence and high
accuracy. IEEE Transactions on Knowledge and Data
Engineering, 6:654–659, 1994.

[42] G. I. Papadimitriou. Hierarchical discretized pursuit
nonlinear learning automata with rapid convergence and
high accuracy. IEEE Transactions on Knowledge and
Data Engineering, 6(4):654–659, 1994.

[43] G. I. Papadimitriou and A. S. Pomportsis. Learning-
automata-based TDMA protocols for broadcast commu-
nication systems with bursty traffic. IEEE Communica-
tion Letters, pages 107–109, 2000.

[44] A. S. Poznyak and K. Najim. Learning Automata and
Stochastic Optimization. Springer-Verlag, Berlin, 1997.

[45] K. Rajaraman and P. S. Sastry. Finite time analysis
of the pursuit algorithm for learning automata. IEEE
Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 26:590–598, 1996.

[46] B. S. Rowlingson and P. J. Diggle. SPLANCS: Spatial
Point Pattern Analysis Code in S-Plus. University of

Lancaster, North West Regional Research Laboratory,
1991.

[47] F. Seredynski. Distributed scheduling using simple
learning machines. European Journal of Operational
Research, 107:401–413, 1998.

[48] R. Simha and J. F. Kurose. Relative reward strength
algorithms for learning automata. IEEE Transactions on
Systems, Man, and Cybernetics, 19:388–398, 1989.

[49] M. A. L. Thathacha and P. S. Sastry. Networks of
Learning Automata: Techniques for Online Stochastic
Optimization. Kluwer Academic Publishers, 2004.

[50] M. A. L. Thathachar and B. J. Oommen. Discretized
reward-inaction learning automata. Journal of Cybernet-
ics and Information Science, pages 24–29, 1979.

[51] M. A. L. Thathachar and K. R. Ramakrishnan. A hierar-
chical system of learning automata. IEEE Transactions
on Systems, Man, and Cybernetics, 11:236–241, 1981.

[52] M. A. L. Thathachar and P. S. Sastry. Estimator
algorithms for learning automata. In Proceedings of
the Platinum Jubilee Conference on Systems and Signal
Processing, pages 29–32, Bangalore, India, Dec. 1986.

[53] M. Tokic. Adaptive ε-greedy exploration in reinforce-
ment learning based on value differences. In KI’10
Proceedings of the 33rd annual German conference on
Advances in artificial intelligence, Karlsruhe, Germany,
Sep. 2010. Springer.

[54] M. L. Tsetlin. Finite automata and the modeling of the
simplest forms of behavior. Uspekhi Matem Nauk, 8:1–
26, 1963.

[55] C. Unsal, P. Kachroo, and J. S. Bay. Simulation study of
multiple intelligent vehicle control using stochastic learn-
ing automata. Transactions of the Society for Computer
Simulation International, 14:193–210, 1997.

[56] C. Unsal, P. Kachroo, and J. S. Bay. Multiple stochastic
learning automata for vehicle path control in an auto-
mated highway system. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 29:120–128, 1999.

[57] A. V. Vasilakos, M. P. Saltouros, A. F. Atlassis, and
W. Pedrycz. Optimizing QoS routing in hierarchical
ATM networks using computational intelligence tech-
niques. IEEE Transactions on Systems, Man and Cy-
bernetics: Part C, 33:297–312, 2003.

[58] C. J. C. H. Watkins. Learning from delayed rewards.
Ph.D. thesis. Cambridge University, 1989.

[59] P. Whittle. Multi-armed bandits and the gittins in-
dex. Journal of the Royal Statistical Society. Series B
(Methodological), 42(2):143–149, 1980.

[60] A. Yazidi, O.-C. Granmo, and B. J. Oommen. Service se-
lection in stochastic environments: A learning-automaton
based solution. Applied Intelligence, 36:617–637, 2012.

[61] A. Yazidi, O.-C. Granmo, B. J. Oommen, and M. Good-
win. A novel strategy for solving the stochastic point
location problem using a hierarchical searching scheme.
IEEE transactions on cybernetics, 44(11):2202–2220,
2014.

[62] X. Zhang, O.-C. Granmo, and B. J. Oommen. The
Bayesian pursuit algorithm: A new family of estimator
learning automata. In Proceedings of IEA-AIE 2011,

15

pages 608–620, New York, USA, Jun. 2011. Springer.
[63] X. Zhang, O.-C. Granmo, and B. J. Oommen. Discretized

Bayesian pursuit - a new scheme for reinforcement
learning. In Proceedings of IEA-AIE 2012, pages 784–
793, Dalian, China, Jun. 2012.

[64] X. Zhang, O.-C. Granmo, and B. J. Oommen. On incor-
porating the paradigms of discretization and Bayesian
estimation to create a new family of pursuit learning
automata. Applied Intelligence, 39:782–792, 2013.

[65] X. Zhang, O.-C. Granmo, B. J. Oommen, and L. Jiao.
On using the theory of regular functions to prove the
ε-optimality of the continuous pursuit learning automa-
ton. In Proceedings of IEA-AIE 2013, pages 262–271,
Amsterdan, Holland, Jun. 2013. Springer.

[66] X. Zhang, O.-C. Granmo, B. J. Oommen, and L. Jiao. A
formal proof of the ε-optimality of absorbing continuous
pursuit algorithms using the theory of regular functions.
Applied Intelligence, 41(3):974–985, 2014.

[67] X. Zhang, B. J. Oommen, and O.-C. Granmo. The
design of absorbing Bayesian pursuit algorithms and the
formal analyses of their ε-optimality. Pattern Analysis
and Applications, 20(3):797–808, Aug 2017.

