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ABSTRACT

Stochastic feed-in of �uctuating renewable energies is steadily increasing in modern electricity grids, and this becomes an important risk factor
for maintaining power grid stability. Here, we study the impact of wind power feed-in on the short-term frequency �uctuations in power grids
based on an Institute of Electrical and Electronics Engineers test grid structure, the swing equation for the dynamics of voltage phase angles,
and a series of measured wind speed data. External control measures are accounted for by adjusting the grid state to the average power feed-in
on a time scale of 1min. The wind power is injected at a single node by replacing one of the conventional generator nodes in the test grid by a
wind farm.We determine histograms of local frequencies for a large number of 1-min wind speed sequences taken from themeasured data and
for di�erent injection nodes. These histograms exhibit a common type of shape, which can be described by a Gaussian distribution for small
frequencies and a nearly exponentially decaying tail part. Non-Gaussian features become particularly pronounced for wind power injection
at locations, which are weakly connected to the main grid structure. This e�ect is only present when taking into account the heterogeneities
in transmission line and node properties of the grid, while it disappears upon homogenizing of these features. The standard deviation of the
frequency �uctuations increases linearly with the average injected wind power.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122986

Electric energy supply is of utmost importance for industrial com-
panies and private households, and it will become even more
relevant in connection with actions taken for mitigating cli-
mate change e�ects. The increasing feed-in of wind and solar
power into electricity grids poses new challenges for maintain-
ing their stability. The stochastic nature of wind speeds and solar
irradiation yields short-term �uctuations of the local frequen-
cies with possible large deviations from the nominal frequency
of the desired synchronous operating state. These large devi-
ations can form nuclei for grid instabilities, which can range
from single line overloads to malfunction of larger grid parts.

Short-term frequency stability, therefore, must be assessed under
erratic power feed-in. Here, we study this problem for wind
power injection. We �nd that wind power feed-in leads to expo-
nentially decaying tails of local frequency distributions. This
implies rare large frequency �uctuations to occur much more
frequently than expected from assuming simple Gaussian statis-
tics. Decisive factors for the appearance of the non-Gaussian
large frequency �uctuations are the heterogeneities in transmis-
sion line and node properties. The non-Gaussian features are
much less signi�cant and almost negligible in a homogenized
grid.
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I. INTRODUCTION

The steadily increasing share of �uctuating wind and solar
power in electricity grids raises new questions on the assessment and
control of grid stability. To tackle this problem, di�erent aspects and
challenges need to be considered and mastered. One aspect is the
grid topology, which can be generated arti�cially by some reasonably
developed algorithm, which then allows one to perform an ensemble
averaging.1–5 Another option is to use test grids like those provided
by the Institute of Electrical and Electronics Engineers (IEEE).6,7 It
is also possible to analyze speci�c motifs in a grid,8,9 or one can try
to use real grid structures, which unfortunately are, in general, not
provided by the network operating companies. However, there are
a number of initiatives, such as open_eGo,10 SciGrid,11 and others,
which try to obtain real grid structures, based mainly on informa-
tion taken from Open Street Map. Characteristic features of the grid
structure are di�erent for di�erent voltage levels, and a further issue
is the modeling between these voltage levels.

Another aspect is the modeling depth that means whether one
can rely on a simple quasistationary approach based on power-�ow
equations6,12,13 or whether one needs to couple these �ow equa-
tions to the voltage angle dynamics described by the swing equation
with possible further extensions for including dynamics of voltage
amplitudes.4,14 In addition, there exist di�erent models to describe
generator and load nodes,15 and it seems to be relevant to take
into account the impact of reactances in the coupling of loads and
generators to the grid.7

The necessary modeling depth for obtaining reliable results
will depend also on the relation of several time scales, such as
scales for primary and secondary control, intrinsic dynamical scales,
and the scales associated with the �uctuations of renewable energy
sources.5,16–19 To account for these �uctuations, we need good
descriptions of the stochastic dynamics of wind and solar power,
which involves features coming from atmospheric turbulence and
cloud e�ects and questions related to how speci�c engineering setups
a�ect the transfer of a physical source, e.g., wind speed, to the injected
power.

In quasistationary approaches, the focus is generally on how
power �ows along transmission lines are modi�ed due to a change in
renewable power generation and whether weak points can be identi-
�ed, where lines become overloaded with high probability.6,12,13,20–23

Fewer studies are concerned yet with the modi�ed power-�ow
dynamics caused by �uctuations of wind and solar power on short
time scales.5,16,24 These time scales have to be put in relation to those
of external control measures. Sudden large deviations of local fre-
quencies from the nominal value can formnuclei for grid instabilities,
which can range from single line overloads to malfunction of larger
grid parts, up to cascading failures spanning large fractions of the
whole grid. A better understanding of the statistics of local frequency
�uctuations under the stochastic input of wind and solar power is
needed to develop reliable risk estimates of grid failures and strate-
gies to balance risk factors with investments in higher grid stability.
Another aspect of the �uctuating power input is a possible reduc-
tion of frequency quality, i.e., the percentage of time where the grid
operates in a given frequency range. This can be estimated from
distributions of local frequencies.

A challenge in treating short-time dynamics in power grids is
how to take into account the e�ect of the external control measures

on longer times scales. For example, in a time period of high aver-
age wind speed, the conventional generators in the grid will generate
less power than in a period of low average wind speed. This means
that the state of conventional generator nodes depends on the aver-
age wind speed or wind power level. We introduce a concept in this
study, where the grid state is adapted to the average wind power level.

Speci�cally, we focus on the distribution of short-time local fre-
quency �uctuations in the IEEE Reliability Test System 1996 (IEEE
RTS-96)25 if one of its conventional generator nodes is replaced by
a node with power feed-in from a wind farm (see Fig. 1). For this
feed-in, we take data of wind velocities measured at a tower in the
North Sea with a sampling rate of 1Hz.26 Both the generator and
load nodes of the IEEE-RTS-96 are described by the synchronous
machine model. The voltage angle dynamics is determined by the
swing equationwith forcing by the imbalance ofmechanical and elec-
tric power. The latter is given by the nonlinear power �ow equations,
where voltage magnitudes are considered to be �xed.

We also investigate how the distributions of local frequency
�uctuations change if transmission line and node heterogeneities
in the IEEE-RTS-96 are homogenized by an averaging procedure.
Homogenized grid properties are often used in simpli�ed modelings
because they reduce the computational e�ort for solving the non-
linear dynamical equations and make it easier to �nd �xed point
solutions and to maintain numerical stability. However, the use of
homogenized grid properties may lead to an underestimation of fail-
ure probabilities and a wrong identi�cation of weak parts in the
grid.7

As a key result of our study, we �nd that the distributions
of local frequency exhibit non-Gaussian features due to tails with
approximately exponential decay. These non-Gaussian features can
be very pronounced at certain grid nodes. For small frequency �uc-
tuations, the distributions have a nearly Gaussian shape. This Gaus-
sian core part of the distributions gives essentially the �uctuation
width, i.e., the standard deviation of frequency �uctuations, while the
nearly exponential tails are important for estimating probabilities of
rare large �uctuations. In the homogenized grids, the non-Gaussian
features are less pronounced and the �uctuation widths are much
smaller.

The paper is organized as follows. In Sec. II A, we introduce
the basic dynamical equations and the essential features of the IEEE-
RTS-96 structure relevant for this study. In Sec. II B, we describe
the stochastic wind power generation based on the measured wind
speed data, and in Sec. II C, we discuss the wind power feed-in. Our
results for the local frequency distributions are detailed in Sec. III.
Section IV closes our work with a discussion of the implications of
our �ndings and an outlook for further research.

II. POWER FLOW, STOCHASTIC INPUT,

AND GRID STRUCTURE

A. Power-flow dynamics

Wemodel the power-�ow dynamics based on the widely1,3–5,27–29

used synchronous machine model for loads and generators.15,30,31

With the nominal frequency fr (50Hz in Europe) and corre-
sponding angular frequency ωr = 2π fr, the voltage at node j is
Vj(t) = |Vj|Re [e−iωrt+iθj(t)], where θj(t) is the phase angle describing
the deviation from the synchronous state of operation; the moduli
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FIG. 1. Sketch of the IEEE RTS-96, consisting of 30 generators labeled from 1 to 30 (red circles), 3 synchronous condensers labeled 31, 32, 33 (green circles), and 40 load
nodes labeled from 34 to 73 (yellow circles/open white circles). The small white circles refer to load nodes with vanishing mechanical power. The synchronous condensers
have a fixed size, and the size of other symbols has been scaled proportional to their mechanical power. The nodes are connected by 108 transmission lines, where the
thickness of the lines marks the strength (modulus) of the respective complex admittances. The insets illustrate the injection of wind power at node 11 due to fluctuating wind
speeds v(t) and resulting fluctuations of the frequency ωk at node k = 53.

|Vj| of the voltages are considered to be time-independent. The

imbalance (P(m)j − Pj) between the “mechanical” powers P(m)j and
electrical powers Pj drives the phase angle θj according to the swing
equation

Hjθ̈j + Djθ̇j = P(m)j − Pj

= P(m)j −
∑

k

Kjk sin
(
θj − θk − γjk

)
. (1)

Here, the coupling constants are Kjk = |Vj||Vk||Yjk|, where Yjk

= |Yjk| exp[i(γjk + π/2)] are the elements of the grid admittance
matrix Y . Hj are inertia constants of the synchronous machines,
i.e., connected with the rotating mass of a conventional generator
or motor. The damping constants Dj e�ectively account for primary
control measures,32 which drives the grid into a synchronous state
of operation. From a mechanical perspective, Eq. (1) correspond
to a Newtonian dynamics of nonlinearly coupled oscillators with
damping. These are often referred to as the “second-order Kuramoto
equations”.33–35

Wehave solved the swing equations (1) numerically by applying
a Runge-Kutta solver of fourth order with a time step of 5 × 10−4 s.
As for the parameters, listed values for the IEEE RTS-96 were used
and estimates for the Hj, Dj based on the �ndings reported in Ref.
36. For a comparison with a simpli�ed homogenized grid variant,

arithmeticmeans of line admittances as well as of consumed and gen-
erated powers are taken. A detailed description of all parameters is
given in Ref. 7.

If the mechanical powers P(m)j do not �uctuate, a stationary
synchronous state of the grid develops after some transient time,
where all frequency deviations ωj = θ̇j from the nominal frequency

ωr are zero and all θj are constant. In principle, knowing P(m)j and Kjk

= |Vj||Vk||Yjk|, the phase angles in this state can be calculated by set-
ting the left-hand side of Eq. (1) to zero. However, for load nodes the

voltages |Vj| are generally not known but the reactive powers Q(m)j .
For determining the synchronous state, we thus have to solve the full
power-�ow equations

P(m)
j = Pj =

∑

k

|Vj||Vk||Yjk| sin
(
θj − θk − γjk

)
, (2a)

Q(m)
j = Qj =

∑

k

|Vj||Vk||Yjk| cos
(
θj − θk − γjk

)
, (2b)

which express the balance betweenmechanical and electrical powers,
including Ohmic losses. We solve these equations by the Newton-
Raphson method with starting angles (θ1, . . . , θN) = (0, . . . , 0),
yielding a unique �xed point vector (0, θ∗

2 , . . . , θ
∗
N). Alternatively,

one could use the holomorphic embedding load-�ow method for
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determining the �xed point of synchronous operation.37 If the
mechanical powers are chosen to have values di�erent from the ones
listed for the IEEE-RTS-96, we have taken node 4 as the reference bus
for determining the �xed point state.

B. Stochastic power generation

In earlier times, where power was produced solely by conven-

tional generators, �uctuations of P(m)j had to be considered for the
load nodes. Typically, the impact of corresponding load �uctuations
can be treated in a quasistationary approach based on the power-�ow
equations (2). This is because signi�cant changes of consumed power
occur on time scales large compared to relaxation times to the �xed
point state which lie in the range of 3–20 s.7

In the presence of stochastic feed-in from renewable energy

sources, the impact of �uctuating P(m)j must be considered also for
generator nodes. The dynamics described by Eq. (1) can then no
longer be ignored because power feed-in from wind and solar irra-
diation shows signi�cant changes on short time scales. To account

for these �uctuations, corresponding stochastic processes for P(m)
j (t)

need to be speci�ed. When inserting these into Eq. (1), the phase
angles θj(t) and frequencies ωj(t) = θ̇j(t) become stochastic pro-
cesses as well.

In this paper, we focus on the frequency �uctuations under
stochastic feed-in of wind power. An important statistical feature of
wind speeds is that distributions of velocity increments on even short
times of order 1 s exhibit tails much heavier than that of a Gaussian
distribution due to the intermittent nature of turbulent �ows. Wind
speed increments of, for example, 5m/s are rare but have probabil-
ities that are by several orders higher than those expected from a
Gaussian distribution withmean and variance given by themeasured
data. Recent results suggest that wind speed �uctuations are rather
directly re�ected in the generated power on short time scales of sec-
onds and below.17 This would imply that rare events of large sudden
power changes could be an important risk factor formaintaining grid
stability.

To capture realistic features of the wind, we base our study on
a series of wind speeds v measured at a tower located in the North
Sea with a sampling rate of 1Hz.26 From this series, we take the data
{vn}1≤n≤N sampled in October 2016 (N = 2 678 400) for our study.
These wind speeds show strong �uctuations on all time scales. The
time window, where the grid state dynamics are described by Eq. (1),
is, however, restricted by control measures. The synchronous state
of operation generated by primary control can have a frequency that
deviates from the nominal value. Secondary control measures tend
to restore a synchronous state at the nominal frequency. It involves
time-delay feedback and integration of power imbalances on time
scales of about 30 s. We here take this secondary control into account
in an e�ectivemanner by assuming that the ideal synchronous state at
the nominal frequency is restored after 1min. Accordingly, we divide
the series {vn}1≤n≤N into subsequent segments of 1min, yielding in
totalN/60 = 446 40 sets, as illustrated by the vertical dashed lines in
Fig. 2. These sets of 1-min data form the basis for the stochastic wind

power input P(m)
j (t) in Eq. (1).

To convert the wind speeds into powers we make use of the
so-called “power curve” P(v), which describes how wind speed
translates to wind power on average. The power curve P(v) increases

FIG. 2. Section of the wind speed series measured at a tower located in the North
Sea with a sampling rate of 1 Hz.26 The vertical dashed lines indicate the division
into segments of 1 min. Data are colored differently with respect to the mean wind
speed in each segment (horizontal lines), corresponding to a grouping into bins
of widths 2 m/s, see the discussion in Sec. III.

nearly as ∝ v3 for small v up to a rated velocity vr, where the power
reaches its maximal allowed value Pr to prevent the wind turbines
from getting damaged (pitch control), see Fig. 3. The data points in
this �gure are taken from Ref. 38, and the solid line is a cubic �t to
the data for small v with a crossover to constant Pr for v ≥ vr. The
rated speed vr = 12.5 m/s was determined from the average 〈v〉 of
the measured speeds {vn}1≤n≤N and by applying the rule of thumb
vr = 1.5〈v〉.39 Let us note that the power curve has a “cut-in speed”
at about 4m/s, and a “cut-o� speed” at about 25m/s, above which

FIG. 3. Power curve giving the dependence of the average wind power P on the
wind speed v. The power is normalized to the rated value Pr, which is the satura-
tion value for speeds larger than the rated speed vr. The data points are extracted
from Ref. 38, and the solid black line is a cubic fit to the data for v < vr. The solid
red line indicates the mean value 〈v〉 of the wind speeds sampled in October 2016
at the tower in the North Sea26 and its corresponding power.
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the blades of a wind turbine are turned away from the wind and the
power drops to zero. In our subsequent analysis, we consider only
sets of 1-min data with mean wind speeds between 4m/s and 18m/s.

When substituting a conventional generator j in the IEEE-RTS-
96 by a wind farm, we also need to specify the size of the farm. This
is done by demanding the power generated at the mean wind speed
〈v〉 to be equal to the power Pconv

j of the substituted conventional gen-
erator. Accordingly, the translation of wind speed v into wind power
Pw
j (v) at node j is

Pw
j (v) =





Pconv
j

〈v〉3
v3, v ≤ vr,

(Pr)j, v ≥ vr,
(3)

with (Pr)j = Pconv
j v3r/〈v〉3.

The measured wind speed data {vn}1≤n≤N have a time resolu-
tion of 1 s. Much shorter time resolutions of order 1ms are necessary
to integrate Eq. (1) with numerical accuracy. In order to specify a
time-continuous stochastic process for the feed-in of wind power in
Eq. (1), one could use a step-function approach, e.g., by de�ning v(t)

= v1 +
∑N−1

n=1 (vn+1 − vn)2(t − n) with 2(.), the Heaviside jump
function [2(x) = 1 for x ≥ 0 and zero otherwise; t in units of sec-
onds]. However, this approach would ignore �uctuations on shorter
scales. We, therefore, prefer to use a stochastic interpolation scheme
between consecutive values vn, vn+1 that is explained in theAppendix.

C. Wind power feed-in

As mentioned in the Introduction, it is important to take into
account that the external control measures are acting on longer
time scales and lead to a state of the controllable generators that is
adapted to the average wind power. Therefore, for a given set of 1-
min data, we calculate themeanwind power P̄w

j . This average P̄
w
j is, in

general, not equal to the nominal power Pconv
j of the original conven-

tional generators in the IEEE RTS-96, implying a power imbalance
between the total generated power and the sumof the total consumed
power |Pload

tot | = −Pload
tot (assumed to be �xed) and the Ohmic losses.

However, due to the external control measures, we can view the con-
ventional generators to be uniformly scaled, Pconv

k → βPconv
k so that

the total power generation (P̄w
j + β

∑
k 6=j P

conv
k ) averaged over 1min

remains the same as in the unmodi�ed IEEE-RTS-96. The scale factor
β is

β =
∑

l P
conv
l − P̄w

j∑
k 6=j P

conv
k

. (4)

Given P̄w
j and βPconv

k for k 6= j, the correspondingly modi�ed
IEEE-RTS-96 assumes a new �xed point, which we determine as
described in Sec. II A. To solve Eq. (1) for a given 1-min realiza-
tion of the feed-in process, we always start in this �xed point state,
thereby e�ectively taking into account the adaptation of the state due
to external control measures.

III. LOCAL FREQUENCY DISTRIBUTIONS

The numerical solutions of the swing equations allow us to
determine the local rates ωk = θ̇k of phase angle changes. We refer to
these deviations simply as “local frequencies” in the following. Their
distributions are analyzed in this section.

To identify possible di�erences for periods of weak and strong
wind, we perform our analysis conditioned on the average wind
speed in 1-min intervals. Thus, we introduce bins, where the wind
speed averaged over 1min lies in ranges 4–6m/s, 6–8m/s, . . .,
18–20m/s. A section of the wind speed series v(t) is shown in Fig. 2,
where we have also indicated the division into 1-min segments (each
having its own 1-min averagewind speed). Thewind speed series v(t)
is transformed into a power series Pw

j (t) as described above.
Within the 1-min intervals, the wind speed shows strong �uc-

tuations, including sudden changes re�ecting its intermittent nature.
This is demonstrated in Fig. 4(a), where we show the distributions
ψ(1v) of 1-s wind speed increments1v = v(t + 1)− v(t) obtained
from a sampling restricted to all 1-min sections with average wind
speeds in the bin 8-10m/s. These distributions show the typical heavy
tails re�ecting the intermittent behavior: large wind speed changes

FIG. 4. (a) Distribution ψ(1v) of 1-s
increments 1v of wind speeds obtained
from the time series measured at a tower
in the North Sea. In the sampling, only
those data are included, where the aver-
age wind speed in a 1-min time inter-
val lies in the range 8–10m/s. (b) Cor-
responding distribution ψ̃(1Pw) of incre-
ments of wind power feed-in at node
j = 13 that result from the transformation
of wind speeds into powers described in
Sec. II B. The green lines in both graphs
correspond to Gaussian distributions with
zero mean and the same standard devia-
tion as that of ψ(1v) and ψ̃(1Pw).
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occur much more frequently than expected from a Gaussian distri-
bution [green line in Fig. 4(a)]. The heavy tails in the distribution
of wind speed increments are rather directly transformed into heavy
tails of the distribution of wind power increments [see Fig. 4(b)].

Figure 5(a) displays an example of a histogram of frequencies,
which was obtained for one realization of 1-min wind power feed-in
at node 13 with a mean wind speed belonging to the bin 8–10m/s
[corresponding to the distribution of wind power increments shown
in Fig. 4(b)]. For this histogram, the local frequencies at all other
nodes were sampled. The shape of the histogram can be described
by a Gaussian core part for small frequencies (solid green line) and
a nearly exponential tail behavior for large frequencies (for both
positive and negative deviations from the nominal frequency). It is
interesting to compare this histogram with the one for the homoge-
nized grid structure when exactly the same sequence of 1-min wind
power data is injected at node 13. The corresponding histogram is
shown in Fig. 5(b). Its shape can be described in the same way, but
the Gaussian core part has a much smaller width and the exponential
tails decay more rapidly.

When investigating other 1-min sets of wind power data and/or
other injection nodes, we obtain histograms of similar shape, which
can be characterized by a Gaussian core and exponential tail part.
This holds true irrespective of the scale of average wind speed, i.e.
irrespective of the bin, to which the set of 1-min wind power data
is assigned. That similar histogram shapes are obtained for all 1-min
sets is somewhat surprising in view of the intermittent wind speed
behavior, which is re�ected in occasional jumplike changes of the
wind speed in short time intervals. For example, consider the 1-min
set of wind speed data between 120 s and 180 s and the following set
between 180 s and 240 s in Fig. 2. In the former set, the wind speeds
show only small �uctuations around the mean wind speed. In the
latter set, by contrast, jumplike changes are seen at its beginning and

end, and between these sudden changes there is a strong overall drift
from smaller wind speeds of order 6m/s to larger values of about
10 m/s. The di�erences in the behaviors of the wind speed thus do
not translate into distinct types of histogram shapes but a di�erent
signi�cance of the Gaussian core and exponential tail part.

We quantify the di�erences by introducing two parameters. The
�rst is the standard deviation σ of the local frequency �uctuations,
whose value is largely determined by the Gaussian core part. In fact,
the solid green lines in Figs. 5(a) and 5(b) correspond to a Gaussian
distribution with zero mean and standard deviation σ . The second
parameter is

α =
〈ω4〉
3σ 4

− 1, (5)

which is commonly referred to as the non-Gaussian parameter in
the literature. For a Gaussian distribution one �nds α = 0, while
the exponential tails lead to α > 0, i.e., this parameter quanti�es the
signi�cance of the non-Gaussian tails.

For the histogram in Fig. 5(a), we �nd σ = 0.13 and α = 2.83,
while for the corresponding histogram of the homogenized grid in
Fig. 5(b), σ = 0.06 andα = 0.36. The intermittent nature of thewind
must be re�ected in variations of σ and α for di�erent 1-min data
sets. These variations are exempli�ed in the graphs right to the his-
tograms shown in Figs. 5(a) and 5(b) for 100 sets belonging to the
same bin 8–10m/s of average wind speed. The mean values σ̄j and ᾱj
are indicated by the horizontal green lines in these graphs.

So far, we have considered just one injection node j = 13. To
investigate how the σ̄ and ᾱ vary with the location of wind power
feed-in, we have determined, for the same hundred sets taken for
Figs. 5(a) and 5(b), the σ̄j and ᾱj for all replacements of conventional
generator nodes j = 1, . . . , 30 by a wind farm. The results, are shown
in Figs. 6 and 7.

FIG. 5. Example of local frequency histograms (black crosses) for a 1-min wind power feed-in Pw(t) at node 13 whosemean wind speed P̄w belongs to the bin 8–10m/s, (a) for
the IEEE RTS-96 (after replacement of node 13 for wind-power feed-in) and (b) for the corresponding homogenized grid structure (as described in Sec. II A). Frequency data
were sampled at all other nodes. The green lines correspond to Gaussian distributions with zero mean and standard deviation σ calculated from the frequency fluctuations.
The graphs (c) and (d) depict variations of σ and the non-Gaussian parameter α [defined in Eq. (5)] for different 1-min power feed-in at the same node j = 13. The horizontal
green lines show the average values. Non-Gaussian parameters for the homogeneous grid variant are much smaller (cf. Fig. 6).
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FIG. 6. Mean non-Gaussian parameter ᾱj for the different wind injection nodes
j = 1, . . . , 30 in the bin of mean wind velocities 8–10m/s. For each injection node,
the averaging was performed over the same hundred 1-min sets of wind speed
data. Blue crosses mark the results for the heterogeneous grid structure, and red
circles for the homogenized variant.

In Fig. 6, we see that there are two injection nodes j = 13 and
23 in the heterogeneous grid (blue crosses) with a large αj ' 3.When
looking for peculiarities of these nodes, we �nd that they are the only
dead-ends in the IEEE-RTS-96, see Fig. 1. In the homogenized grid,
this e�ect of dead-ends is not signi�cant and all αj . 0.6 (red circles
in Fig. 6).

For most of the other injection nodes j in the heterogeneous
grid, we also �nd αj . 0.6, with some further exceptions: Node j = 3
with αj ' 2.2 is e�ectively a dead-end with one strong link to node
38 and a comparatively much weaker link to node 47. Nodes 1, 2,
11, 12, 21, and 22 with αj & 1 all belong to strongly linked pairs
(1,2), (11,12), and (21, 22) that are only weakly linked to other nodes.
For other bins than the 8–10m/s bin discussed here, the same nodes

j are identi�ed as those with particular large ᾱj values. Large non-
Gaussian parameters thus occur for injection nodes that are weakly
connected to the entire grid structure.

Interestingly, dead-ends were reported as a potentially desta-
bilizing factor of power grids also when analyzing the attraction
basin of �xed points of Eq. (1) under frequency and voltage angle
perturbations.1,7 Moreover, the pattern of ᾱj seen in Fig. 6 for the
heterogeneous case correlates strongly with an estimation of prob-
abilities of wind injection nodes to give rise to transmission line
overloads.6 This a remarkable �nding, as the estimation of these
overload probabilities was based on a quasistationary approach,
i.e., without considering the complex nonlinear dynamics given by
Eq. (1).

The data for the standard deviation σ̄j in Fig. 7(a) show again
that the homogenized variant misses to capture important features
of the dynamics seen in the heterogeneous grid structure. While
σ̄j ' 0.07 for all nodes in the homogenized variant, σ̄j in the het-
erogeneous grid are always larger and vary signi�cantly between
di�erent injection nodes, attaining up to four times larger values.
These variations of σ̄j are not related to peculiar topological fea-
tures but are simply connected to the mean wind power injected
at node j i.e., to the size of the wind farm, see the discussion in
Sec. II B. The relation is demonstrated in Fig. 7(b), where we plot-
ted σ̄j against P

w
j (vc) from Eq. (3), with vc = 9m/s the wind speed

in the center of the considered bin. The linear relation between
σ̄j and Pw

j (vc) is valid also for the other bins of average wind
speed.

IV. SUMMARY, CONCLUSIONS AND OUTLOOK

In summary, we have developed an approach to access the
impact of short-term �uctuations of wind speed and associated wind
power on local frequency �uctuations in power grids. For our analy-
sis, we used the swing equations by applying a synchronous machine
model for all nodes. We accounted for external control measures by
adjusting the grid state to the average power feed-in on a time scale
of 1min. Wind speeds were translated into wind power by resorting

FIG. 7. (a) Mean values σ̄j of the
standard deviation for the different wind
injection nodes j = 1, . . . , 30 in the bin
of mean wind velocities 8–10m/s. Blue
crosses mark the results for the hetero-
geneous grid structure, and red circles for
the homogenized variant. (b) Linear rela-
tion between σ̄j and Pw

j (vc) [cf. Eq. (3)]

with vc = 9m/s being the wind speed in
the bin center.
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to the so-called power curve. We considered single-node injection of
wind power at di�erent locations in the IEEE-RTS-96 by replacing
one of its conventional generator nodes with a wind farm. The wind
farm size was adjusted to the power of the replaced conventional gen-
erator. Modeling of the wind speeds was based on measured data at
a tower in the North Sea with a time resolution of 1 s and a stochas-
tic interpolation to smaller time steps used for integrating the swing
equations. In addition,we studied the consequences of homogenizing
transmission line and node properties.

We found that histograms of local frequency deviations from
the nominal frequency of the synchronous state exhibit a common
type of shape, which we could describe by a Gaussian distribution
for small frequency deviations and an approximately exponentially
decaying tail part. Without attempting to �t the shape of each indi-
vidual of the about 104 histograms investigated, we quanti�ed the
relevant features by introducing just two parameters: (i) the stan-
dard deviation of the local frequency �uctuation, which is largely
determined by the Gaussian core part and (ii) the non-Gaussian
parameter [Eq. (5)], which is sensitive to the tail part. The non-
Gaussian parameter can assume large values in the heterogeneous
grid for injection nodes weakly connected to the entire grid, in par-
ticular, those forming dead-ends. This indicates that these injection
nodes are more likely to cause large local frequency �uctuations.
These large �uctuations should be avoided as they can nucleate severe
grid failures. In a homogenized grid variant, the “dead-end e�ect”
is not signi�cant. The standard deviations showed strong variations
from node to node. They turned out to be essentially proportional
to the magnitude of the average wind power injection. In agree-
ment with this observation, the standard deviations were almost the
same for all wind power injection nodes in the homogenized grid
variant.

We consider our study to be just a �rst step for a better under-
standing of the impact of short-term �uctuations of wind energy
on the stability of power grids. An important task is to investigate
to which extent di�erent possible origins contribute to the non-
Gaussian features and whether one can identify a dominating one.
To this end, it will be useful to separate e�ects associated with (i) the
nonlinearities in the swing equations [Eq. (1)] , (ii) the saturation of
the power curve [Eq. (3)], and (iii) the non-Gaussian wind statistics,
in particular, its intermittent nature implied by atmospheric turbu-
lence, as re�ected in the increment distributions shown in Figs. 4(a)
and 4(b). In this context, improvements in the modeling should be
implemented for a more realistic stochastic translation of wind speed
into power38 and a better modeling of the wind injection, e.g., by
using measured data with �ner resolution (if available), or by apply-
ing reliable models for generating surrogate data, or by improving
the stochastic interpolationmethod betweenmeasured data. Further
developments should also include a more realistic representation of
the load nodes, e.g., by using the e�ective network or structure pre-
serving model,15 as well as an account for the modi�ed dynamics
implied by the ac/dc and dc/ac inverters used for the wind power
feed-in. The swing Eq. (1) can be modi�ed to take into account sec-
ondary control measures also,40which would allow one to extend the
analysis to longer time scales.

Going along with these improvements in the grid modeling,
extended setups of the wind power feed-in need to be studied and
the analysis of stochastic grid dynamics should be widened. As

for the wind power feed-in, higher penetrations of the grid with
wind power must be investigated under consideration of both spa-
tial and temporal correlations of wind velocities. As for the analysis
of stochastic grid dynamics, it is important to quantify correlations
between local frequency �uctuations. Preliminary results for distri-
butions of frequency increments show similar features as reported for
the histograms of the frequencies themselves.
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APPENDIX: STOCHASTIC INTERPOLATION

Let v0 and v1 be two of the measured wind speeds separated by
1 s. De�ning two stochastic processes v+(t) and v−(t), t ∈ [0, 1], with
starting values v+(0) = v0, v−(0) = v1, a stochastic interpolation
between v0 and v1 is given by

v(t) = (1 − t)v+(t)+ tv−(1 − t), t ∈ [0, 1]. (A1)

Hence, the process v+(t) is considered to run forward in time and to
contribute to v(t) with weight (1 − t), while the process v−(t) runs
backward in time and contributes with weight t.

Speci�cally, we use here a simple Ornstein-Uhlenbeck process
for v±(t) , i.e., v±(t) obey the Langevin equations

dv±(t)

dt
= −γ [v±(t)− v̄±(t)] +

√
20 η(t), (A2)

where η(t) is a Gaussian white noise with zero mean and correla-
tor 〈η(t)η(t′)〉 = δ(t − t′). Based on studies of correlation proper-
ties of the measured time series {vn}1≤n≤N ,

41 we set γ to 0.54 and
0 = γ /2. The time-dependent mean values v̄±(t) are v̄+(t) =
v̄−(1 − t) = v̄(t), where

v̄(t) = v0 + (v1 − v0)t, t ∈ [0, 1], (A3)

is the linear interpolation between v0 and v1. Hence, the Ornstein-
Uhlenbeck processes v+(t) and v+(1 − t) in Eq. (A1) are biased
toward the linearly interpolated value at all intermediate times t.

The Langevin equations (A2) are integrated to yield a stochastic
sequence v(n1t), n = 1, . . . , (1/1t − 1), of wind speeds between v0
and v1 with time resolution1t, where in our case1t = 5 × 10−4 s.
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