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Abstract: In a human–machine cooperation system, assessing the mental workload (MW) of the
human operator is quite crucial to maintaining safe operation conditions. Among various MW
indicators, electroencephalography (EEG) signals are particularly attractive because of their high
temporal resolution and sensitivity to the occupation of working memory. However, the individual
difference of the EEG feature distribution may impair the machine-learning based MW classifier. In
this paper, we employed a fast-training neural network, extreme learning machine (ELM), as the basis
to build an individual-specific classifier ensemble to recognize binary MW. To improve the diversity
of the classification committee, heterogeneous member classifiers were adopted by fusing multiple
ELMs and Bayesian models. Specifically, a deep network structure was applied in each weak model
aiming at finding informative EEG feature representations. The structure of hyper-parameters of the
proposed heterogeneous ensemble ELM (HE-ELM) was then identified and then its performance
was compared against several competitive MW classifiers. We found that the HE-ELM model was
superior for improving the individual-specific accuracy of MW assessments.
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1. Introduction

In various human–machine (HM) cooperation systems—such as driving systems, brain–computer
interface (BCI) systems, nuclear power plants and air traffic control [1]—it is difficult for human
operators to maintain effective functional states when performing longtime duration tasks with a high
complexity level. The reason behind this is that human cognitive capacity is affected and limited by
multidimensional psychophysiological factors. It thus leads to unstable task performance compared to
machine agents. One of the most important aspects of operator functional states (OFSs) is termed as
mental workload (MW). It can be generally defined as the remaining cognitive resource or capacity of
working memories under transient task demand [2].

Understanding the MW functionality can facilitate human-centered automation systems that both
improve the safety and satisfaction level of the HM interaction. Aricò et al. [3] mentioned that the
scope of the brain computer interfacing (BCI) system has been extended over the past decade and its
functionality involves the monitoring of cognitive workload and emotional states that are identified by
the user’s spontaneous brain activity. Since the human executive capability is closely linked to temporal
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stress, operators could fail to make a prompt response for handling emergency events under their
limited working memory. To prevent the resulting safety-critical errors, it is significant to discern MW
levels, with the aim of predicting the temporal trend of human performance degradation. The operator
MW involved in the human–machine system can be assessed indirectly through task performance,
subjective assessment, and psychophysiological measurements [4–6]. Among these measurements, the
subjective assessment has the limitation of low time resolution since it requires the operator to report
their cognitive load. The task performance indicator alone is not satisfactory due to the fact that the
MW may increase with the performance indicator unchanged. The psychophysiological measurement
is considered to be superior because it can be objectively and continuously acquired [4].

In the past few years, neural signal analysis techniques on various physiological biomarkers, e.g.,
electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG), have been used to
provide the basis of quantitative, real-time evaluation of MW variation [7,8]. In particular, EEG features
were implemented with portable recording devices as useful MW indicators in well-documented
works. Since the EEG reflects the functionality and cognitive states of the central nervous system, it
has been widely used to evaluate the MW. The reported works showed that the MW can be accurately
predicted by analyzing changes in EEG power spectral density (PSD) [9,10]. The input data used in the
experiment is a matrix. The number of rows in the matrix represents the number of samples, and the
number of columns in the matrix represents the number of EEG power spectral density features. The
specific element values in the matrix represent the values of the features of the current sample.

Aricò et al. [11] validated this passive BCI system in evaluating operator workload of high-altitude
air traffic control missions with varying difficulty. This work also investigated the possibility of
assessing operator MW in real time. The work of many other researchers on MW assessment is as
follows. Moon proposed an ECG/EEG-data-driven fuzzy system to quantify MW [12]. Obinata et
al. [13] employed vestibule-ocular reflex (VOR) features from EOG as MW indicators. Their results
show that the VOR measure is effective and sensitive to the transient variation of the cognitive capability.
Ryu and Myung [14] presented a comprehensive framework combining multimodal measurements of
EEG, ECG, and EOG to classify MW when the operator was engaged in a dual task. It was reported that
such integrated method outperformed the case with the single modality. Dimitrakopoulos et al. [15]
proposed an EEG based classification framework, where multi-band functional connectivity is used to
predict within-task and cross-task MW levels. Ayaz et al. [16] proposed the MW recognition system
using functional near-infrared spectroscopy (fNIRS). The results showed that the fINRS features have
the capability to monitor hemodynamic changes associated with the operator cognitive stress. The
fNIRS can evaluate MW by indirectly judging oxygen consumption by changes in oxygen content in
blood vessels.

Due to the uncertainty, complexity, and multidimensionality of EEG features, machine learning
based modeling approaches are attractive for classifying the extracted neurophysiological markers into
multiple MW levels. The state-of-the-art MW classifiers include neural network [17], fuzzy system [12],
random forest, stacked denoising autoencoder (SDAE), and support vector machine (SVM) [18]. In
addition, Mazaeva et al. [19] proposed a hybrid self-organizing feature mapping network to predict the
level of MW. They also adopted a shallow neural network to establish the link between EEG features
and the MW states. The reported results showed that the testing classification accuracy was achieved to
89%. Javier et al. [20] adopted a dendrite morphological neural network (DMNN) for the recognition of
mental tasks based on EEG signals, where the classification accuracy of motor execution was achieved
to 80%. In [12], the fuzzy inference system was reported to be superior to the classical linear modeling
method for discriminating MW classes. Yin and Zhang proposed an EEG based adaptive SDAE model
for tackling a cross-session MW classification problem [21]. Zhao et al. [22] employed an EEG-based
SVM to detect the variation of MW when operators were performing different cognitive tasks. Both
of the physiological and behavioral measurements were used in their work to assess MW into four
categories. The target class label was determined via the degree of task difficulty with the overall
classification accuracy of 95% achieved.
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In newly reported works, extreme learning machine (ELM) has been validated in multiple EEG
classification tasks. The ELM was originally developed based on single-hidden-layer feedforward neural
networks (SLFNs) [23] with random input weights [24]. In medium size classification applications [25],
the training speed of the ELM classifier was significantly higher than the SVM using a radial basis
kernel function [26] and the back-propagation (BP) neural networks. In large complex real-world
datasets [27], the competitive classification accuracy of ELM benefits from random feature mapping,
where the gradient based optimization methods are unnecessary [28]. ELM classifier was used in
recognizing motor imagery tasks via EEG signals with acceptable performance and low computational
cost [29–31]. In [32], EEG signals combined with ELM have been implemented for operator vigilance
estimation. In these HM interaction systems, the ELM model was trained by the extracted EEG features
and implemented in a real-time EEG analysis environment for medical assistants.

The goal of the present study is to design an individual-specific MW classifier since the data
distribution of the EEG features may vary across multiple subjects. That is, we need to find a
personalized classifier architecture for each task operator. To this end, the ensemble learning principle
is employed to achieve multiple classifier committees on different subjects. In particular, a large
amount of training EEG instances are required for building the member classifier in such a committee
while ELM is more suitable for such implementation due to its high training speed than conventional
ANN and SVM based methods. Despite its high training speed, the ELM algorithm has a number
of problems with the application. The output weight of the ELM model is fixed and may not be
suitable for EEG data of all subjects. Therefore, we construct an abstraction layer in each weak ELM to
find the intermediate EEG feature representations to improve the interclass discrimination capability.
On the basis of the ELM ensemble and the deep feature mapping, we proposed a new approach for
personal MW recognition called heterogeneous ensemble extreme learning machine (HE-ELM), where
the member classifiers possess inherent heterogeneous structures aimed at improving the diversity of
the classification committee. The main novelty of the HE-ELM algorithm is the integration of multiple
heterogeneous strong classifiers with adaptive structures and hyper-parameters. This characteristic
facilitates designing personalized workload classifiers for different individuals. In classical schemes,
weak classifiers are generally consistent, and the final classification committee may not possess the
flexibility to learn individual-specific information of EEG feature distributions. The HE-ELM is also
helpful in improving the diversity between weak classifiers and reducing the upper boundary of the
generalization capability. The HE-ELM with its heterogeneous nature facilitating the introduction of
other classifiers, is a great difference to deep ELMs.

The organization of the paper is as follows. In Sections 2.1 and 2.2, the EEG database for classifier
validation is described. Sections 2.3–2.5 reviews the classical ELM algorithm and presents the new
HE-ELM method. The detailed MW classification results are shown in Section 3. In Section 4, we
discuss the derived results. Finally, the present study is concluded in Section 5.

2. Materials and Methods

2.1. Experimental Tasks and Subjects

The EEG database used for testing the proposed algorithm was built in our previous work [33].
The framework of MW level assessment is described in Figure 1. We simulated the HM collaboration
environment via a software platform termed as automation-enhanced cabin air management systems
(ACAMS) [7,34,35]. This experiment used a simplified version of automation-enhanced cabin air
management systems (ACAMS) and consisted of loading and unloading phases. ACAMS consisted of
four subsystems: Air pressure, temperature, carbon dioxide concentration and oxygen concentration.
The function of ACAMS is to observe and control the air quality in the closed space of the spacecraft.
This software platform is used to simulate a safety-critical human–machine collaboration environment.
Subjects need to concentrate on the operation because the trajectory can easily exceed the target
range. Under the ACAMS, the ongoing physiological data of operators corresponding to different task
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complexities were acquired and used for modeling their transient MW level. The operation of the tasks
was related to the maintenance of the air quality in a virtual spacecraft via human-computer interaction.
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Operators were required to manually monitor and maintain four variables (O2 concentration, air
pressure, CO2 concentration, temperature) to their respective ranges according to given instructions.
That is, when any of the subsystems’ program runs incorrectly, operators manually control the task
until the systems error is fixed. Simultaneously, the current EEG signals were recorded. The complexity
for performing control tasks is measured by the number of manually controlled subsystems (NOS).
According to different value of NOS, the complexity and demand of the manual control tasks is
gradually changing, which can induce a variation of the MW.

Eight male participants (22–24 years) were engaged and coded by S1, S2, S3, S4, S5, S6, S7, and
S8. All participants were volunteer graduate students from the East China University of Science
and Technology. All participants have been trained in ACAMS operations for more than 10 h before
the start of the formal experiment. As can be seen from our previous work [36], the average task
performance was analyzed and its mean value of all subjects in the first control condition was not
significantly varied compared with the last control condition (i.e., from 0.957 to 0.936). Moreover, all
subjects cannot perfectly operate the ACAMS of high task complexity in both sessions (with average
task performance of 0.783). Since the task demands in the high difficulty conditions were the same
across two sessions, the habituation effect of subjects was properly controlled. The reason behind this
is that each participant was trained for more than 10 h before the formal experiment and their task
performance properly converged.

To rule out the effects of the circadian rhythm, each subject conducted the experiment from
2:00 p.m. to 5:00 p.m. for different sessions. The participants were required to perform two identical
sessions of experiments. Each session consisted of eight control task load conditions. After the starting
5-min baseline condition under NOS with the value of 0, there were six 15-min conditions followed by
the last 5-min baseline condition again. The duration of each session was 100 min (100 = 6 × 15 + 2 × 5).
The operator’s cognitive demand for manual tasks were gradually increased and then reduced within
100 min in one session. We selected the EEG data from six, 15-min conditions in each session. A total of
16 (2 × 8) physiological datasets were built. Under conditions #1, #2, #3, #4, #5, and #6, the participants
needed to manually operate ACAMS under NOS with the value of 2, 3, 4, 4, 3, and 2. The subjective
rating analysis was omitted and can be found in our previous work [33].

2.2. EEG Feature Extraction

The raw EEG signals and the extracted EEG features are depicted in Figure 2. The EEG data were
measured via the 10–20 international electrode system on 11 positions of the scalp (i.e., F3, F4, Fz, C3,
C4, Cz, P3, P4, Pz, O1, and O2) at the frequency of 500 Hz. Frontal theta power and the parietal alpha
were used for MW variation detection. In addition, we also noticed that the EEG power of the alpha
frequency band in the central scalp region degreases along with the increase of the MW according
to [37–39]. In [40], the EEG power of the occipital channels was shown to be related to the stress and
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fatigue. Therefore, in order to improve the diversity of the possible EEG features that were salient to
workload variation, the central and occipital electrodes were also employed in the experiment. To cope
with the electromyography (EMG) noise, the independent component analysis (ICA) was employed
to filter the raw EEG data. The independent component associated with the muscular activity was
identified by careful visual inspection and was eliminated before extracting EEG features. Moreover,
the ACAMS operations were not heavily depended on the sensory motor functionality of the cortex.
If such noise exists, the possible EEG clues could be allocated with small weight values since the
supervised machine learning algorithm only adopted MW levels as target classes. Therefore, the
irrelevant EEG indicators can be well controlled.
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EEG features.

The preprocessing steps of the acquired EEG signals are shown as follows:

(1) All EEG signals were filtered through a three-order low-pass IIR filter with a cutoff frequency
of 40 Hz. The related works [41–43] indicated that removing EOG artifacts can improve the
EEG classification rate, the blink artifacts in EEG signals were eliminated by the coherence
method in this study. According to our previous work [33], the blink artifact was removed by the
following equation

d(t) = d̂(t) −C · d̂O(t) (1)

In the equation, the EEG signal and the synchronized EOG signal at the time instant t are denoted
by d̂(t) and d̂O(t), respectively. The transfer coefficient C is defined by

C =

1
N

N∑
t=1

[(
d̂(t) − d̂

)(
d̂O(t) − d̂

O
)]

1
N

N∑
t=1

(
d̂

O
(t) − d̂

O
)2 (2)

where N denotes the number of samples in an EEG segment, d̂ and d̂
O

are the means of EEG
signal and synchronized EOG signal in a channel, respectively.

(2) The filtered EEG was divided into 2-s segments and processed with a high-pass IIR filter (cutoff

frequency of 1 Hz) to remove respiratory artifacts.
(3) Fast Fourier transform was adopted to compute the power spectral density (PSD) features of the

EEG signals. For each channel, four features were obtained by the calculated PSD within theta
(4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma (31–40 Hz) frequency bands. Based on
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the PSD features from F3, F4, C3, C4, P3, P4, O1, and O2, we further computed sixteen power
differences between the right and left hemispheres of the scalp. That is, 60 frequency domain
features were extracted. Then, 77-time domain features were elicited via mean, variance, zero
crossing rate, Shannon entropy, spectral entropy, kurtosis, and skewness of 11 channels. The
indices and notations of 137 EEG features are shown in Table 1.

Finally, there were 8 subjects in the experiment, and each subject had two feature sets. Each feature
set is a matrix of the same size. The number of rows of the matrix is 1800 for the number of data points,
and the number of columns of the matrix is 137 for the number of features. That is, 28,800 data points
are available in total. Each feature was normalized into the time course of zero mean and one standard
deviation. The EEG vectors were assigned the MW labels of low and high classes and quantified as
y = [ 1 0 ] and y = [ 0 1 ], respectively. Note that the first and the last 450 EEG instances in each
feature matrix represent a low MW level and the remaining 900 points correspond to high MW levels.

Table 1. The serial number and notations of the electroencephalography (EEG) features.

Feature Index Feature Notations

No. 1–11 Centroid frequencies of 11 channels
No. 12–22 Log energy entropies of 11 channels
No. 23–33 Means of 11 channels

No. 34–77 Average PSDs in theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz)
and gamma (31–40 Hz) frequency bands of 11 channels

No. 78–93 Power differences between the right and left hemispheres of the scalp
No. 94–04 Shannon entropies of 11 channels

No. 105–115 Sums of energy of 11 channels
No. 116–126 Variances of 11 channels
No. 127–137 Zero-crossing rates of 11 channels

2.3. Extreme Learning Machine

ELM is a fast-training modeling approach based on SLFN [44,45]. Figure 3 shows a typical
SLFN-based ELM architecture, where xi = [xi1, xi2, . . . , xiq]

T is the input sample array and the
corresponding output label array is yi = [yi1, yi2, . . . , yim]

T. Let denote the input weights, output
weights, and bias of the hidden neuron as w j = [w j1, w j2, . . . , w jq]

T, β j = [β j1, β j2, . . . , β jm]
T, and b j,

respectively. Training a SLFN as an ELM is equivalent to minimizing the output error between the

target output yi and model output
^
yi regarding to the parameters, β j, b j and w j, i.e.,

S∑
j=1

β j · p(w j · xi + b j) =
^
yi, i = 1, 2, . . . , S̃ (3)

In Equation (3), S̃ is the number of EEG samples, p(·) is the activation function. The number of the
input, output and hidden neurons are defined as q, m, and S, respectively. The training cost function is
formulated in a least squared term,

E =
S̃∑

i=1

 S∑
j=1

β j · p(w j · xi + b j) − yi


2

. (4)

Traditional neural network training approaches are mostly based on gradient descent optimization
via BP algorithm. On the contrary, in the process of the ELM modeling the input weights and hidden
layer bias are randomly determined while all output weights of hidden layer are computed via the
norm minimization-based approach. To this end, it is unnecessary to tune the input weights and
hidden layer bias in the training process.
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by ELM.

Based on the input weights and bias that are randomly selected, the model fitting error in
Equation (4) can be derived via a linear equation systems, Hβ = Y, where H is the output matrix of
the hidden layer. The entry of H is denoted as follows

H(w1, . . . , w2, b1, . . . , b2, x1, . . . , xS̃) =


p(h(1)

1 ) · · · p(h(1)
S )

... · · ·
...

p(h(S̃)
1 ) · · · p(h(S̃)

S )

 (5)

In Equation (5), the induced local field, h(i)
j , is computed via the function signal below

h(i)
j = p(w j · xi + b j), i = 1, 2, . . . , S̃, j = 1, 2, . . . , S (6)

Thus, the output weight β can be elicited by the generalized inverse matrix operation

Hβ = Y→ β = H∗Y (7)

where H∗ denotes the Moore-Penrose generalized inverse of matrix H [27]. Singular value
decomposition can be implemented to compute H∗. The pseudo codes of the ELM training algorithm
are summarized in Table 2 [46]. In the pseudo code, the training set, activation function, the number of
hidden nodes, and the output weights are defined as {X, Y},p(·),S and β, respectively. The remaining
parameters are consistent with the above.

Table 2. Pseudo codes for training an extreme learning machine (ELM).

ELM_Train (X, Y, p, S)

1 Randomly assigned W, b
2 for i = 1 to S̃, j = 1 to S
3 h(i)

j = p(w j · xi + b j)

4 Compute H according to Equation (5)
5 Compute the generalized inverse H∗ of H
6 β = H∗Y
7 return (W, b,β)
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2.4. Adaboost Based ELM Ensemble Classifier

To improve the classification accuracy of MW on EEG datasets, we introduced the ELM classifier
ensemble to find different individual personalities existing in EEG features. The framework of the
ELM ensemble is designed based on the adaptive boosting algorithm (Adaboost) [47]. In the classical
boosting algorithm [48], each training instance is given with an initial weight before the training
procedure begins while the value of the weight is automatically adjusted during each iteration. In
particular, the Adaboost algorithm adds a new classifier in each training iteration and additionally
constructs several weak classifiers on the same sample pool. A strong classifier can thus be integrated
via those weak classifiers.

To implement the Adaboost method into the ELM ensemble, we first initialized the weights of
each training data of N training instances with wi = 1/N, i = 1, 2, . . . , N. That is, the initial weights
of the sample are D1 = [w̃1, w̃2, . . . , w̃N]

T. Then, we ran m (m = 1, 2, . . . , M) iterations to select a basic
classifier Gm possessing the highest classification precision. The error rate of the selected classifier on
the Dm is computed by

em = P[Gm(xi) , yi] =
N∑

i=1

w̃miI[Gm(xi) , yi] (8)

In Equation (8), xi denotes the input sample array, yi corresponds to output label array, I(·)
represents statistics that xi is wrongly classified. If xi is correctly (or incorrectly) classified, I = 0 or
(I = 1) exists. The weight of Gm in the final strong classifier Gs is computed by the following equation

λm =
1
2

ln
(1− em

em

)
(9)

According to [47], the weight distribution of the training sample is updated via

Dm+1 =
Dm(i) exp[−λmyiGm(xi)]

2
√

em(1− em)
(10)

The output of the strong classifier Gs is integrated from the weak classifiers through the weight
λm as follows

ys = sign

 M∑
m=1

λmGm(x)

 (11)

In Equation (11), ys is the final output of the classifier. The pseudo codes of the Adaboost ELM
is presented in Table 3 [46], where the maximum number of iterations is M, the weight of each weak
classifier is λm and the output of the strong classifier is Gs(·). The remaining parameters are consistent
with the above.

Table 3. The pseudo codes for the Adaboost ELM algorithm.

ELM_Adaboost (X, Y, p(·), S, M)

1 D1 = [1/N, 1/N, . . . , 1/N]T

2 for m = 1 to M
3 ELM_train ({X, Y}, p, S)
4 return Gm(·)
5 Compute predictive output as Gm(x)

6 em =
N∑

i=1
Dm(i)I[Gm(xi) , yi]

7 λm = 1/2 ln[(1− em)/em]
8 Update Dm+1 according to Equation (9)
9 ys = sign[

∑M
m=1 λmGm(x)]

10 return ys
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2.5. Heterogeneous Ensemble ELM

To further improve the generalization capability of the Adaboost ELM classifier on a specific
participant, we adopted heterogeneous weak classifiers and the deep learning principle. The architecture
of the proposed method termed as heterogeneous ensemble ELM (HE-ELM) is illustrated in Figure 4.
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On one hand, the Naive Bayesian (NB) model was used as alternative weak classifiers to improve
the diversity of the ensemble committee. The motivation behind this lies in two aspects: (1) The input
weights of all member ELMs are randomly determined from a uniform distribution and it may lead
to similar hidden-neuron properties across two weak classifiers; (2) the mechanism of the inference
functionality for the Bayesian model is inherently different from the classical ELM and thus facilitates
a heterogeneous classifier ensemble.

By setting different values of the class prior probability, we obtained diverse Bayesian models.
For ELMs, we implemented different activation functions and hidden neuron numbers. To this
end, Bayesian and ELM models with different hyper-parameters can produce a group of dissimilar
decision boundaries. The overall error of the strong classifier can be reduced after integrating all
heterogeneous models.

By denoting the maximum number of the iteration as M, the whole ensemble process builds M
weak classifiers, where the M classifiers consist of T NB models (denoted by Gt(·), 0 < t ≤ T) and K
ELMs (denoted by Gk(·), 0 < k ≤ K) with T + K = M. According to Equation (3), the output of each
ELM can be expressed as

Gk(xi) =
S∑

j=1

β j · p(w j · xi + b j), i = 1, 2, . . . , S̃ (12)

The prediction of the NB model is computed as

Gt(xi) = argmax
Ck

P(
^
yi = Ck)

S̃∏
i=1

P(xi = x(test)
i

∣∣∣∣^yi = Ck ) (13)
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In Equation (13), x(test)
i and Ck denote the input instance and the label of class k with k = 1, 2, . . . , K,

respectively. By incorporating ys in Equation (11), the classification accuracy of the strong classifier
Gs(·) generated in each iteration is defined as

αs = 1−U(yi , ys)/N (14)

where U(·) represents the function for measuring the number of misclassification EEG data points in
all N instances. Then, the member classifier Gm(·) in the mth iteration is selected by

Gm(xi) =

{
Gk(xi), αs > αs−1

Gt(xi), αs < αs−1
(15)

In addition, a deep network structure was applied in each member ELM and NB model aimed
at finding high-level EEG feature representations. We add a new abstraction layer to the member
classifier in which the network weights are trained by using local preserving projection (LPP) that
preserves the local geometrical properties of the EEG data distribution [49,50]. Let denote the input
weight as a transformation matrix A to map EEG feature vectors xi ∈ Rq to a feature abstraction vector
fi ∈ Rl, i.e.,

fi = ATxi, i = 1, 2, . . . , S̃. (16)

By creating an adjacent graph between xi and x j, the entry ei j of edge matrix E is computed by
using the Gaussian kernel with the width parameter t > 0,

ei j = exp(−‖xi − x j‖
2
2/t) (17)

The input weight A of the deep ELM network can be trained by solving the following linear
equation system,

XLXTa = λXDXTa. (18)

where X = [x1, x2, . . . , xS̃]
T, D, and L = D−E are the input sample array, the diagonal matrix computed

from dii =
∑
j

ei j, and the Laplacian matrix, respectively. By denoting the solution of Equation (18) as

column vectors a0, a1, . . . , al−1, the input weight of a deep ELM is A = [a0, a1, . . . , al−1].
To this end, the output of each deep ELM classifier can be formulized as

G̃k(xi) =
S∑

j=1

β j · p[w j · (ATxi) + b j], i = 1, 2, . . . , S̃ (19)

For the NB model, the dimensionality of the EEG feature vectors have been reduced and its output
is computed as

Gt(fi) = argmax
Ck

P(
^
yi = Ck)

S̃∏
i=1

P(fi = f(test)
i

∣∣∣∣^yi = Ck ). (20)

It is noted the final strong classifiers are generated in the last iteration of each ensemble learning
process on the training set from a single participant, i.e., participant-dependent classifiers are built for
MW recognition.

Table 4 lists the pseudo codes for the proposed HE-ELM algorithm [46], where the dimension
required to reduce the dimension of the matrix is D, the prior probability of the NB model is Ppri, the
output of the strong classifier is Ys and the dimensionally reduced input matrix is XL. It is noted in the
initial iteration that the weak classifier G̃1(·) was constructed by an ELM model. If the performance of
the newly-added classifier, i.e., another ELM G̃2(·), in the second iteration is lower than the current
strong classifier, we rebuild G̃2(·) and compare it against a weak NB model according to Equation (20).
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In the case that the highest performance of G̃2(·) is achieved, the next iteration is carried out. Each
subsequent iteration repeats such a computational process until the final strong classifier is generated.

Table 4. The pseudo codes for training and testing a heterogeneous ensemble extreme learning machine
(HE-ELM) classifier.

HE_ELM
(
X, Y, p(·), S, D, Ppri, M

)
1 Compute the input weights A via Equation (18)
2 XL = ATX
3 D1 = [1/N, 1/N, . . . , 1/N]T, α(0)s = 0
4 ELM_train ({XL, Y}, p, S)
5 return G̃1(·)
6 for m = 1 to M

7 ẽm =
N∑

i=1
Dm(i)I[G̃m(xi) , yi]

8 λ̃m = 1/2 ln[(1− ẽm)/ẽm]
9 Update Dm+1 according to Equation (10)
10 G̃(m)

s (·) = sign[
∑m

z=1 λ̃zG̃z(X)]
11 Compute α(m)

s on G̃(m)
s (·) via Equation (14)

12 if α(m)
s ≤ α

(m−1)
s

13 Compute G̃m+1(·) according to Equation (20)
14 else ELM_train (XL, Y, p, S)
15 return a deep ELM G̃m+1(·)

16 Ys = G̃(M)
s (X) = sign[

∑m
z=1 λ̃zG̃z(X)]

17 return Ys

3. Results

To validate the proposed HE-ELM method for MW classification, two cases of the data-splitting
paradigms were designed in Figure 5. In Case 1, the MW classifier was trained and tested across
each EEG feature set of a participant. Case 1 employed an individual dependent paradigm. For each
participant, two-session EEG data of 3600 instances were divided into training and testing sets of 2400
and 1200 instances, respectively. For Case 2, the training and testing datasets were generated following
an individual independent principle. That is, all neurophysiological features sets of eight participants
were integrated into a single database with 28,800 EEG instances. Then, the hold-out method was
applied to determine two mutually exclusive training and testing sets with the sample size of 19,200 and
a testing size of 9600, respectively. All algorithms were trained and tested on Matlab® 2016a software
and performed via an Intel core i5-6200U CPU @ 1.30GHz PC with Windows 7® operating system
and 4 GB of RAM. Among them, Matlab® 2016a software is developed and supplied by MathWorks
Company in Natick, Massachusetts, USA. The PC device is produced by ASUS in Taipei, Taiwan. The
ANN algorithm for performance comparison was realized by the neural network toolbox of Matlab
(Ver. 9.0).
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lowest convergence rates respectively. The training accuracy of the ELM monotonously rises under 
all activation functions and the perfect training performance is achieved when a sufficient amount of 
hidden neurons is adopted. The testing accuracy of the sine function for both cases achieved the 
lowest value, and is just slightly better than random guess. The highest testing accuracy under the 
hard limit function in Figure 6a–c outperforms that of under sigmoid activation function. 
Specifically, in Figure 6d the hard limit function is slightly better. The observation indicates the 
effectiveness of the activation function for the ELM model is related to the size of the EEG feature 
set. 

Figure 5. Training and testing data splits for mental workload classifiers: (a) Case 1: For each participant,
two-session EEG data of 3600 instances were divided into training and testing sets of 2400 and 1200
instances, respectively; (b) Case 2: Two mutually exclusive training and testing sets with the sample
size of 19,200 and a testing 9600 were used.

3.1. Model Selection for HE-ELM

Figure 6 depicts the training and testing accuracy of the classical ELM classifier under Case 1 and
Case 2 with a different number of the hidden neurons employed. Three different activation functions of
the ELM, i.e., hard limit, sigmoid, and sine functions, were investigated. In the training phase of both
cases, we found that the sigmoid and the sine functions possess the fastest and the lowest convergence
rates respectively. The training accuracy of the ELM monotonously rises under all activation functions
and the perfect training performance is achieved when a sufficient amount of hidden neurons is
adopted. The testing accuracy of the sine function for both cases achieved the lowest value, and is
just slightly better than random guess. The highest testing accuracy under the hard limit function in
Figure 6a–c outperforms that of under sigmoid activation function. Specifically, in Figure 6d the hard
limit function is slightly better. The observation indicates the effectiveness of the activation function
for the ELM model is related to the size of the EEG feature set.Symmetry 2019, 11, x FOR PEER REVIEW 13 of 24 
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Figure 6. Training and testing accuracy of the ELM classifier under Case 1 (a–c) and Case 2 (d) vs. the
variation of the number of hidden neurons. For Case 1, the performance of ELM on the EEG feature
sets from participant S1, S2 and S3 is presented. The labels of hardlim, sigmoid, and sine indicating the
hard limit, sigmoid, and sine activation function were employed, respectively.
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The number of the ELM hidden nodes under the optimal performance for each participant is
summarized in Table 5. We found that the optimal number of hidden nodes for training is much higher
than that for testing. It implies the perfect training performance is achieved for complex network
structures while a good generalization capability corresponds to a simpler structure.

Table 5. Number of hidden nodes, training and testing accuracy under the optimal classification of
ELM classifier in each subject’s EEG feature set for training and testing.

Subjects
Size of Hidden Neurons Accuracy Activation

FunctionTraining Testing Training Testing

S1
1621 261 1.0000 0.8967 hardlim
1421 331 1.0000 0.9117 sigmoid
2191 1541 1.0000 0.5517 sine

S2
1581 461 1.0000 0.9333 hardlim
1321 281 1.0000 0.9525 sigmoid
2081 211 1.0000 0.5392 sine

S3
1881 701 1.0000 0.8650 hardlim
1791 351 1.0000 0.8808 sigmoid
2141 1271 1.0000 0.5417 sine

S4
2001 651 1.0000 0.7367 hardlim
2011 391 1.0000 0.7600 sigmoid
2141 2061 1.0000 0.5492 sine

S5
1921 211 1.0000 0.8200 hardlim
1881 221 1.0000 0.8325 sigmoid
2171 1771 1.0000 0.5425 sine

S6
1611 391 1.0000 0.8942 hardlim
1581 511 1.0000 0.9142 sigmoid
2141 1851 1.0000 0.5375 sine

S7
1671 471 1.0000 0.9108 hardlim
1671 231 1.0000 0.9167 sigmoid
2171 1371 1.0000 0.5333 sine

S8
1761 491 1.0000 0.8317 hardlim
1851 571 1.0000 0.8558 sigmoid
2171 491 1.0000 0.5492 sine

In Figure 7, the average computational cost for training and testing an ELM classifier is presented.
It is shown both of the training and testing time is positively correlated with increase of the number
of hidden nodes. The time cost monotonously rises under all activation functions for two cases and
the testing time duration is much smaller than that for the training. By observing the line plots, the
computational burden under Case 1 is less than that under Case 2 because of a smaller sample size.
We can note that the testing time under hard limit function achieves the least value in Figure 7b,d,f,h.
There is no obvious difference for sine and sigmoid functions in Figure 7b,d,f under Case 1. It is noted
the testing time of the ELM classifier under sine function achieves the highest value in Figure 7h while
the time cost across three activation functions in the training stage does not significantly vary.

In order to select the optimal model structure for the proposed HE-ELM, we investigated its
performance under different values for the number of the iterations in Table 6. The shallow ELM weak
classifier was used to reduce the training time. For simplicity, the individual-dependent MW classifiers
shared the same network structure. The optimal structure of the ELM weak classifier is shown in
Table 7. It is shown the hardlim function with 201 hidden neurons is the best case. By comparing the
two tables, it is observed that the ensemble ELM approach improves the accuracy by 1.43% against an
optimally-trained ELM.
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Figure 7. Training and testing time of an ELM classifier: (a,b) Case 1: Training and testing 
time for subjects (a,b) S1, (c,d) S2, and (e,f) S3. Case 2: (g,h) Training and testing time on 
the datasets from all subjects. 

In order to select the optimal model structure for the proposed HE-ELM, we investigated its 
performance under different values for the number of the iterations in Table 6. The shallow ELM 
weak classifier was used to reduce the training time. For simplicity, the individual-dependent MW 
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Number of Iterations Accuracy 

10 0.6683 
20 0.6694 
30 0.6773 
40 0.6846 
41 0.6854 
42 0.6857 
43 0.6847 
44 0.6848 
45 0.6859 
46 0.6865 

Figure 7. Training and testing time of an ELM classifier: (a,b) Case 1: Training and testing time for
subjects (a,b) S1, (c,d) S2, and (e,f) S3. Case 2: (g,h) Training and testing time on the datasets from
all subjects.

Table 6. The HE-ELM with shallow ELM weak model for Case 2.

Number of Iterations Accuracy

10 0.6683
20 0.6694
30 0.6773
40 0.6846
41 0.6854
42 0.6857
43 0.6847
44 0.6848
45 0.6859
46 0.6865
47 0.6850
48 0.6853
49 0.6855
50 0.6852
60 0.6844

Note: The maximum value is marked in the bold type.

Table 7. The ELM performance for Case 2.

Number of Hidden Neurons Accuracy Activation Function

201 0.6722 hardlim
301 0.6683 sigmoid
1301 0.5120 sine

Note: The optimal value in each column is marked in bold.

3.2. Accuracy Comparison between HE-ELM and Different MW Classifiers

We implemented the proposed HE-ELM to generate participant-specific MW classification testing
accuracy. In Figure 8, the performance of all subjects for HE-ELM is compared against the deep ELM
and the classical ELM under an optimal network structure. The histogram indicates the accuracy of
the HE-ELM, and the ELM classifiers achieve the highest and the lowest values, respectively. It is
shown that the performance improvement of the HE-ELM is particularly significant for subjects D and
E. The number of the iterations and the proportion of the weak classifiers of each type are listed in
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Table 8. From the Table, it is observed that the number of iterations and the percentages on deep ELM
and NB classifiers are different across 8 subjects. The proportion of ELM is much larger than that of
NB. In particular, for subject S6, only a single iteration was performed. It is because the first weak
classifier had already achieved an optimal classification performance while the Adaboost algorithm
cannot further improve accuracy.
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Table 8. Individual-dependent classification committee of the HE-ELM.

Subject Index Number of Iterations Number and Proportion
of Deep ELM Classifiers

Number and Proportion
of NB Classifiers

S1 6 4 (66.6%) 2 (33.3%)
S2 6 4 (66.6%) 2 (33.3%)
S3 11 10 (90.9%) 1 (0.9%)
S4 6 6 (100%) 0 (0%)
S5 6 4 (66.6%) 2 (33.3%)
S6 1 1 (100%) 0 (0)
S7 4 2 (50%) 2 (50%)
S8 11 9 (81.8%) 2 (18.1%)

Next, we compared the performance of the HE-ELM classifier against the classical ELM, K-nearest
neighbor (KNN), artificial neural network with single hidden layer (ANN), denoising autoencoder
(DAE), logistic regression (LR), Adaboost based on the decision tree, stacked denoising autoencoder
(SDAE), and NB MW prediction models. In addition, the LPP-based feature mapping is adopted to
produce eight deep-structured classifiers denoted by deep ELM, LPP-KNN, LPP-ANN, LPP-DAE,
LPP-LR, LPP-AD, LPP-SDAE, and LPP-NB.

In Figure 9, we examine the performance of the classifiers used for comparison with different
hyper-parameters on four representative subjects. It is noted the NB and LR based model have none of
the hyper-parameters controlling the model complexity and thus have not been analyzed in the figure.
From Figure 9, it is shown the testing accuracy of ELM, KNN, deep ELM, and LPP-KNN classifier
arises with the model complexity. Specifically, the maximum testing accuracy of deep ELM is higher
than that of ELM in all four subjects. On the other hand, the optimal performance of LPP-KNN is
better than that of KNN. Compared with ANN, LPP-ANN achieves better optimal performance while
the accuracy of the DAE model is similar to that of LPP-DAE.
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Figure 9. MW classification testing accuracy on 4 subjects for (a) ELM; (b) K-nearest 
neighbor (KNN); (c) artificial neural network with single hidden layer (ANN); (d) 
denoising autoencoder (DAE); (e) deep ELM; (f) local preserving projection (LPP)-KNN; 
(g) LPP-ANN and (h) LPP-DAE vs. different model hyper-parameters. The 
hyper-parameters of ELM, ANN, DAE, deep ELM, LPP-ANN and LPP-DAE are the 
number of hidden neurons. The hyper-parameter of KNN and LPP-KNN is the number of 
the nearest neighbors (denoted by k). 

The optimal testing classification accuracy generated by 17 classifiers is illustrated in Figure 10 
via box plots. For all methods, HE-ELM and LPP-KNN achieve the best and the worst average 
accuracy, respectively. The classification performance of the MW classifiers except for KNN is 
improved when using LPP feature leaning. It implies the generalization capability of shallow 
classifiers can be enhanced via a layer of intermediate feature representation. The mean of accuracy, 
precision, and recall of the MW classifiers on eight subjects is shown in Table 9. The table specifically 
presents the difference in the classification performance of the 17 MW classifiers. It is shown that the 
mean values of the three evaluation indicators of HE-ELM are all the highest while the standard 

Figure 9. MW classification testing accuracy on 4 subjects for (a) ELM; (b) K-nearest neighbor (KNN);
(c) artificial neural network with single hidden layer (ANN); (d) denoising autoencoder (DAE); (e) deep
ELM; (f) local preserving projection (LPP)-KNN; (g) LPP-ANN and (h) LPP-DAE vs. different model
hyper-parameters. The hyper-parameters of ELM, ANN, DAE, deep ELM, LPP-ANN and LPP-DAE
are the number of hidden neurons. The hyper-parameter of KNN and LPP-KNN is the number of the
nearest neighbors (denoted by k).

The optimal testing classification accuracy generated by 17 classifiers is illustrated in Figure 10 via
box plots. For all methods, HE-ELM and LPP-KNN achieve the best and the worst average accuracy,
respectively. The classification performance of the MW classifiers except for KNN is improved when
using LPP feature leaning. It implies the generalization capability of shallow classifiers can be enhanced
via a layer of intermediate feature representation. The mean of accuracy, precision, and recall of the
MW classifiers on eight subjects is shown in Table 9. The table specifically presents the difference
in the classification performance of the 17 MW classifiers. It is shown that the mean values of the
three evaluation indicators of HE-ELM are all the highest while the standard deviation of the accuracy
of HE-ELM is the lowest among all MW classifiers. In particular, LPP-KNN has the lowest mean of
accuracy and recall while the average recall of the NB model is the lowest.
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The results of two-tailed test between HE-ELM and other 16 MW classifiers are listed in Table 10.
It is found that HE-ELM has a significant improvement in accuracy compared to other classifiers
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except for LPP-SDAE. For precision and recall values, HE-ELM are comparable with six deep structure
classifiers generated based on LPP-based feature mapping except for LPP-KNN and LPP-ANN. In
general, the accuracy of the HE-ELM is superior to most pattern classifiers and is comparable with the
advanced deep learning method.

Table 9. Classification performance of the MW classifiers for all eight subjects.

MW
Classifier

Mean s.d.

Accuracy Precision Recall Accuracy Precision Recall

ELM 0.878 0.8763 0.8797 0.0609 0.0582 0.0662
DAE 0.8767 0.8758 0.8804 0.0616 0.0688 0.0618
ANN 0.8182 0.8177 0.8235 0.1124 0.1126 0.1048
NB 0.7778 0.8435 0.6785 0.1002 0.0348 0.2345
LR 0.9124 0.9135 0.9119 0.0404 0.0445 0.0361

KNN 0.8056 0.7911 0.8416 0.0758 0.0921 0.0861
SDAE 0.8876 0.8862 0.8889 0.0561 0.0497 0.0759

Adaboost 0.8803 0.8785 0.8831 0.0653 0.0655 0.0644
Deep ELM 0.928 0.9314 0.9237 0.0423 0.0379 0.0513
LPP-DAE 0.9062 0.9073 0.9087 0.055 0.0672 0.0621
LPP-NB 0.8885 0.9158 0.8564 0.0918 0.0692 0.1505
LPP-LR 0.9282 0.9293 0.9275 0.0391 0.0425 0.0406

LPP-ANN 0.9279 0.9249 0.9314 0.0425 0.0427 0.0438
LPP-KNN 0.7711 0.7795 0.8062 0.1153 0.1431 0.1124
LPP-AD 0.9322 0.9272 0.9392 0.0389 0.0383 0.0485

LPP-SDAE 0.8798 0.8781 0.8917 0.1214 0.1304 0.0996
HE-ELM 0.9384 0.9348 0.9433 0.0386 0.0401 0.0372

Note: The minimum and maximum values in each column are underlined and marked with the bold type, respectively.

Table 10. Results of two-tailed t-test comparing HE-ELM with 16 other MW classifiers.

MW Classifier Accuracy Precision Recall

HE-ELM vs. ELM t = 5.9112 p = 0.0006 t = 5.8759 p = 0.0006 t = 4.7131 p = 0.0022
HE-ELM vs. DAE t = 6.1614 p = 0.0005 t = 3.9249 p = 0.0057 t = 4.3161 p = 0.0035
HE-ELM vs. ANN t = 2.9515 p = 0.0213 t = 2.8119 p = 0.0261 t = 3.4224 p = 0.0111
HE-ELM vs. NB t = 6.8741 p = 0.0002 t = 8.0088 p = <0.0001 t = 3.6874 p = 0.0078
HE-ELM vs. LR t = 5.3195 p = 0.0011 t = 4.1021 p = 0.0046 t = 6.3117 p = 0.0004

HE-ELM vs. KNN t = 4.8887 p = 0.0018 t = 4.2814 p = 0.0036 t = 3.1671 p = 0.0158
HE-ELM vs. SDAE t = 5.6262 p = 0.0008 t = 4.6278 p = 0.0024 t = 3.0531 p = 0.0185

HE-ELM vs. Adaboost t = 4.9370 p = 0.0017 t = 4.8494 p = 0.0019 t = 4.9756 p = 0.0016
HE-ELM vs. Deep ELM t = 3.2168 p = 0.0147 t = 0.7537 p = 0.4756 t = 1.9432 p = 0.0931
HE-ELM vs. LPP-DAE t = 3.6243 p = 0.0085 t = 1.5724 p = 0.1599 t = 2.490 p = 0.0416
HE-ELM vs. LPP-NB t = 2.1636 p = 0.0472 t = 1.504 p = 0.1763 t = 1.8093 p = 0.1133
HE-ELM vs. LPP-LR t = 9.8706 p = <0.0001 t = 1.7792 p = 0.1184 t = 3.161 p = 0.0159

HE-ELM vs. LPP-ANN t = 6.8041 p = 0.0003 t = 3.9848 p = 0.0053 t = 3.2927 p = 0.0132
HE-ELM vs. LPP-KNN t = 4.9900 p = 0.0016 t = 3.5837 p = 0.0089 t = 3.8710 p = 0.0061
HE-ELM vs. LPP-AD t = 4.2052 p = 0.004 t = 1.6532 p = 0.1423 t = 0.6349 p = 0.5455

HE-ELM vs. LPP-SDAE t = 1.6693 p = 0.1389 t = 1.4507 p = 0.1902 t = 1.9213 p = 0.0961

Note: The significant cases with value p < 0.05 are marked with the bold type.

The number of hidden layer nodes, the k values for KNN, the number of weak classifiers, and
the proportion of deep ELM classifiers for each subject is summarized in Table 11. As we noted, the
number of hidden neurons under the optimal classification of ELM and deep ELM were lower than
that of ANN and LPP-ANN, respectively. However, the DAE-based MW classifier possessed the
simplest structure with a minimum number of hidden nodes. For LPP-AD, the average number of
iterations was lower than Adaboost. The number of neurons on the two hidden layers of LPP-SDAE
was less than that of SDAE. For HE-ELM, 77.8% weak classifiers in average were constructed via
deep ELMs. The remaining 22.2% was generated by NB models. For all eight subjects, the optimal
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structure hyper-parameters varied significantly, which indicates an individual-specific MW classifier
is necessary.

Table 11. Optimal structure hyper-parameters of the MW classifiers.

Subject
index

ELM DAE ANN KNN
SDAE

Adaboost Deep
ELM

LPP-DAE LPP-ANN LPP-KNN
LPP-SDAE

LPP-AD HE-ELM
1 2 1 2

S1 331 121 1261 23 90 150 58 301 121 61 13 130 30 1 6 (66.6%)
S2 281 351 551 6 110 150 64 101 291 231 30 50 70 19 6 (66.6%)
S3 351 111 1041 4 130 130 51 321 111 461 12 70 130 29 11 (90.9%)
S4 391 101 451 76 150 130 62 161 101 371 35 70 130 65 6 (100%)
S5 221 151 101 14 130 10 63 161 151 71 38 130 130 21 6 (66.6%)
S6 511 261 421 10 130 10 64 131 261 361 27 30 110 17 1 (100%)
S7 231 61 1051 35 130 90 60 201 191 931 95 50 90 18 4 (50.0%)
S8 571 121 951 36 110 150 65 161 231 741 16 110 90 23 11 (81.8%)

Average 361 160 729 26 58 48 29 192 182 403 33 38 46 11 6 (77.8%)

Note: The hyper-parameters of ELM, ANN, DAE, SDAE, deep ELM, LPP-SDAE, LPP-ANN and LPP-DAE are the
number of hidden neurons. The hyper-parameter of KNN and LPP-KNN is the number of the k nearest neighbors.
The hyper-parameter of Adaboost and LPP-AD is the number of iterations. The hyper-parameters of HE-ELM are
the number of weak classifiers and the proportion of deep ELM classifiers. In particular, “1” represents the first
hidden layer and “2” represents the second hidden layer.

3.3. Computational Cost Comparison

The average CPU time for training and testing a MW classifier on the EEG feature set for a single
subject is shown in Table 12. From the table, the LPP-NB and Adaboost achieved the lowest and
the highest computational burden. Adaboost had the highest computational cost mainly because it
required a large number of iterations on the data set of this experiment. The main reason for the high
computational overhead of HE-ELM is that HE-ELM method tried to select suitable weak classifiers
in each iteration and each weak classifier can be either an ELM or a NB-based classification model.
Thus, the shortcoming of HE-ELM is its high computational cost in training although it effectively
improves the MW classification accuracy compared to the classical ELM algorithm. For other classifiers,
using LPP for dimensionality reduction can significantly reduce the computational cost. A high
computational burden can be observed in the machine learning approaches using gradient decent
optimization, e.g., DAE, SDAE, and ANN.

Table 12. Average CPU time (in sec) for training and testing a MW classifier with a EEG feature set for
a single subject. The standard deviation (denoted by s.d.) and mean values are calculated across 50
repeated trials.

Classifier
Training Testing

Mean s.d. Mean s.d.

ELM 0.3045 0.0273 0.5744 0.0280
NB 0.1694 0.1795 0.0243 0.0155

KNN 0.0162 0.0396 0.5725 0.0322
DAE 1.7840 0.1250 0.1740 0.0379
ANN 3.2071 1.1786 0.0356 0.0126

LR 3.3983 0.1305 0.0168 0.0359
SDAE 11.275 0.6258 0.1325 0.0231

Adaboost 31.504 0.5583 0.0234 0.0211
Deep ELM 0.2162 0.0447 0.1891 0.0292

LPP-NB 0.0371 0.0117 0.0090 0.0141
LPP-KNN 0.0103 0.0112 0.1279 0.0148
LPP-DAE 1.8040 0.0810 0.1690 0.0240
LPP-ANN 1.3790 0.4569 0.0624 0.0221

LPP-LR 0.0440 0.0186 0.0044 0.0151
LPP-SDAE 12.142 1.3520 0.1277 0.0323

LPP-AD 5.6332 0.0651 0.0109 0.0105
HE-ELM 9.030 0.1970 0.2552 0.0709

Note: The minimum and maximum values in each column are underlined and marked with the bold type, respectively.
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3.4. Visualization of the Intermediate EEG Feature Representations

The intermediate EEG features abstracted in hidden layers of the deep ELM in HE-ELM are shown
in Figure 11. To facilitate visualizing the abstraction distribution, three representative hidden variables
from the EEG dataset of two subjects were selected to be illustrated in 3-D scatter plots. It was shown
the abstraction vectors corresponding to low and high MW levels can be clearly distinguished after
EEG features were properly mapped via hidden units of the weak classifier in HE-ELM. In the 1st
hidden layer, the 137 EEG features (the first three features are shown in Figure 11a,d) were fused into
27 hidden variables (the first three variables are plotted in Figure 11a,b,d,e). The first abstraction layer
of the neural network of Deep ELM was added by LPP method. It is noted the abstraction vectors in
Figure 11c,f are more concentrated than that shown in Figure 11a,d. It implies the deep architecture is
helpful for salient information fusion when EEG feature from multiple domains are available.
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Figure 11. 3-D scatter plots of the EEG feature abstractions for low and high MW classes extracted
from EEG features from two subjects, (a–c) S2, (d–f) S3. Subfigures (a,d) visualize the EEG features;
Subfigures (b,e) depict the outputs of the first hidden layer in HE-ELM; Subfigures (c,f) show the
outputs of the activations in the second hidden layer.

4. Discussion

The proposed HE-ELM for MW assessment integrates ELMs with classical NB models to form
a heterogeneous strong classifier. To ensure the effectiveness of the integrated ensemble committee,
the hyper-parameters of each weak classifier were set to be different. On the premise of ensuring the
model diversity, the iteration programming was performed until it reached the highest classification
performance. To find the optimal structure of the HE-ELM, we first implemented the Adaboost-ELM
and observed that the ELM ensemble outperformed the classical ELM when a moderate amount of
iterations was used. However, the performance improvement was marginal since the data distribution
of the EEG features shared a great individual difference. Therefore, we implemented a deep ELM
network structure to find the stable EEG feature representation combined with an individual-specific
(or subject-dependent) classification paradigm.

According to the existing literature related to the machine-learning-based EEG classification, a
group of effective classifiers were validated such as NB, ANN, KNN algorithm, DAE, and LR. We
compared the HE-ELM against the above approaches and the former achieved the highest performance.
Several observations were found when tackling high dimensional EEG features. The KNN method
easily over-fits when the k value is set too small [51]. On the other hand, its computational complexity
increases with a large k used. The performance of the ANN with a single hidden layer is unstable
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because its shallow structure is incapable of fusing the noised EEG features. By adding noised training
samples to make the output similar to the input signal [52], DAE achieves better performance than ANN.
The LR model maps the range of the original output results to an interval of (0,1) by a logistic sigmoid
function [53]. However, the lack of the intermediate feature representation limits the adaptability of
DAE and LR on individual-dependent EEG feature sets.

In the literature, Ayaz et al. measured operator MW in an unmanned aerial vehicle control task.
Based on one-way repeated measures ANOVA analysis of the fNIRS data, significant differences
between the MW indices corresponding to different task demands have been found [16]. In our
previous work, the RBF-kernel and the linear-kernel based SVM were utilized for assessing binary
MW [54]. The average classification accuracy was obtained from 0.7912 to 0.9317. An adaptive Stacked
Denoising AutoEncoder (A-SDAE) was used in the binary MW classification problem in [21]. By
employing the dimensionality of EEG features of 55, the mean value of accuracy on seven subjects
was 0.8579. In the current work, the average accuracy of the HE-ELM algorithm finally obtained on
all eight subjects was 0.9384. The improvement of the HE-ELM performance with ensemble learning
principle was partially found. Because the training and testing environment was different, it is difficult
to achieve strict performance analysis.

Although the HE-ELM improves the performance of the standard ELM as well as the LPP-based
deep ELM, the main limitation is that the technology is an offline simulation and its training time cost
is significantly higher than single, shallow machine learning models. In particular, the classification
method proposed in this paper is for offline simulation and was not tested in an online fashion. It
leads to a limitation that the proposed algorithm requires the entire dataset and cannot be scheduled in
real time. Moreover, the training time cost is significantly higher than single, shallow machine learning
models and this problem may impair the effectiveness for retraining the MW classifier on the EEG
data from a novel operator of the human–machine system. When the size of sample is too large, the
number of required iterations for HE-ELM will increase since more suitable weak classifiers need to be
generated. However, the computational cost of HE-ELM was mainly introduced in the training stage.
When the trained HE-ELM model is used for testing unseen EEG feature vectors, the required time
is still comparable to shallow MW classifiers. It is also noted that an additional hyper-parameter of
HE-ELM was introduced, i.e., the optimal number of iterations. By observing Table 11, we found it
affects the value of the accuracy when individual-specific MW classifier ensemble was employed. The
technical challenge of this paper is how to find the appropriate NB models to iterate with ELM models,
so as to effectively improve the classification performance. In many cases, the selected NB model may
reduce the classification performance of the final strong classifier. The other possible limitation is that
the size of the training data is insufficient to achieve stable online performance. Therefore, it should be
noted the accuracy cannot be guaranteed in online, real world application developments. In future
work, the online MW recognition of the proposed method should be investigated and validated.

As a future direction, it is promising to investigate whether a generic MW classifier ensemble
can be found for all individuals in an online fashion. It is noted that the fNIRS is an optical brain
monitoring technique that has been used to evaluate MW in ecologically valid environments [16]. The
merits of fNIRS are its low invasiveness for data acquisition and high reliability. However, the current
fNIRS device is not suitable for monitoring all cortical areas while the time resolution of the acquired
data need to be enhanced. The BCI-based MW assessment system that fuses both the EEG and fNIRS
modalities is a promising solution. Such a hybrid system has been documented in Babiloni et al. [55].
The ensemble learning based approach such as our HE-ELM may be helpful for fusing features from
two different domains. The possible obstacles can be the synchronicity of the EEG and fNIRS features,
the higher computational burden, and the difference of the sampling frequency on two modalities
when the online MW assessment is implemented.
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5. Conclusions

In this paper, we present a new machine-learning based OFS evaluator, HE-ELM, to classify EEG
features into binary levels of MW. Under an individual-specific modeling paradigm, the HE-ELM
was constructed by heterogeneous deep ELM and NB weak classifiers. Two types of the member
classifier structure were employed to enhance the diversity of the classification committee generated
via the Adaboost algorithm. To find the proper hyper-parameters of the proposed ensemble model,
the number of hidden nodes and the optimal activation function for HE-ELM were identified. To
validate the effectiveness of HE-ELM, we introduced eight EEG feature sets via the hold-out method to
build training and testing sets. The classical single, and shallow MW classifiers were employed for
comparison on the classification accuracy and the computational cost. We found the HE-ELM model
superior in improving the individual-specific accuracy of MW assessments although it is at the cost
of the training burden. The HE-ELM algorithm in this paper is an offline simulation, but it may be
possible to solve this problem in the future by combining it with fNIRS technology. The combined EEG
and fNIRS hybrid system may have some disadvantages such as computational cost. In general, the
combined EEG and fNIRS hybrid system is worth a try in the assessment of MW in the future.
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