
Modelling 3D Objects using 2D Sketches through Radial

Renderings of Curvature Maps

Frode Eika Sandnes1,2 and Evelyn Eika1

1Department of Computer Science, Faculty of Technology, Art and Design, OsloMet – Oslo

Metropolitan University, Oslo, Norway
2Westerdals Oslo School of Art, Communication and Technology, Oslo, Norway

frodes@hioa.no, Evelyn.Eika@hioa.no

Abstract. Modelling 3D objects is challenging; often special software skills are

required. This paper explores a new method for experimenting with 3D model-

ling using two-dimensional drawings. These drawings use coloured areas to dic-

tate the rate of curvature. The curvature images are rendered in a radial manner

from the centre to the sides. The method allows complex 3D shapes to be mod-

elled. There is no need to employ any new software program as any arbitrary

2D painting application can be used to sketch objects.

Keywords: sketching, 3D-modelling, 2D hand drawings, design, ideation

1 Introduction

Three-dimensional models are used in areas such as computer graphics, design, and

computer games. Usually 3D models are composed using 3D modelling software.

Such software is often considered hard to use [1]. The input of 3D artefacts is needed

using 2D input devices such as keyboards, mice, and drawing tablets. Time can be an

important factor, especially in design where ideas emerge quickly, and the user wants

to capture the idea as a sketch before it is forgotten [2]. Three-dimensional modelling

is considered much harder than 2D visualizations [3] or other types of modelling in-

cluding graphs used in scheduling [4, 5], configuration management [6], and interac-

tion analysis [7]. Some user interfaces are cognitively demanding [8, 9, 10].

Several approaches have been proposed for specifying shapes in 3D using 2D rep-

resentations [11, 12]. One simple approach is to use silhouettes [13] that are rotated to

get the desired 3D shape. Others have experimented with two-dimensional curves

which subsequently are used to specify shapes in 3D [14]. Researchers have attempt-

ed to automatically interpret and convert flat projective sketches of 3D objects into

3D models [15, 16, 17, 18]. However, this is a challenging problem as it is hard to

interpret the exact location of a line in 3D-space. Another approach is to move the

viewer using a tablet computer where the user draws 3D sketches on the tablet from

various angles; by shifting the viewing angle, the model can be corrected and refined

in real time [19]. Obtaining 3D modelling through several views of a 2D model from

different angles of observation have also been attempted [20].

This is a post-peer-review, pre-copyedit version of an article published in Advances in Intelligent Systems and Computing.
The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-94196-7_19

mailto:Evelyn.Eika@hioa.no

Fig. 1. Colour-to-level coding. Fig. 2. Radial rendering using an expanding

square with a disc test. Grey, white, and black

pixels represent processed, unprocessed, and

currently processed pixels, respectively.

One image can also be used to modulate the surface of a shape. In one approach,

reliefs are added to arbitrary shapes using line drawings of the reliefs [21]. It is not

always necessary to obtain a 3D model of an object, as it is sufficient to give the im-

pression of a 3D object. This is particularly relevant for sketching where panoramic

sketches are used to give 3D dimensional view from a single point [22, 23, 24, 25,

26].

Shading has also been used to define shape [27, 28, 29]. Several shading-based

techniques have been proposed. Direct height maps use the grey-level to denote the

height on a contour map, while illumination-based models interpret the image shape

lit by a light source. Colour has also been used to define height [30, 31] as it is easier

to determine a hue than the absolute level of grey [32, 33, 34, 35].

This study uses colour maps to specify levels of curvature instead of height. This

allows complex shapes to be specified. This is like the classic turtle graphics in the

logo programming language [36], which allows young children to construct mathe-

matically complex shapes. For instance, a circle is drawn by the three instructions 1)

one step forward, 2) turn one degree, 3) repeat. The turtle graphics concept has also

more recently been extended to three dimensions [37]. However, unlike 3D turtle

graphics, which rely on textual instructions, the current method uses visual instruc-

tions.

2 Method

The method proposed herein relies on a visual shaping language where the user pro-

vides a regular 2D image to render the 3D shapes. The visual language uses different

colours to specify shape. The colours are organized according to the colour wheel

where warm colours indicate positive curvatures and cold colours indicate negative

curvatures (see Fig. 1). Yellow-green represents neutral curvature, but this can also be

represented using white. The further a colour is from yellow-green on the colour

wheel, the steeper the curvature is. The shaping starts at the origin of the shaping

image and is processed radially outwards. Black lines are used to deflect the radial

curvature.

Moreover, a second image can be used to specify the texture on the curve, where

each pixel in the shape image is mapped to the corresponding image in the texture

image. White pixels in the texture image are interpreted as transparency and can

therefore be used to make holes in the shape or control the shape of the edges.

2.1 Pre-processing

First, a check is performed to determine if the shape image has the same dimensions

as the texture image. If they are different, the texture image is resized to match the

size of the texture image. Next, the shape image is quantized into Ncolors discrete col-

ours where hue’ is the quantized hue and hue is the original hue using:

ℎ𝑢𝑒′ =
⌊ℎ𝑢𝑒∙𝑁𝑐𝑜𝑙𝑜𝑟𝑠⌋

𝑁𝑐𝑜𝑙𝑜𝑟𝑠
 (1)

2.2 Radial Rendering

The method defines by convention that the rendering starts from the centre of the

curvature map, that is, [Ci, Cj], where

𝐶𝑖 =
𝑊

2
, 𝐶𝑗 =

𝐻

2
 (2)

and W is the width of the image and H is the image height. The image is then trav-

ersed by the area of a disc with increasing radius in steps of 1 from Rmin = 0 to

𝑅𝑚𝑎𝑥 = √𝐶𝑖
2 + 𝐶𝑗

2 (3)

For each radius r, the 8×r pixels i, j lying on the square around the centre point are

added to the list of points to be processed P (see Fig. 2). That is,

[𝐶𝑖 + 𝑡, 𝐶𝑗 + 𝑟], [𝐶𝑖 + 𝑟, 𝐶𝑗 + 𝑡], [𝐶𝑖 − 𝑡, 𝐶𝑗 − 𝑟], [𝐶𝑖 − 𝑟, 𝐶𝑗 − 𝑡], 𝑡 ∈ [−𝑟. . 𝑟] (4)

In other words, these points represent a growing square with side 2r. For all the points

in the list P a disc-test is performed: If the distance between the point and the centre is

not larger than r, the point is removed from P and the point is rendered. That is

𝑟 ≥ √(𝐶𝑖 − 𝑖)2 + (𝐶𝑗 − 𝑗)
2
 (5)

where i, j is a given point. This procedure ensures that points are processed in increas-

ing radius, and that no points are missed. Moreover, no trigonometric functions are

needed.

2.3 Rate-of-Curvature

The hue of each pixel in the shape image is interpreted as follows. First, the use is

converted from radians to the interval -1..1 where the origin is located at yellow-green

or π/2, that is

Fig. 3. Negative curvature (left) and positive curvature (right) defined in terms of circle radius.

𝐻(𝑥) = {

𝜋

2
− 𝑥, 𝑥 <

3𝜋

2
5𝜋

2
− 𝑥, 𝑥 ≥

3𝜋

2

 (6)

where x is the hue and H(x) is the converted scale. The shape value is discretized us-

ing

ℎ(𝑥) = ⌊
𝐻(𝑥)

𝑁𝑐𝑜𝑙𝑜𝑟𝑠
⌋ (7)

The shape value is used to define the rate of curvature. This rate is defined as the

radius of the circle that yields the curvature (see Fig. 3). The radii are related to the

dimension of the image. Therefore, medium curvature is defined as a circumference

equal to the image width, that is, W=D, while steeper curvatures are achieved with

circles with circumferences of half the width, quarter the width, etc., namely, W/2,

W/4, etc. Less steep curvatures are achieved with circumferences twice and quadruple

that of the image width, namely, 2W, 4W, etc. The circumference can thus be defined

as

𝐷 = 𝑊2𝑚, and 𝑚 =
𝑁𝑐𝑜𝑙𝑜𝑟𝑠

4
− |ℎ(𝑥)| (8)

This is based on the assumption that half of the colours denote negative curvatures

and the other half of the colours denote positive curvatures. For each of these halves,

half of the colours denote circles with circumferences smaller than the image width

and the other half larger than the image width. Since the circumference of a circle is

D=2πR, the radius R is thus

𝑅 = 𝑠
𝑊2𝑚

2𝜋
 (9)

where s is the sign of h(x). Note that the curvatures increase exponentially.

π/2
θ

R

D

π/2

θ
R

D

Fig. 4. Position change due to

curvature.

Fig. 5. Transforming a point in the curvature plane to the

modelling space using the angle in the radial plane.

2.4 Curvature Computation

The corresponding point x, y, z in 3D space given a point i. j on the curvature image is

computed as follows. First, the correct anchor point ai, aj is determined. If no other

anchor points are defined, the origin of the radial rendering is the anchor point, name-

ly, Ci, Cj. Then, the curve image is scanned along the line from i, j to the anchor point

ai, aj, and the position of the first transition between two different colours are recorded

and used as a new anchor point ai, aj. Since this point is located closer to the centre, it

will already have been processed with the 3D coordinates xa, ya, za at an angle of θa.

Note that the first processed pixel, which is the centre, is set to x=0, y=0, z=0, θ=π/2.

The length between the current point and the anchor point on the image is named D.

Eq. (9) is used to compute the radius R of the circle, which defines the slope. The

slope at point i. j in radians is therefore

𝜃 = 𝜃𝑎 +
𝐷

𝑅
 (10)

This is because the circumference of the circle is given by 2πR and that 360 degrees

represent 2π radians. The factor 2π thus cancels out in the denominator and nominator

of the fraction. Next, the points on the circle given by the two angles θ and θa are

computed assuming the centre at the origin, namely

𝑝1 = [𝑅 cos 𝜃 , 𝑅 sin 𝜃] (11)

𝑝2 = [𝑅 cos 𝜃𝑎 , 𝑅 sin 𝜃𝑎] (12)

The relative distance δp travelled is thus 𝛿𝑝 = 𝑝2 − 𝑝1 (see Fig. 4). The point δp is

then rotated into the 3D coordinate system using 𝛿𝑥 = 𝛿𝑝𝑥 sin 𝐴, 𝛿𝑦 = 𝛿𝑝𝑥 cos𝐴,

and 𝛿𝑧 = 𝛿𝑝𝑦. The orientation A is given by the angle made up by the vector from the

anchor point to the current point in the curvature image, namely

𝐴 = 𝑎𝑡𝑎𝑛2(𝑗 − 𝑎𝑗 , 𝑖 − 𝑎𝑖) (13)

θ1

R

δp

θ2

p1

p2

A

x

y

z

δp

[δx, δy, δz] A

[ai, aj]

[i, j]

shape image plane3D coordinate system

curvature plane

radial plane

The final 3D point is therefore, 𝑥 = 𝑥𝑎 + 𝛿𝑥, 𝑦 = 𝑦𝑎 + 𝛿𝑦, and 𝑧 = 𝑧𝑎 + 𝛿𝑧. If the

angle for a given length D is 0, the new point is simply computed instead using

𝛿𝑝 = [𝐷 cos 𝐿 , 𝐷 sin 𝐿], where 𝐿 =
𝜃𝑎

|𝜃𝑎|
(|𝜃𝑎| +

𝜋

2
) (14)

since zero curvature change is a straight line (see Fig. 5). Note that the angle of the

line is perpendicular to the corresponding angle on the circle.

2.5 Complex Anchor Points

Black is used to indicate anchor points, which are processed radially, meaning that

they have only effect on pixels shadowed by the anchor point relative to the previous

anchor point. First, a list of all black points is complied. Next, to find the anchor point

of a given point i, j, it is first determined if there is clear sight to the center. If there is

clear sight to the center, that is, the line from the current point to the center does not

intersect any black pixel, the center point is used as the anchor. Otherwise, the nearest

black pixel on the processed disk is found. If there is an even closer pixel in the list of

all pixels, the center point is used as the anchor. However, if the closest point on the

disk of processed points is the nearest, it is used as the anchor.

3 Modelling case studies

The models demonstrated herein were visualized using CloudCompare [38]—a tool

for visualizing point clouds [39]. Fig. 6 shows basic features of the modelling ap-

proach based on a uniform curvature map. The top illustration shows part of a spheri-

cal surface modelled using yellow representing a small positive curvature and hence a

large radius. The second shape is a full sphere with negative curvature modelled using

a uniform cyan image. Clearly, it is easy to model spheres with the approach. The

bottom shape shows both the full sphere from the previous example and a smaller

sphere modelled using a steep positive curvature (magenta). The sphere makes several

revolutions (or shells) although these are not visible. The two spheres are side by side

since one is curving negatively and the other positively from the same origin.

Fig. 7 shows a ring. A simple uniform orange shape map is used to achieve a

sphere with one revolution. Next, the ring is cut out from the sphere using the yellow

texture map. Next, a variation on the same theme is provided below where the ring is

punched with holes and red and orange speckles are added.

Fig. 8 shows enhancement using a texture map. The top image shows the resulting

curved grid, where the grid is drawn directly on the texture map and the holes are

made using white. Note that the relationship between coordinates in the image plane

and the sphere surface is not as simple as with geographical coordinates of latitude

and longitude [40, 41]. Some experimentation is needed to map textures to shapes.

The second example does not have holes but illustrates how the striped image is

mapped. It is also possible to block the 2D-curving by adding a black line as illustrat-

ed in Fig. 8 right.

Fig. 6. Simple curvature, low curvature,

medium curvature (full sphere), high

negative curvature (small sphere).

Fig. 7. Ring.

Fig. 8. Adding texture to basic shapes, including transparency (left) and cylinders (right).

Fig. 9. Chess piece.

Fig. 10. Arbitrary shape contour, quantized shape contour and resulting shape.

This line signals that the radial rendering from the single centre point is replaced by a

set of anchor points resulting in a horizontal rendering, that is, middle-left, middle-

right. The top illustration shows the result yielding part of a tube, and the bottom a

tube.

Fig. 9 shows a simple chess piece. It is constructed using consecutive coloured

rings. First, yellow is used to achieve a flat top, and red is used to make a round shap-

ing downwards. Next, a cyan ring bends the shape outwards, and finally yellow is

used to make the piece point slightly inwards. A circular texture map is used to cut off

the corners. The example reveals some computational inaccuracy in the proof-of-

concept implementation as the surface jaggedness increased with the number of col-

our transitions. The last example shows the result of using an arbitrary shape map in

Fig. 10 (left). This shape map is drawn in Microsoft Paint. The middle and right im-

ages show the colour quantization and the resulting blob.

4 Conclusions

The modelling method explored herein allows the modelling of certain classes of

curved shapes and does not have the same limitations as height-based modelling. The

method facilitates easy experimentation of complex 3D modelling using ordinary 2D

drawing programs as there is no need to learn new software tool. However, it is not

intuitive or easy to control the resulting shapes based on curvature maps; therefore, it

is not as suitable as height-based modelling for controlling the resulting shape. It may

thus be more suitable as an experimental, exhibition [42, 43], and educational tool.

The prototype yields undesirable aliasing effects due to the curvature maps. Future

work may include applying various image- [44] and video processing [45, 45] to the

input images.

References

1. Black, A.: Visible planning on paper and on screen: The impact of working medium on

decision-making by novice graphic designers. Behaviour & Information Technology 9, 283-

296 (1990)

2. Sandnes, F.E., Jian, H.L.: Sketching with Chinese calligraphy. Interactions 19, 62-66 (2012)

3. Eika, E., Sandnes, F.E.: Authoring WCAG2.0-compliant texts for the web through text

readability visualization. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016. LNCS, vol.

9737, pp. 49–58. Springer, Cham (2016)

4. Sandnes, F. E., Sinnen, O.: A new strategy for multiprocessor scheduling of cyclic task

graphs. International Journal of High Performance Computing and Networking 3, 62-71

(2005)

5. Rebreyend, P., Sandnes, F. E., Megson, G. M.: Static multiprocessor task graph scheduling

in the genetic paradigm: A comparison of genotype representations. Research re-port no. 98-

25. Ecole Normale Superieure de Lyon, Laboratoire de Informatique du Par-allelisme, Lyon,

France (1998)

6. Sandnes, F. E.: Scheduling Partially Ordered Events in a Randomised Framework: Empiri-

cal Results and Implications for Automatic Configuration Management. In: Proceedings of

LISA, pp. 47-62. USENIX (2001)

7. Sandnes, F. E.: Evaluating mobile text entry strategies with finite state automata. In: Pro-

ceedings of the 7th international conference on MobileHCI 2005, pp. 115-121. ACM (2005)

8. Sandnes, F.E., Jian, H.L.: Pair-wise variability index: Evaluating the cognitive difficulty of

using mobile text entry systems. In: International Conference on MobileHCI 2004. LNCS,

vol. 3160, pp. 347-350. Springer Berlin Heidelberg (2004)

9. Berget, G., Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on

information searching behaviour? A case of Google. J. Am. Soc. Inf. Sci. Technol. 67,

2320–2328 (2016)

10. Sandnes, F.E., Lundh, M.V.: Calendars for Individuals with Cognitive Disabilities: A Com-

parison of Table View and List View. In: Proceedings of the 17th International ACM

SIGACCESS Conference on Computers & Accessibility, ACM, pp. 329-330 (2015)

11. Olsen, L., Samavati, F.F, Sousa, M.C., Jorge, J.A.: Sketch-based modeling: A survey. Com-

puters & Graphics 33, 85-103 (2009)

12. Kondo, K.: Interactive geometric modeling using freehand sketches. J. Geom. Graphics 13,

195-207 (2009)

13. Tai, C.L., Zhang, H., Fong. J.C.K.: Prototype modeling from sketched silhouettes based on

convolution surfaces. Computer Graphics Forum 23, 71-83 (2004)

14. Das, K., Diaz-Gutierrez, P., Gopi, M.: Sketching free-form surfaces using network of

curves. In: Proceedings of Eurgraphics Workshop on Sketch-Based Interfaces and Model-

ing, pp. 127-134, The Eurographics Association (2005)

15. Varley, P.A.C., Martin, R.R, Suzuki, H.: Can machines interpret line drawings. In: Proceed-

ings of Eurgraphics workshop on sketch-based interfaces and modelling, pp. 107-116, The

Eurographics Association (2004)

16. Naya, F., Jorge, J., Conesa, J., Contero, M., Gomis, J. M.: Direct modeling: from sketches to

3D models. In: Proceedings of the 1st Ibero-American Symposium in Computer Graphics

SIACG, pp. 109-117, (2002)

17. Matondang, M.Z., Mardzuki, S., Haron. H.: Transformation of engineering sketch to valid

solid object. In Proceedings of Intl. Conf. of The 9th Asia Pacific Industrial Engineering &

Management Systems Conference and The 11th Asia Pacific Regional Meeting of Interna-

tional Foundation for Production Research, pp. 2707-2715, (2008)

18. Tolba, O., Dorsey, J., McMillan, L.: Sketching with projective 2d strokes. In: Proceedings of

the 12th annual ACM symposium on User interface software and technology, pp. 149-157,

ACM (1999)

19. Xin, M., Sharlin, E., Sousa, M.C.: Napkin sketch: handheld mixed reality 3D sketching. In:

Proceedings of the 2008 ACM symposium on Virtual reality software and technology, ACM

(2008)

20. Triki, O., Zaharia, T.B., Preteux, F.J.: 3D virtual character reconstruction from projections:

A NURBS-based approach. In: Electronic Imaging 2004, International Society for Optics

and Photonics (2004)

21. Kolomenkin, M., Leifman, G., Shimshoni, I., Tal, A.: Reconstruction of relief objects from

line drawings. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on. IEEE, 2011.

22. Sandnes, F.E.: Communicating Panoramic 360 Degree Immersed Experiences: A Simple

Technique for Sketching in 3D. In: UAHCI, LNCS, vol. 9738, pp. 338-346, Springer (2016)

23. Sandnes, F.E.: PanoramaGrid – A Graph Paper Tracing Framework for Sketching 360-

degree Immersed Experiences. In Proceedings of the International Working Conference on

Advanced Visual Interfaces AVI 2016, pp. 342-343, ACM (2016)

24. Sandnes, F.E., Huang, Y.P.: Translating the viewing position in single equirectangular pano-

ramic images. In: Proceedings of the 2016 IEEE International Conference on Systems, Man,

and Cybernetics (SMC 2016), pp. 389–394. IEEE (2016)

25. Sandnes F.E., Eika, E.: Head-Mounted Augmented Reality Displays on the Cheap: A DIY

Approach to Sketching and Prototyping Low-Vision Assistive Technologies, In: Antona,

M., Stephanidis, C. (eds.) UAHCI 2017, LNCS, vol. 10278, pp. 168-186, Springer, (2017)

26. Sandnes, F.E.: Sketching 3D Immersed Experiences Rapidly by Hand through 2D Cross

Sections. In: Auer, M.E. (eds.) REV2017, LNNS, vol 22, pp. 1001-1013, Springer (2017)

27. Gingold, Y., Zorin, D.: Shading-based surface editing. ACM Transactions on Graphics 27

(2008)

28. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 21, 690-706 (1999)

29. Gouraud, H.: Continuous shading of curved surfaces. IEEE Transactions on Computers C–

20, 623–629 (1971)

30. Sandnes, F.E., Lianguzov, Y., Rodrigues, O.V., Lieng, H., Medola, F.O., Pavel, N.: Support-

ing Collaborative Ideation Through Freehand Sketching of 3D-Shapes in 2D Using Colour.

In: Luo Y. (eds.) CDVE 2017, LNCS, vol. 10451, pp. 123-134, Springer (2017)

31. Sandnes, F.E., Lianguzov, Y.: Quick and Easy 3D Modelling for All: A Browser-based 3D-

Sketching Framework, iJOE 13, 120-127 (2017)

32. Sandnes, F.E.: Understanding WCAG2.0 color contrast requirements through 3D color

space visualization. Stud. Health Technol. Inform. 229, 366–375 (2016)

33. Sandnes, F.E.: On-screen colour contrast for visually impaired readers: Selecting and ex-

ploring the limits of WCAG2.0 colours. In: Black, A., Lund, O., Walker, S. (eds.) Infor-

mation design: research and practice, pp. 405–416, Routledge (2016)

34. Sandnes, F.E., Zhao, A.: A contrast colour selection scheme for WCAG2.0-compliant web

designs based on HSV-half-planes. In: Proceedings of SMC2015, pp. 1233–1237. IEEE

(2015)

35. Sandnes, F.E., Zhao, A.: An interactive color picker that ensures WCAG2.0 compliant color

contrast levels. Procedia Comput. Sci. 67, 87–94 (2015)

36. Solomon, C.J., Papert, S.: A case study of a young child doing Turtle Graphics in LOGO.

In: Proceedings of the national computer conference and exposition, pp. 1049-1056, ACM

(1976)

37. Verhoeff, T.: 3D turtle geometry: artwork, theory, program equivalence and symmetry.

International Journal of Arts and Technology 3, 288-319 (2010)

38. Girardeau-Montaut, D.: CloudCompare-Open Source project. OpenSource Project (2011).

39. Gomez, J.V., Sandnes, F.E.: RoboGuideDog: guiding blind users through physical environ-

ments with laser range scanners. Procedia Comput. Sci. 14, 218–225 (2012)

40. Sandnes, F.E.: Where was that photo taken? Deriving geographical information from image

collections based on temporal exposure attributes. Multimedia Systems 16, 309-318 (2010)

41. Sandnes, F.E.: Determining the geographical location of image scenes based on object shad-

ow lengths. Journal of Signal Processing Systems 65, 35-47 (2011)

42. Huang, Y.P., Wang, S.S., Sandnes, F.E.: RFID-based guide gives museum visitors more

freedom. IT Professional Magazine 13, 25 (2011)

43. Huang, Y. P., Chang, Y. T., Sandnes, F. E.: Ubiquitous information transfer across different

platforms by QR codes. Journal of Mobile Multimedia 6, 3-13 (2010)

44. Huang, Y.P., Chang, T.W., Chen, Y.R., Sandnes, F.E.: A back propagation based real-time

license plate recognition system. International Journal of Pattern Recognition and Artificial

Intelligence 22, 233-251 (2008)

45.Huang, Y.P., Chiou, C.L., Sandnes, F.E.: An intelligent strategy for the automatic detection

of highlights in tennis video recordings. Expert Systems with Applications 36, 9907-9918

(2009)

46. Huang, Y.P., Hsu, L.W., Sandnes, F.E.: An intelligent subtitle detection model for locating

television commercials. IEEE Trans. Man Cybern. B 37, 485–492 (2007)

