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Abstract 
 
 

Background: Mental disorders and individual characteristics such as intelligence and 

personality are complex traits sharing a largely unknown neuronal basis. Their genetic 

architectures are highly polygenic and overlapping, which is supported by heterogeneous 

phenotypic expression and substantial clinical overlap. Brain network analysis provides a 

non-invasive means of dissecting biological heterogeneity yet its sensitivity, specificity and 

validity in assessing individual characteristics relevant for brain function and mental health 

and their genetic underpinnings in clinical applications remains a challenge. 

Methods: In a machine learning approach, we predicted individual scores for educational 

attainment, fluid intelligence and dimensional measures of depression, anxiety and 

neuroticism using fMRI-based static and dynamic temporal synchronization between large- 

scale brain network nodes in 10,343 healthy individuals from the UK Biobank. In addition to 

age and sex to serve as our reference point, we also predicted individual polygenic scores for 

related phenotypes, and 13 different neuroticism traits and schizophrenia. 

Results: Beyond high accuracy for age and sex, supporting the biological sensitivity of the 

connectome-based features, permutation tests revealed above chance-level prediction 

accuracy for trait-level educational attainment and fluid intelligence. Educational attainment 

and fluid intelligence were mainly negatively associated with static brain connectivity in 

frontal and default mode networks, whereas age showed positive correlations with a more 

widespread pattern. In contrast, prediction accuracy was at chance level for depression, 

anxiety, neuroticism and polygenic scores across traits. 

Conclusion: These novel findings provide a benchmark for future studies linking the genetic 

architecture of individual and mental health traits with fMRI-based brain connectomics. 
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Introduction 
 
Mental disorders such as depression, anxiety and schizophrenia have joint high prevalence, 

early onset, and often a persistent nature (1). Therefore, identifying neuroimaging-based 

biomarkers which may facilitate early risk detection and stratification and monitoring of 

interventions of mental disorders is a global aim for the clinical neurosciences potentially 

implicating millions worldwide (2–4). Twin and family studies have documented a strong 

genetic contribution across a range of human traits including mental disorders (5), and high 

polygenicity based on genome-wide associations studies (GWAS)(6–10). Neuroticism is a 

personality trait which exacerbates vulnerability towards mental disorders (11), supported by 

both genetic correlations (12–14) and pleiotropy (15) with mental health traits. Educational 

attainment and fluid intelligence are two related and heritable phenotypes associated with a 

range of behaviors and outcomes (16) such as occupational attainment and social mobility 

(17), brain measures (18–20), mental health (21, 22) and more general aspects of health (23, 

24). Further, they show strong genetic correlations across cognitive domains and levels of 

ability (25). 

Both the structural and functional architecture of the brain are heritable traits (26), and 

studies reporting aberrations in fMRI measures of brain connectivity in mental disorders are 

abundant (27–29). However, the generalizability, robustness and clinical value of the findings 

have been questioned (30–32). This lack of consistency and generalizability is likely partly 

due to differences in power (33, 34), sample characteristics and analytical methods (35), but 

also the vast clinical heterogeneity of mental disorders (36–38). Further, although a 

substantial heritability of brain measures has been demonstrated (26, 39, 40), the sensitivity 

of fMRI features to the cumulative genetic risk, e.g. as reflected in polygenic risk scores (the 

sum of risk variants weighted by their effect size in a GWAS), for brain and mental health 

related traits is debated. 
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Studies assessing the heritability and clinical associations with fMRI resting-state 

brain functional connectivity (FC) have typically targeted estimates of static FC (sFC), 

defined as the average temporal correlation between two brain regions. Less is known about 

the associations with dynamic properties of FC (dFC), conceptualized as the fluctuation in 

temporal correlations between two brain regions. Further, fMRI-based FC reflects the joint 

contribution of partly independent sources oscillating at specific frequency bands (41), which 

are tied to a range of neural processes (42) and cognitive functions (43). Mapping the brain 

functional connectome to the genetic architecture of mental health traits may inform 

nosological and mechanistic studies and, in the long run, improve diagnostics, prevention and 

treatment of mental disorders. 

Here, we tested the predictive value of static and dynamic measures of brain 

connectivity for (i) traits relevant for individual adaptation (e.g. educational attainment) and 

brain and mental health, and age and sex, and (ii) polygenic scores of related traits. We used 

resting-state fMRI data from 10,343 healthy individuals from the UK Biobank (UKB) in a 

machine learning approach. Individual traits included years of educational attainment, fluid 

intelligence, and dimensional measures of depression, anxiety and neuroticism. We also 

calculated and predicted the individual polygenic scores for educational attainment, fluid 

intelligence, depression, schizophrenia, anxiety, and 13 neuroticism traits, based on previous 

genome-wise association studies (GWAS). We employed cross-validation and evaluation of 

model performance to reduce bias and overfitting, in addition to permutation testing for 

statistical inference. We expected moderate and relatively low yet above chance-level 

predictive value for the phenotypes and the polygenic scores respectively. Further, we 

anticipated overall similar rankings of the brain connectivity features for the traits and their 

respective polygenic scores. Lastly, based on a general positive-negative mode of covariation 
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between fMRI-based connectivity and complex human traits (44), we anticipated that similar 

brain networks would be relevant for predicting the various traits. 

 
 
Materials and Methods 

 
Sample 

 
We used the October 2018 release of UKB imaging data (45), comprising 12,213 individuals 

with resting-state fMRI scans that passed the quality control performed by the UKB (46, 47), 

including assessment of head motion (47). The exclusion criteria across all were individuals 

with an ICD-10 based mental or a neurological disorder (N = 210) to represent the general 

population, and non-white Europeans (N = 1659) yielding a total of 10,343 individuals. All 

participants provided informed consent prior to enrolment, and the study has been approved 

by the South-Eastern Norway Regional Committees for Medical and Health Research Ethics 

(REC). 

 
 
Phenotype data 

 
Neuroticism was calculated based on a previous implementation (13), while years of 

educational attainment was based on the “qualifications” variable (UKB field: 6138) 

following a recent imputation procedure (48). Fluid intelligence (UKB field: 20016) was 

defined as the sum of the number of correct answers on the verbal-numerical reasoning test 

(13 items). Data for all the aforementioned phenotypes were taken from instance 2 (imaging 

visit). Symptom load for depression and anxiety were based on the sum score from the 9-item 

Patient Health Questionnaire (PHQ-9) and the 7-item Generalized Anxiety Disorder (GAD-7) 

questionnaire, respectively, were taken from the online follow-up. Table S1 shows the 

number of individuals included for each phenotype and all polygenic scores. Figure 1 shows 

a correlation plot of all the phenotypes. 
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Figure 1. Heatmap of the correlation (Spearman’s rho) between the phenotypes. Sex is not shown because it is a 
categorical variable. 

 
 
 
Polygenic scores 

 
Procedures for DNA collection and genotyping in UKB have been described previously (49). 

Polygenic scores were calculated using PRSice v.1.25 (50) based on GWAS results for broad 

depression, probable major depressive disorder (MDD; 49), diagnostic MDD (9), item-level 

and sum neuroticism (13), anxiety (52), and schizophrenia (8). For polygenic scores based on 

item-level and sum neuroticism, educational attainment and fluid intelligence (6, 7) we 

performed our own GWAS (see Supplemental Methods and Materials) to avoid overlap in 

participants in the discovery and target dataset (i.e. fMRI sample). For the main polygenic 
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score analyses, the single nucleotide polymorphism (SNP) inclusion threshold was set at p ≤ 
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0.5, as this typically explains more variance in the clinical phenotype (53). Supplemental 

Figure S1 shows the distribution of each polygenic score, and Supplemental Figure S2 shows 

a correlation plot with a dendrogram based on hierarchical clustering across all polygenic 

scores. For sensitivity analyses, we repeated the analyses using a threshold of p ≤ 0.05, and 

also derived a polygenic score based on the first component from a principal component 

analysis (PCA) performed on the polygenic scores from thresholds p ≤ 0.001 to p ≤ 0.5 (at 

0.001 intervals), as in a recent implementation (54) (see Supplemental Figures 12 to 31). 
 
 

Image Acquisition and pre-processing 
 
Detailed description of the image acquisition, pre-processing, group-level ICA and dual 

regression can be found elsewhere (46) and was carried out by the UK Biobank (47). The 

majority of the MRI data used were obtained in Cheadle Manchester on a Siemens Skyra 3T 

scanner (Siemens Medical Solutions, Germany) with a 32-channel head coil. A small number 

of scans (N = 354) were obtained at an identical scanner in Newcastle. FSL 

(http://fsl.fmrib.ox.ac.uk/fsl) was used for fMRI data preprocessing. Briefly this involved 

motion correction, high-pass temporal filtering, echo-planar image unwarping, gradient 

distortion correction unwarping, and removal of structured artifacts. Estimated mean relative 

in-scanner head motion (volume-to-volume displacement) was computed with MCFLIRT. 

Group-level ICA was carried using MELODIC based on 4,162 datasets. The model order of 

25 was chosen to yield common large-scale functional networks such as the default mode 

network (DMN), and because estimation of nodes and corresponding edges tend to be more 

robust at lower than higher model orders. Four of these ICs were identified as noise and 

discarded, leaving a total of 21 ICs for analyses. Dual regression was performed to generate 

subject specific spatial maps and corresponding time-series. 

http://fsl.fmrib.ox.ac.uk/fsl)
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Functional connectivity measures 
 
All FC measures were computed in MATLAB. SFC was computed both with the unfiltered 

and bandpass filtered time-series within 0.04-0.07 Hz. For both, a node-by-node connectivity 

matrix was created using partial correlations between the subsequent time-series (55), 

resulting in 210 unique edges. These partial correlations were L1-regularized, with estimated 

regularization strength (lambda) at the subject level (56–58). 

For dFC we used a phase-based method (59) within the 0.04-0.07 Hz frequency band 

(60). Briefly, this method is sensitive to the degree of coupling and de-coupling between pairs 

of brain networks across the scanning session, based on applying the Hilbert transform and 

subsequently the Kuramoto order on the node time-series. This resulted in 210 unique edges, 

representing the oscillation between each of the 21 ICs at every instant (61). 

 
 
Statistical analysis 

 
All statistical analyses were performed in R version 3.4.2 (62). We z-normalized all 

polygenic scores prior to the machine learning analyses. 

 
 
Machine learning analyses 

 

In our primary analyses, we tested to what extent various combinations of static and dynamic 

FC (“feature sets”)between all nodes in an extended brain network could predict the 

phenotypes, by using shrinkage linear regression (63) implemented in the R-package ‘care’ 

(http://strimmerlab.org/software/care). Briefly, a linear model is fit which calculates 

regression coefficients based on shrinkage estimates of correlations and variances. Firstly, 

80% of the data was used as the training set while the remaining 20% of the data was used as 

the left-out test set. We ran 10-fold internal cross-validation on the training set (i.e. based on 

iteratively using 90% of the sample to predict the remaining 10%), repeated 100 times on 

http://strimmerlab.org/software/care)
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randomly partitioned data. We computed root mean square error (RMSE) as our main 

measure of model performance for all phenotypes, but also mean absolute error (MAE) and 

R2 (explained variance or model fit). R2 was mainly used to visualize and compare model 

performance across models. We also used Spearman’s rho (or Pearsons’s r for age) as a 

measure for model performance for predicting these phenotypes. For sex, we used logistic 

regression for classification and report accuracy, sensitivity, specificity and cohen’s kappa as 

measures of model performance. The same model parameters were used in the model 

validation, by using the whole training set to predict the phenotypes in the left-out test set. 

Statistical significance for phenotypes were assessed for the best feature set with a positive R2 

by generating null-distributions using permutation-based testing. The mean model 

performance from cross-validation of the empirical data was used as our point estimate. The 

null distributions were generated by running identical cross-validated prediction models on 

randomly shuffled target variables (i.e. phenotype scores) across 10,000 iterations. Then, the 

corrected p-value was computed by comparing the RMSE from cross-validation of the true 

data to the 10,000 RMSE estimates from cross-validation of the permuted datasets. We ran 

unpaired t-tests to statistically compare the prediction accuracy of certain feature sets for 

specific phenotypes based on each of the 100 estimates from cross-validation. For the 

phenotype models that were statistically significant, we determined the relative importance of 

each edge by computing the mean correlation-adjusted marginal correlation (CAR) scores 

(64) in cross-validation. Briefly, CAR-scores are the correlation between the phenotypes (or 

polygenic scores) and the Mahalanobis-decorrelated edges (i.e. after reducing autocorrelation 

amongst the edges by a linear transform) (65). We also assessed the correlation amongst 

these models based on the CAR-scores. To assess the confounding effects of age, sex and 

head motion, we repeated the analyses for fluid intelligence by regressing these confounders 

from the edges in the sFC feature set. We used the same framework to predict polygenic 
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scores, computing Pearson’s r instead of Spearman’s rho, and model validation for the main 

PGRS analyses (p ≤ 0.5). To assess the effect of population stratification (i.e. systematic 

genetic differences due to ancestry), we regressed out the first 10 genetic principal 

components (UKB field: 22009) from the edges of the best feature set for one of the 

polygenic score models. We also assessed the correlation amongst phenotypes and 

corresponding polygenic scores based on the CAR-scores in the cases where the phenotype 

model was statistically significant. 

 
 
Results 

 
Machine learning prediction of phenotypes 

 
Figure 2 shows the distribution of the phenotypes and cross-validated results of the overall 

best feature set (sFC). Permutation testing revealed moderate yet above chance-level 

prediction accuracy for phenotypic level educational attainment, fluid intelligence, and high 

prediction accuracy for age (Table 1), and sex (mean accuracy = 0.781, accuracy SD = 

0.0139, corrected p < 0.0027, sensitivity = 0.754, specificity = 0.806, cohen’s kappa = 0.560). 

In comparison, predictions of dimensional measures of depression, anxiety and neuroticism 

anxiety performed at chance level (Table 1). Supplemental Figures S3 provides the cross- 

validated results of the other FC feature sets (see Supplemental Figure S4 for the sex results). 

The feature set with all three FC-types (sFC, bandpass filtered sFC, and dFC) resulted in 

marginally higher prediction accuracy than the sFC feature set only for age (t = 85.613, df = 

170.83, p < 0.001) and sex (t = 64.961, df = 171.67, p < 0.001). The model validation results 

were very similar to the cross-validated results (Supplemental Figure S5). Sensitivity 

analyses predicting age using the sFC feature set showed that there was very little difference 

when regressing scanner site out of the edges or excluding participants scanned in Newcastle 

(n=354, Supplemental Figure S6A). Further sensitivity analyses predicting fluid intelligence 
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using the sFC feature set showed similar results when regressing out age (linear and 

quadratic), sex and head motion from the edges (see Supplemental Figure S6B). 

Supplemental Figure S7 shows the grouping of brain networks based on hierarchical 

clustering (Supplemental Methods and Materials) and Figure 3 shows the top 20 edges in the 

sFC feature set for trait-level educational attainment and fluid intelligence based on feature 

importance (CAR scores). Briefly, we observed mainly negative associations with sFC for 

educational attainment, particularly within DMN and frontal network nodes, and a similar 

pattern for fluid intelligence. In contrast, the CAR scores revealed largely positive 

associations between sFC and age, mainly within the cluster of motor/somatosensory and 

attentional networks, and within the cluster of default mode and frontal networks. Figure 4 

shows the top 40 edges that were positively associated with each phenotype, based on the 

feature set using all three FC-types, suggesting that these are largely non-overlapping. In 

short, based on feature importance, we observed roughly equal amounts of edges across all 

three FC-types for educational attainment (sFC = 16 edges, bandpass filtered sFC = 12 edges, 

dFC = 12 edges). We observed only two edges based on bandpass filtered sFC between 

visual networks and the cluster of default mode and frontal networks for fluid intelligence 

and only three edges based on dFC for age. Table S2 shows the correlation between the FC- 

types for age, fluid intelligence and educational attainment. See Supplemental Results for the 

correlations between phenotypes based on specific specific feature sets. 
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Figure 2. (A) The distribution of all the phenotypes we used in the machine learning analyses (see 
Supplemental Figure S4 for sex results). (B) The coloured density distributions represent the cross-validated 
results (across 100 repetitions) of the best FC feature set (sFC: the mean is denoted by the white circles) for a 
given phenotype, using R2 as our metric of model performance. The grey distributions represent the mean model 
performance for each of the 10,000 permuted datasets. Although RMSE is our main metric of model 
performance, R2 allows for comparison across phenotypes and polygenic risk scores. R2 is negative for some of 
the models because we are testing it out-of-sample, meaning that the model can be arbitrarily bad. (C) 
Associations between raw and predicted scores for phenotypic level intelligence (left) and polygenic score 
(right). Education pertains to the years of educational attainment 

 
 

 RMSE (mean, 
SD) 

p-value Correlation MAE R2 

Phenotypes      
Educational attainment 4.739 (0.0643) < 0.0027 0.1634 4.348 0.0164 
Fluid intelligence 2.043 (0.0505) < 0.0027 0.2014 1.638 0.0317 
Age 6.482 (0.1296) < 0.0027 0.4947 5.317 0.2428 
Neuroticism 0.984 (0.0206) 1 0.0924 0.8201 -0.0078 
Depression 3.383 (0.2126) 1 0.0947 2.353 -0.0126 
Anxiety 3.222 (0.1978) 1 0.0616 2.270 -0.0220 
Polygenic scores      
Educational attainment 0.997 (0.0249) 1 0.0941 0.7926 -0.0061 
Fluid intelligence 1.002 (0.0240) 1 0.0553 0.8009 -0.0163 
Worry 1.007 (0.0226) 1 0.0670 0.8170 -0.0138 

Table 1: Mean model performance measures from cross-validation for all the phenotypes and polygenic scores 
with high correlation-based model performance using the sFC feature set. Worry is one of the 13 neuroticism 
traits. Correlation was based on Spearman’s rho for the phenotypes and Pearson’s r for the polygenic scores. 
The p-value is calculated using permutation testing (based on RMSE), with an additional Bonferroni correction. 
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Figure 3. The top 20 edges based on CAR-scores for the best FC feature set (sFC) for age, years of education 
and fluid intelligence. The thickness of the lines represents the relative importance of each edge for that specific 
feature set. Red and blue lines indicate that the feature is positively and negatively associated with the 
phenotype respectively, when considering all the features. The brain networks are grouped into 3 clusters based 
on hierarchical clustering (see the Supplemental Methods and Supplemental Figure S8) which roughly represent 
the motor/somatosensory and attentional networks (red), default mode and frontal networks (green), visual 
components (blue). 

 
 

Figure 4. The top 40 edges based on CAR-scores from cross-validation for the feature set that includes sFC 
(red), bandpass filtered sFC (orange) and dFC (blue). These represent the relative importance of each edge 
associated with the specific trait, with the thickness of the line signifying the relative order. 

 
 
 
 
Machine learning prediction of polygenic scores 

 
Model performance for all polygenic scores (depression, anxiety, schizophrenia, neuroticism 

traits, educational attainment and intelligence) were low and had negative explained variance 

(based on R2) across feature sets (Supplemental Figure S8). We only performed permutation 

testing for the polygenic scores that showed higher correlation-based model performance, 

including educational attainment, fluid intelligence and worry (Table 1). Figure 5 provides an 
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illustrative example of moderate model performance (phenotypic level educational 

attainment) and low model performance (educational attainment polygenic scores) showing 

cross-validated results on empirical and permuted data. The model validation results are very 

similar to the cross-validated results (Supplemental Figure S9). There was little difference 

when controlling for population stratification in the sFC feature set predicting educational 

attainment polygenic risk scores (Supplemental Figure S6C). Cross-validated results were 

similar using a lower polygenic score threshold (p ≤ 0.05: Supplemental Figure S10), and the 

first component from PCA across thresholds (Supplemental Figure S11). See Supplemental 

Results for the correlations between phenotypes and their corresponding polygenic scores 

based on specific specific feature sets. 

 
 

 
Figure 5. Cross-validated results comparing phenotypic level years of educational attainment and polygenic 
scores. For each plot, the blue represents model performance for each repetition (100) of the empirical data, and 
orange represents the mean model performance for each of the 10,000 permuted datasets (orange) based on (A) 
RMSE, (B) Correlation, (C) mean absolute error (MAE), and (D) R2. The lines denote the mean of the 
respective distributions. 
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Discussion 
 
Recent advances have led to an increasing interest in mapping the brain connectomic 

landscape underlying (i) traits relevant for brain and mental health and (ii) their genetic 

underpinnings. To this end, we conducted a large-scale integration of advanced measures of 

fMRI-based brain functional connectivity in a population cohort of 10,343 healthy 

individuals. First, we show that individual differences in educational attainment and fluid 

intelligence, which have high relevance for life satisfaction and real-world outcomes, are 

partly reflected in the temporal organization of the brain. Furthermore, we demonstrate high 

prediction accuracy for age and sex, which supports the sensitivity of the approach. In 

contrast to our expectations, we found chance-level performance for individual level 

prediction of dimensional measures of depression, anxiety and neuroticism, and also for 

polygenic scores for depression, anxiety, schizophrenia, neuroticism traits, educational 

attainment and intelligence. 

We obtained moderate yet above chance-level prediction accuracy for educational 

attainment and corresponding high feature importance for the DMN and frontal networks. We 

also obtained moderate yet significant prediction accuracy for fluid intelligence, in line with 

the literature (66–69). This was largely driven by negative correlations between intelligence 

and sFC amongst frontal and DMN networks, suggesting relative dedifferentiation (i.e. 

increased negative FC) between the DMN and frontal regions in individuals with higher 

intelligence. This pattern was largely overlapping with the results for educational attainment, 

consistent with a study using a subset of the current sample (19), and also reflected in a 

strong positive correlations between the feature importance from the two prediction tasks. 

Highest model performance across all traits was observed for age, in line with several 

studies showing high age-sensitivity of functional imaging features (70–73). In general, 

compared to educational attainment and intelligence, we observed a more distributed pattern 
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of the edge-wise feature importance for the age prediction. This suggests that individual 

differences in educational attainment and intelligence may be more confined to specific parts 

of the brain connectome than the effects of aging, which are more pervasive. 

To date, there is a lack of functional imaging studies comparing the sensitivity and 

predictive accuracy of dynamic and static measures of brain connectivity. Our comparisons 

revealed similar relative trait ranking in prediction accuracies for the different edge 

conceptualizations. However, corresponding CAR scores revealed differential feature 

rankings, suggesting that the different edge definitions provide complementary information. 

For age, whereas previous studies have shown that dFC decreases with increased age (74, 

75), we obtained noticeably poorer prediction accuracy for dFC than the other feature sets, 

implying that age is better characterized by static than dynamic FC. 

Overall, our results suggest higher dFC within a frontal-DMN cluster in individuals 

with higher intelligence and educational attainment. However, interpretations of the dFC and 

bandpass filtered sFC results should be done with care, as they performed worse than the 

feature set with only sFC edges. One exception was that the feature set with all FC-types 

performed marginally better when predicting age and classifying sex compared to sFC alone, 

which may suggest that there is added predictive value when the signal is strong. A recent 

study found that the discriminative properties of FC vary across parcellation schemes and 

frequencies, with ICA-based parcellations revealing greater discriminability at high 

frequencies compared to other parcellations (76). 

We were not able to predict dimensional measures of neuroticism, depression or 

anxiety, consistent with a smaller independent study (77) and a recent large-scale multi-site 

study (78). One explanation for the lack of brain FC associations, particularly with regards to 

depression is its diversity in symptom profiles (36), and phenomenological overlap with other 

clinical domains (79). Some studies have attempted to identify putative subgroups of patients 
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by using data-driven clustering based on symptoms (77, 80) or brain functional connectivity 

patterns (81, 82). In line with recent work questioning the robustness and generalizability of 

such clustering approaches (30), our current results do not support a simple link between 

fMRI-based brain connectivity and sub-clinical manifestations of depression and anxiety. 

To the best of our knowledge, this is the first study that uses machine learning to 

predict polygenic scores based on resting-state brain FC measures. A recent study 

demonstrated significant prediction accuracy for polygenic scores for autism using grey 

matter volumes, but not for attention deficit-hyperactivity disorder, bipolar disorder or 

schizophrenia (83). However, the sample size was small compared to the current study. Large 

sample sizes are needed to establish reliable estimates for the neuronal correlates of measures 

with weak associations (34, 84). Relatedly, our findings illustrate that the correlation between 

raw and predicted scores may overestimate model performance, at least when model 

performance is low. Unlike R2, MAE and RMSE, correlation coefficients are affected by 

scaling and location of the predicted scores relative to the raw scores, and, in contrast to 

MAE and RMSE, assumes linearity and homoscedasticity. Future studies using machine 

learning to predict continuous measures should carefully consider the choice of metric used 

for evaluating model performance (85), and reporting converging evidence of model fit and 

robustness may increase the reliability of the findings. 

Despite the overall low predictive accuracy of the polygenic scores, we observed a 
 
relatively high positive correlation between the edge-wise feature importance of trait level 

educational attainment and intelligence with their respective polygenic scores, indicating 

some shared signal. Whereas the overall model performance was low, it is conceivable that 

any genetic pleiotropy between complex human traits and the brain is stronger for other 

imaging modalities. Indeed, some studies have demonstrated an association between cortical 

structure and polygenic scores for schizophrenia (86, 87), which are supported by a recent 
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large-scale UKB study reporting thinner fronto-temporal cortex with higher polygenic risk 

(54). However, the variance explained by polygenic scores, such as those for schizophrenia, 

for brain measures like gray matter volume, tend to be low (88). 

The low prediction accuracy obtained for polygenic scores was observed both when 

applying a liberal and a more conservative initial p-value threshold when computing the 

polygenic score, and when deriving general polygenic scores using PCA across a range of 

thresholds. Hence, the low predictive accuracy cannot simply be explained by the number of 

independent SNPs feeding into the cumulative score. Relatedly, the poor accuracy may also 

be partly explained by the small amount of trait variance accounted for by the polygenic 

score. For example, in the most recent GWAS the trait variance explained for educational 

polygenic scores was 12% and polygenic scores for cognitive performance explained 7-10% 

of the trait variance (6). Further, based on case-control differences, the polygenic score for 

schizophrenia (8), MDD (9), and anxiety (89) explained at most 7%, 1.9%, 2.3% and 2.1% of 

variance, respectively. Although the small proportion of explained variance extends to 

somatic diseases such as coronary artery disease and breast cancer (90), the low predictive 

accuracy of the polygenic risk scores, which limits its current clinical utility (91), may partly 

be due to the heterogeneity of complex human traits and disorders, and may disguise true 

genetic pleiotropy between brain features and the polygenic architecture of complex traits. 

Dimensional approaches such as normative modeling (92–94) or brain age prediction (95) 

may reveal stronger shared signal. Many studies have shown that complex traits and disorders 

have substantial genetic overlap (96, 97) which may dilute the signal-to-noise ratio and 

specificity of polygenic scores. Future studies applying GWAS results with more power and 

novel techniques for boosting the shared genetic signal between traits (98, 99) may reveal 

stronger evidence of pleiotropy between brain FC and the polygenic architecture of complex 

traits. To more fully establish the clinical utility of polygenic scores, there is also a need to 
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evaluate treatment response rates of psychiatric disorders across scores (100). Taken together 

with other inherent limitations (see Supplements), the converging pattern across metrics of 

model performance indicate chance-level performance of brain FC for polygenic scores. 

In conclusion, based on fMRI data from 10,343 individuals we have demonstrated 

high prediction accuracy of fMRI-based brain connectivity for age and sex, as well as 

moderate yet above chance level accuracy for educational attainment and intelligence, which 

are complex yet highly relevant characteristics and indicators of individual adaptation and 

brain and mental health. In contrast, we obtained chance-level prediction accuracy for 

dimensional measures of depression, anxiety and neuroticism, in addition to their genetic 

underpinnings based on the respective polygenic scores and polygenic risk for schizophrenia. 

These findings support the link between educational attainment and intellectual abilities and 

the organization of the brain functional connectome, and provide a reference for imaging 

studies mapping the functional brain mechanisms of clinical and genetic risk for mental 

disorders. 
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