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KÄHLER STRUCTURES ON QUANTUM IRREDUCIBLE FLAG
MANIFOLDS

MARCO MATASSA

Abstract. We prove that all quantum irreducible flag manifolds admit Kähler structures,
as defined by Ó Buachalla. In order to show this result, we also prove that the differential
calculi defined by Heckenberger and Kolb are differential ∗-calculi in a natural way.

Introduction

Within the realm of non-commutative geometry, the study of structures coming from com-
plex geometry is a relatively new trend, see for instance the papers [FGR99, BeSm13, ÓBu16].
Here we are interested in Kähler structures, which were defined recently in [ÓBu17]. Recall
that the existence of a Kähler structure on a complex manifold has many far-reaching conse-
quences, see [Huy05] for an overview. As shown in [ÓBu17], many of these consequences also
hold in the non-commutative setting, provided they are reformulated accordingly.

The main problem then becomes to prove the existence of such Kähler structures. In the
paper [ÓBu17] it was shown that they do exist for the class of quantum projective spaces.
More generally, it was conjectured that they should exist for all quantum irreducible flag
manifolds. The aim of this paper is to answer this conjecture in the affirmative.

Recall that a (generalized) flag manifold is a homogeneous space of the form G/P , where
P is a parabolic subgroup of G. These spaces admit natural Kähler structures and moreover
they exhaust all compact homogeneous Kähler manifolds [Wan54]. The condition of being
irreducible is equivalent to G/P being a symmetric space. Hence the class of irreducible flag
manifolds coincides with that of irreducible compact Hermitian symmetric spaces.

Quantum flag manifolds can be defined straightforwardly in terms of quantum subgroups
of the quantum groups Cq[G], see [StDi99]. The class of quantum irreducible flag manifolds
is singled out by a series of important results of Heckenberger and Kolb [HeKo04, HeKo06].
They show that these quantum spaces admit a canonical q-analogue of the de Rham complex,
with the homogenous components having the same dimensions as in the classical case. We
stress that this is definitely not the case for general quantum spaces.

Since the definition of a Kähler structure on a quantum space requires the existence of a
differential calculus, quantum irreducible flag manifolds clearly provide the best avenue for
testing this concept. However there is an obstacle that needs to be overcome: to study the
existence of Kähler structures we actually need to have a differential ∗-calculus, a structure
which has not been introduced yet for the Heckenberger-Kolb calculi.

For this reason the paper contains two main results. The first result is Theorem 4.2, which
shows that the Heckenberger-Kolb calculus Ω• over Cq[G/PS] becomes a differential ∗-calculus
in a natural way. The second result is Theorem 5.9, which shows the existence of a Kähler
structure on Ω•, thus proving the conjecture formulated in [ÓBu17, Conjecture 4.25].

These results provide some further steps in the general understanding of complex geometry
within the quantum setting. Of course, many more questions still remain to be answered.
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As an example, the question of positive-definiteness of the quantum metric coming from the
Kähler structure, as defined in [ÓBu17], certainly deserves further study.

The organization of the paper is as follows. In Section 1 we discuss various preliminaries
related to quantized enveloping algebras and quantum coordinate rings. In Section 2 we recall
various basic definitions regarding differential calculi, as well as the notions of Hermitian and
Kähler structures. In Section 3 we review the description of quantum flag manifolds in terms of
generators and relations. In Section 4 we present the Heckenberger-Kolb calculi and we prove
our first main result, namely that they are naturally differential ∗-calculi. In Section 5 we
prove our second main result, namely the existence of Kähler structures for these differential
∗-calculi. Finally in Appendix A and Appendix B we prove various identities, mainly related
to the braiding, which are used in the proofs of the main text.

Acknowledgements. I would like to thank Réamonn Ó Buachalla for his comments on this paper.

1. Notations and preliminaries

In this section we recall some basic facts concerning quantized enveloping algebras and
quantum coordinate rings, as well as fixing some notations. More details and missing expla-
nations can be found in textbooks such as [KlSC97, NeTu13].

1.1. Quantized enveloping algebras. Let g be a complex simple Lie algebra, with Cartan
subalgebra h, and denote by (·, ·) the non-degenerate symmetric bilinear form on h∗ induced
by the Killing form. We denote by Uq(g) the quantized enveloping algebra of g, the Hopf
algebra with generators {Ki, Ei, Fi}ri=1 and relations as in [HeKo06]. In particular we have

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗Ki + 1⊗Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

S(Ki) = K−1
i , S(Ei) = −EiK

−1
i , S(Fi) = −KiFi.

With these conventions we have the identity S2(X) = K2ρXK−1
2ρ , where ρ is the half-sum of

the positive roots of g. We will consider 0 < q < 1, so that we have a ∗-structure corresponding
to the compact real form of g. For instance we can take

K∗
i = Ki, E∗

i = FiKi, F ∗
i = K−1

i Ei.

We remark that the precise form of the ∗-structure will not matter in the following, hence we
are free to replace it with any other equivalent one.

For 0 < q < 1 the representation theory of Uq(g) is essentially the same as for U(g). Hence
for any dominant weight λ we have a Uq(g)-module V (λ). Recall that the dual space V ∗

becomes a Uq(g)-module by (Xf)(v) := f(S(X)v), where v ∈ V and f ∈ V ∗.
Next we will consider the braiding on the category of Uq(g)-modules, namely a collection

of Uq(g)-module isomorphisms R̂V,W : V ⊗W → W ⊗ V , where V and W are Uq(g)-modules.
We will follow the choice of [HeKo06]: the braiding is uniquely determined by the requirement
that R̂V,W is a Uq(g)-module isomorphism and by the condition

R̂V,W (vhw ⊗ wlw) := q(wtvhw,wtwlw)wlw ⊗ vhw,

where vhw is a highest weight vector of V and wlw is a lowest weight vector of W . Choosing
a basis {vi}i of V and a basis {wj}j of W , we will write

R̂V,W (vi ⊗ wj) =
∑

k,l

(R̂V,W )klijwk ⊗ vl.
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1.2. Quantum coordinate rings. Next we recall the quantum coordinate rings Cq[G], which
are essentially the Hopf ∗-algebras duals to Uq(g). They are obtained from the matrix co-
efficients of the finite-dimensional (type 1) representations of Uq(g). Recall that, given a
Uq(g)-module V , the matrix coefficients are given by

cVf,v(X) := f(Xv), f ∈ V ∗, v ∈ V.

By a Uq(g)-invariant inner product on V we mean an inner product (·, ·) : V × V → C,
conjugate-linear in the first variable, such that

(Xv,w) = (v,X∗w), ∀v, w ∈ V, ∀X ∈ Uq(g).

It is well-known that if V is a simple module then this inner product is unique, up to a
constant. Now fix (·, ·) on V and take an orthonormal basis {vi}i. Then the elements of the
dual basis {fi}i of V ∗ can be identified with fi = (vi, ·). In this case we write

uV
ij := cVfi,vj .

If V = V (λ) is a simple Uq(g)-module of highest weight λ, we will also write

cλf,v := c
V (λ)
f,v , uλ

ij := u
V (λ)
ij .

It is easy to see that the elements uV
ij satisfy the relations

∆(uV
ij) =

∑

k

uV
ik ⊗ uV

kj, (uV
ij)

∗ = S(uV
ji).

Moreover, since S2(X) = K2ρXK−1
2ρ we have

S2(uV
ij) = q(2ρ,wtvi−wtvj)uV

ij.

2. Differential calculi

In this section we recall various notions related to the description of differential calculi on
quantum spaces. In particular we consider the notions of Hermitian and Kähler structures,
as defined in [ÓBu17]. Moreover we recall some aspects of Takeuchi’s categorical equivalence,
which is a quite useful tool when dealing with differential calculi.

2.1. First order differential calculus. A first order differential calculus (FODC) over an
algebra A is an A-bimodule Γ together with a linear map d : A → Γ, such that Γ =
span{ad(b)c : a, b, c ∈ A} and d satisfies the Leibnitz rule

d(ab) = d(a)b+ ad(b).

If A is a ∗-algebra, then Γ is a ∗-FODC if the ∗-structure of A extends to a ∗-structure of Γ
in such a way that d(a)∗ = d(a∗).

Suppose in addition that H is a Hopf algebra and ∆A : A → H ⊗A is a left H-comodule
algebra structure on A. Then Γ is called left-covariant if there exists a left H-comodule
structure ∆Γ : Γ → H⊗ Γ on Γ such that

∆Γ(ad(b)c) = ∆A(a)(id⊗ d)(∆A(b))∆A(c).

Given a family of FODCs {(Γi, di)}ni=1, their direct sum is the FODC (Γ, d) with d =
⊕

i di
and Γ = A · d(A) ⊂

⊕
i Γi. If the calculi are left covariant then so is their direct sum.

Finally, suppose that B ⊂ A is a subalgebra and (Γ, d) is a FODC over A. Then there is a
FODC (Γ|B, d|B) over B defined by

Γ|B := {ad(b) : a, b ∈ B}, d|B(a) := d(a), ∀a ∈ B.
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This FODC is called the FODC over B induced by Γ.

2.2. Higher order differential calculus. A differential calculus over A is a differential
graded algebra (Γ∧ =

⊕
k∈N Γ

∧k, d) such that Γ∧0 = A and Γ∧ is generated by A and dA.
We say that Γ∧ has dimension n if Γ∧n 6= 0 and Γ∧k = 0 for k > n.

If A is a ∗-algebra, then Γ∧ is a differential ∗-calculus if the ∗-structure of A extends to an
involution of Γ such that d(ω)∗ = d(ω∗) for any ω ∈ Γ and moreover

(ω ∧ χ)∗ = (−1)pqχ∗ ∧ ω∗, ω ∈ Γ∧p, χ ∈ Γ∧q.

An element ω ∈ Γ∧ is called real if ω∗ = ω.
Given a FODC Γ over A, there exists a universal differential calculus (Γ∧

u , du), uniquely
determined by the following property: if Γ∧ is any differential calculus over A such that
Γ∧1 = Γ, then Γ is isomorphic to a quotient of Γ∧

u . The ∗-structure lifts to the universal
differential calculus, meaning that if Γ is a ∗-FODC then Γ∧

u is a differential ∗-calculus in a
canonical way, see [KlSC97, Chapter 12, Proposition 4].

2.3. Hermitian and Kähler structures. Many structures from complex geometry can be
adapted to the quantum setting, as discussed in [ÓBu17]. We will now recall the notions of
Hermitian and Kähler structures, as defined in the cited paper. In this subsection (Ω•, d) will
denote a differential ∗-calculus of dimension 2n.

Definition 2.1. An almost symplectic form is a central real 2-form σ ∈ Ω• satisfying the
following property: denoting by Lσ : Ω• → Ω• the Lefschetz map given by Lσ(ω) := σ ∧ ω,
the map Ln−k

σ : Ωk → Ω2n−k is an isomorphism for all k = 0, · · · , n− 1.

We will omit the subscript σ in the following, as the dependence will be clear.

Definition 2.2. A Hermitian structure for Ω• is a pair (Ω(•,•), σ), where Ω(•,•) is a complex
structure and σ is an almost symplectic form, called the Hermitian form, such that σ ∈ Ω(1,1).

For the definition of complex structures in this context we refer to [ÓBu17] and [KLvS11].

Definition 2.3. A Kähler structure for Ω• is a Hermitian structure (Ω(•,•), κ), such that the
Hermitian form κ is d-closed.

The existence of such structures on a differential calculus Ω• has various consequences, as
in the classical case. We refer to [ÓBu17] for these results and more background material.

2.4. Takeuchi’s categorical equivalence. We will now briefly review some aspects of
Takeuchi’s categorical equivalence [Tak79], following [HeKo06, Section 2.2.8].

Let B ⊂ A be a left coideal subalgebra of a Hopf algebra A with bijective antipode. Then
C := A/B+A is a right A-module coalgebra, where B+ := {b ∈ B : ε(b) = 0}. Let A

BM
denote the category of left A-covariant left B-modules and let CM denote the category of left
C-comodules. Then there exist functors

Φ : A
BM → CM, Φ(Γ) := Γ/B+Γ,

Ψ : CM → A
BM, Ψ(V ) := A�CV.

Here �C denotes the cotensor product over C.

Theorem 2.4 ([Tak79, Theorem 1]). Suppose that A is a faithfully flat right B-module. Then

Φ and Ψ give rise to an equivalence of categories between A
BM and CM.

For all the algebras considered in this paper the condition of being faithfully flat will be
satisfied, hence we will be able to use Takeuchi’s categorical equivalence.



KÄHLER STRUCTURES ON QUANTUM IRREDUCIBLE FLAG MANIFOLDS 5

3. Quantum flag manifolds

In this section we define the quantum flag manifolds Cq[G/PS] and recall their presentation
by generators and relations, as given by Heckenberger and Kolb. Moreover we will discuss
the ∗-structure on Cq[G/PS] and its action on the generators.

3.1. Generators. Let S ⊆ Π be a subset of the simple roots of g. Corresponding to any such
choice we have the Levi factor lS, which is a subalgebra of the standard parabolic subalgebra
pS. In the quantum setting we define the quantized Levi factor by

Uq(lS) := 〈Kλ, Ei, Fi : i ∈ S〉 ⊆ Uq(g).

Here 〈·〉 denotes the algebra generated by these elements in Uq(g). Note that this is a Hopf
∗-subalgebra. Then we define the quantum flag manifold corresponding to G/PS by

Cq[G/PS] := Cq[G]Uq(lS) = {a ∈ Cq[G] : Xa = ε(X)a, ∀X ∈ Uq(lS)}.
In the classical case the following realization of G/PS is well-known. Consider the dominant

weight λ :=
∑

i/∈S ωi and write N := dimV (λ). Then G/PS is isomorphic to the G-orbit of
the highest weight vector vλ ∈ V (λ) in the projective space P(V (λ)).

We will fix a weight basis {vi}Ni=1 of V (λ), with the convention that vN is a highest weight
vector. Denote by {fi}Ni=1 the dual basis of V (λ)∗ ∼= V (−w0λ). Then we define

zij := cλfi,vN c
−w0λ
vj ,fN

∈ Cq[G], i, j = 1, · · · , N.

Here in writing c−w0λ
vj ,fN

, we consider the element vj ∈ V (λ) as an element of V (λ)∗∗.
Let us explain this point in more detail, as it can give rise to some confusion. Given a

finite-dimensional Uq(g)-module V , we have a map V → V ∗∗ which assign to v ∈ V the linear
functional ṽ ∈ V ∗∗ given by ṽ(f) := f(v), where f ∈ V ∗. The map V → V ∗∗ is a vector space
isomorphism, but not an isomorphism of Uq(g)-modules, since we have the relation

Xṽ(f) = f(S2(X)v) = S̃2(X)v(f).

The upshot is that we can identify V ∗∗ with V in terms of the action X · v = S2(X)v.

Proposition 3.1 ([HeKo06, Proposition 3.2]). The elements {zij}Ni,j=1 generate Cq[G/PS].

Observe that Cq[G/PS] has a natural factorization in terms of the algebras

Sq[G/PS] := {cλf,vN : f ∈ V (λ)∗}, Sq[G/P op
S ] := {c−w0λ

v,fN
: v ∈ V (λ)∗∗}.

These are the quantum analogues of the homogeneous coordinate rings of G/PS and G/P op
S .

3.2. Relations. In order to present the relations for the quantum flag manifolds Cq[G/PS],
it is convenient to introduce some auxiliary algebras. First we define two algebras A+ and
A− as follows. The algebra A+ has generators f

1, · · · , fN and relations

f
i
f
j = q−(λ,λ)

∑

k,l

(R̂V,V )
ij
klf

k
f
l.

The algebra A− has generators v
1, · · · , vN and relations

v
i
v
j = q−(λ,λ)

∑

k,l

(R̂V ∗,V ∗)ijklv
k
v
l.
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They become Uq(g)-module algebras by identifying {f i}Ni=1 with the basis {fi}Ni=1 of V (λ)∗

and {vi}Ni=1 with the basis {vi}Ni=1 of V (λ)∗∗. In this way we obtain Uq(g)-module algebra
isomorphisms between Sq[G/PS] and A+ and between Sq[G/P op

S ] and A−, given by

f
i 7→ cλfi,vN , v

i 7→ c−w0λ
vi,fN

.

Next we define the algebra AC := A+ ⊗A− with the exchange relations

v
i
f
j := q(λ,λ)

∑

k,l

(R̂V,V ∗)ijklf
k
v
l.

The algebra AC admits a central invariant element defined by

c :=
∑

i

v
i
f
i.

Hence we can define A := AC/〈c−1〉. It becomes a Z-graded algebra upon setting deg f i = −1
and deg vi = 1. Finally we write B := A0 for the degree zero part of A.

Proposition 3.2 ([HeKo06, Proposition 3.2]). We have an isomorphism of Uq(g)-module

algebras B ∼= Cq[G/PS] given by f
i
v
j 7→ zij.

3.3. *-structure. The quantum flag manifolds Cq[G/PS] are naturally ∗-algebras, since they
are defined by invariance with respect to the Hopf ∗-algebras Uq(lS). This ∗-structure can
be transported to the algebras A and B. However we will introduce a ∗-structure on A from
scratch, as a warm-up to the case of the ∗-calculi to be discussed in the next section.

To make our life easier, we will assume from now on that the basis {vi}Ni=1 of V (λ) is
orthonormal with respect to a Uq(g)-invariant inner product.

Proposition 3.3. The algebras A and B become ∗-algebras upon setting f
i∗ = v

i.

Proof. First we check that we obtain a ∗-structure on AC in this way. It suffices to check that
the relations of AC are preserved under ∗. We compute

(fjf i)∗ = v
i
v
j = q−(λ,λ)

∑

k,l

(R̂V ∗,V ∗)ijklv
k
v
l

= q−(λ,λ)
∑

k,l

(R̂V,V )
ji
lkv

k
v
l =

(
q−(λ,λ)

∑

k,l

(R̂V,V )
ji
lkf

l
f
k

)∗

,

where we have used the first identity of Proposition A.3, which we note requires the use of
the orthonormal basis {vi}Ni=1. Similarly for the relation between the v

i generators.
Next we look at the cross-relations. We compute

(vjf i)∗ = v
i
f
j = q(λ,λ)

∑

k,l

(R̂V,V ∗)ijklf
k
v
l

= q(λ,λ)
∑

k,l

(R̂V,V ∗)jilkf
k
v
l =

(
q(λ,λ)

∑

k,l

(R̂V,V ∗)jilkf
l
v
k

)∗

,

where we have used the second identity of Proposition A.3. Finally this ∗-structure descends
to the quotient A = AC/〈c− 1〉, since we have c

∗ = c. �

Now we show that this ∗-structure agrees with the one on Cq[G/PS].

Corollary 3.4. The map f
i
v
j 7→ zij is an isomorphism of Uq(g)-module ∗-algebras.
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Proof. We have (f ivj)∗ = f
j
v
i, hence it suffices to show that (zij)∗ = zji. First we claim that

S(cVf,v) = cV
∗

ṽ,f , where we use the notation ṽ(f) = f(v). Indeed we compute

S(cVf,v)(X) = cVf,v(S(X)) = f(S(X)v) = (Xf)(v) = ṽ(Xf) = cV
∗

ṽ,f(X).

Hence zij = cλfi,vNS(c
λ
fN ,vj

). Moreover, since {vi}Ni=1 is an orthonormal basis, we can write
uλ
ij = cλfi,vj and use (uV

ij)
∗ = S(uV

ji). Therefore zij = uλ
iN(u

λ
jN)

∗, which shows (zij)∗ = zji. �

4. Heckenberger-Kolb calculi and ∗-structures

In this section we will consider the Heckenberger-Kolb calculus over B ∼= Cq[G/PS], where
G/PS is an irreducible flag manifold. We will show that this calculus is naturally a ∗-calculus,
where the ∗-structure on B ⊂ A is the one introduced in the previous section. After giving a
brief presentation of the Heckenberger-Kolb calculi, we give the necessary definitions for the
two FODCs Γ∂ and Γ∂, whose direct sum gives the FODC Γd. To show that Γd is a ∗-calculus
we will check that the relations are compatible with the ∗-structure of B.

4.1. The calculi in brief. From this point on we will restrict to the case of irreducible

flag manifolds G/PS. These spaces can be characterized by the following condition: we have
S = Π\{αs} and the simple root αs has multiplicity 1 in the highest root of g. In the following
the index s will always be associated to the simple root αs removed from the set S. Observe
that in this case we have λ = ωs, where λ is defined as in Section 3.

In the paper [HeKo04], Heckenberger and Kolb show that there exist exactly two non-
isomorphic covariant FODCs over Cq[G/PS]. We denote them by Γ∂ and Γ∂ , as they classically
correspond to the holomorphic and anti-holomorphic calculi on the complex manifold G/PS,
and write Γd = Γ∂⊕Γ∂ for their direct sum. In the follow-up paper [HeKo06], they investigate
the universal differential calculi Γ∧

d,u built from Γd. They show that these calculi have classical
dimensions and have many of the features of the classical calculi over G/PS.

Before giving the details, let us first outline the main steps of this construction. First we
define a FODC Γ+ over A+. Then using Γ+ we construct a FODC Γ+,C over AC. By taking
an appropriate quotient, we obtain a FODC Γ+,C/Λ+ over A. Finally the calculus Γ∂ over B
is simply the calculus induced by Γ+,C/Λ+ over A. A similar construction gives Γ∂ starting
from A−. Hence we obtain the FODC Γd over B as the direct sum of Γ∂ and Γ∂ .

Therefore we get the universal differential calculi Γ∧
d,u, which we will also denote by Ω•.

Hence d = ∂ + ∂ is a differential and we have the relation ∂ ◦ ∂ = −∂ ◦ ∂.

4.2. The FODC Γ∂. First we present the construction of the FODC Γ∂ over B. We start
from the left A+-module Γ+ generated by the elements {df i}Ni=1 and the relations

∑

i,j

(P̂V Q̂V )
kl
ij f

idfj = 0. (4.1)

Here we make use of the notations

P̂V := R̂V,V − q(ωs,ωs)id, Q̂V := R̂V,V + q(ωs,ωs)−(αs ,αs)id.

We can make Γ+ into an A+-bimodule by setting

(df i)fj = q(αs,αs)−(ωs,ωs)
∑

k,l

(R̂V,V )
ij
klf

kdf l. (4.2)

Next we consider the left AC-module Γ+,C defined by

Γ+,C := AC ⊗A+ Γ+.
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It becomes an AC-bimodule by setting

(df i)vj = q−(ωs,ωs)
∑

k,l

(R̂−1
V,V ∗)

ij
klv

kdf l. (4.3)

We have a differential ∂ : AC → Γ+,C given by

∂(f i) = df i, ∂(vi) = 0.

In the following we will always write df i = ∂(f i).
Let Λ+ ⊂ Γ+,C be the sub-bimodule generated by ∂(c), (c− 1)Γ+,C and Γ+,C(c− 1). Then

the quotient Γ+,C/Λ+ is a FODC over A. Finally Γ∂ is the FODC over B induced by Γ+,C/Λ+.

4.3. The FODC Γ∂. Next we introduce the second covariant FODC (Γ∂, ∂) over A. Consider
the left A−-module Γ− generated by the elements {dvi}Ni=1 and the relations

∑

i,j

(P̂V ∗Q̂V ∗)klijv
idvj = 0. (4.4)

Here we are using the notations

P̂V ∗ := R̂V ∗,V ∗ − q(ωs,ωs)id, Q̂V ∗ := R̂V ∗,V ∗ + q(ωs,ωs)−(αs,αs)id.

We turn the left A−-module Γ− into an A−-bimodule by

(dvi)vj = q(ωs,ωs)−(αs,αs)
∑

k,l

(R̂−1
V ∗,V ∗)

ij
klv

kdvl. (4.5)

Next we consider the left AC-module Γ−,C defined by

Γ−,C := AC ⊗A−
Γ−.

It becomes an AC-bimodule by setting

(dvi)fj = q(ωs,ωs)
∑

k,l

(R̂V,V ∗)ijklf
kdvl. (4.6)

We have a differential ∂ : AC → Γ−,C given by

∂(f i) = 0, ∂(vi) = dvi.

In the following we will always write dvi = ∂(vi).
Let Λ− ⊂ Γ−,C be the sub-bimodule generated by ∂(c), (c− 1)Γ−,C and Γ−,C(c− 1). Then

the quotient Γ−,C/Λ− is a FODC over A. Finally Γ∂ is the FODC over B induced by Γ−,C/Λ−.

4.4. Differential *-calculus. We will now investigate whether the FODC Γd over the ∗-
algebra B can be made into a differential ∗-calculus. We start with a simple lemma.

Lemma 4.1. The relations (4.1), (4.2) and (4.3) in Γ+,C are equivalent to
∑

i,j

(P̂V Q̂V )
kl
ij∂(f

i)fj = 0,

f
i∂(fj) = q(ωs,ωs)−(αs ,αs)

∑

k,l

(R̂−1
V,V )

ij
kl∂(f

k)f l,

v
i∂(fj) = q(ωs,ωs)

∑

k,l

(R̂V,V ∗)ijkl∂(f
k)vl.
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Similarly the relations (4.4), (4.5) and (4.6) in Γ−,C are equivalent to
∑

i,j

(P̂V ∗Q̂V ∗)klij∂(v
i)vj = 0,

v
i∂(vj) = q(αs,αs)−(ωs,ωs)

∑

k,l

(R̂V ∗,V ∗)ijkl∂(v
k)vl,

f
i∂(vj) = q−(ωs,ωs)

∑

k,l

(R̂−1
V,V ∗)

ij
kl∂(v

k)f l.

Proof. Most of the identities follow straightforwardly by applying the inverse of the appropri-
ate braiding. The only non-trivial identities are those following from (4.1) and (4.4). Let us
consider the first one. Plugging the identity for f i∂(fj) into (4.1) we obtain

q(ωs,ωs)−(αs,αs)
∑

i,j

(P̂V Q̂V R̂
−1
V,V )

kl
ij∂(f

i)fj = 0.

Then using the relation P̂V Q̂V R̂
−1
V,V = R̂−1

V,V P̂V Q̂V and multiplying on the left by R̂V,V we
obtain the result. The second identity is obtained similarly. �

We are now ready to prove the main result of this section.

Theorem 4.2. The differential calculus (Γ∧
d,u, d) over B is a differential ∗-calculus.

Proof. We have already mentioned that it suffices to show that the FODC (Γd, d) is a ∗-
FODC. Consider the requirement d(a)∗ = d(a∗). Using f

i∗ = v
i, together with the relations

d(f i) = ∂(f i) and d(vi) = ∂(vi), we immediately find ∂(f i)∗ = ∂(vi). Now we have to check
that the relations in Γ are preserved by this candidate ∗-structure.

We start with the relations (4.1) and (4.4). Observe that (P̂V )klij = (P̂V ∗)lkji and (Q̂V )klij =

(Q̂V ∗)lkji, which follows from their definitions and Proposition A.3. Then we have
(
∑

i,j

(P̂V Q̂V )
kl
ij f

i∂(fj)

)∗

=
∑

i,j

(P̂V ∗Q̂V ∗)lkji∂(v
j)vi = 0,

where the last identity follows from Lemma 4.1. Similarly for the relation (4.4).
Next consider the relations (4.2) and (4.5). Using Lemma 4.1 we compute

(∂(f i)fj)∗ = v
j∂(vi) = q(αs,αs)−(ωs,ωs)

∑

k,l

(R̂V ∗,V ∗)jikl∂(v
k)vl

=

(
q(αs,αs)−(ωs,ωs)

∑

k,l

(R̂V,V )
ij
lkf

l∂(fk)

)∗

,

where we have used (R̂V,V )klij = (R̂V ∗,V ∗)lkji from Proposition A.3.
Next let us consider (4.3) and (4.6). Using Lemma 4.1 we compute

(∂(f i)vj)∗ = f
j∂(vi) = q−(ωs,ωs)

∑

k,l

(R̂−1
V,V ∗)

ji
kl∂(v

k)f l

=

(
q−(ωs,ωs)

∑

k,l

(R̂−1
V,V ∗)

ij
lkv

l∂(fk)

)∗

,

where we have used (R̂−1
V,V ∗)klij = (R̂−1

V,V ∗)lkji from Proposition A.3.
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Finally we have to check that the sub-bimodules Λ+ and Λ− are preserved under the ∗-
structure. But this is clear, since we have c

∗ = c. �

5. Hermitian and Kähler structures

In this section we will show the existence of Hermitian and Kähler structures on the
Heckenberger-Kolb calculi Ω• over quantum irreducible flag manifolds Cq[G/PS].

5.1. Some identities. Recall the Uq(g)-module algebra isomorphism B ∼= Cq[G/PS] from
Proposition 3.2. By a small abuse of notation, we will also write zij = f

i
v
j for the generators

of the algebra B. We will now obtain some identities for these elements.

Lemma 5.1. We have
∑

k z
ikzkj = zij and (zij)∗ = zji.

Proof. The first follows from
∑

i v
i
f
i = 1 while the second follows from f

i∗ = v
i. �

Next we consider some identities involving the differentials.

Lemma 5.2. We have the identities
∑

k

zik∂(zkj) = 0,
∑

k

∂(zik)zkj = ∂(zij),

∑

k

zik∂(zkj) = ∂(zij),
∑

k

∂(zik)zkj = 0.

Proof. Consider the identities for the differential ∂. We compute
∑

k

∂(zik)zkj =
∑

k

∂(f ivk)fkvj =
∑

k

∂(f i)vkfkvj

= ∂(f i)vj = ∂(f ivj) = ∂(zij).

On the other hand, using the fact that z is a projection, we have

∂(zij) =
∑

k

∂(zikzkj) =
∑

k

∂(zik)zkj +
∑

k

zik∂(zkj).

Using the previous identity, this implies the vanishing of last term. The corresponding iden-
tities for the differential ∂ are obtained in a similar manner. �

The last identities we will require are the vanishing of certain degree 3 terms. We will use
from now on the notation λi := wt(vi).

Lemma 5.3. We have the identities
∑

i,j,k

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂zki = 0,

∑

i,j,k

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂zki = 0.

Proof. To prove the first identity let us write

Z1 =
∑

i,j,k

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂zki =
∑

i,j,k,l

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂(zkl)zli,
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where in the second equality we have used Lemma 5.2. We will move the element zli to the
left using the relations given in Appendix B. We obtain

Z1 = q(αs,αs)
∑

i,j,k,l

∑

{a,b,c,d}

q(2ρ,λi)T ija2b2
a1b1c1d1

T jka3b3
a2b2c2d2

T klli
a3b3c3d3

za1b1∂zc1d1 ∧ ∂zc2d2 ∧ ∂zc3d3 ,

where {a, b, c, d} denotes the sum over the variables {ai, bi, ci, di} with i = 1, 2, 3. The product
of the T ijkl

abcd terms can be simplified using Lemma B.1. We compute
∑

j,a2,b2

∑

k,a3,b3

T ija2b2
a1b1c1d1

T jka3b3
a2b2c2d2

T klli
a3b3c3d3

= δd2,c3
∑

j,a2,b2

T ija2b2
a1b1c1d1

T jlli
a2b2c2d3

= δd1,c2δd2,c3T
illi
a1b1c1d3

.

Plugging this in we find

Z1 = q(αs,αs)
∑

i,l

∑

a1,b1,c1

∑

d1,d2,d3

q(2ρ,λi)T illi
a1b1c1d3

za1b1∂zc1d1 ∧ ∂zd1d2 ∧ ∂zd2d3 .

Next using the relation Lemma B.2 we obtain

Z1 = q(αs,αs)
∑

a1,b1

∑

d1,d2

q(2ρ,λa1 )za1b1∂zb1d1 ∧ ∂zd1d2 ∧ ∂zd2a1 .

But then using
∑

k z
ik∂zkj = 0 we conclude that Z1 = 0.

The second identity is proven similarly. Let us write

Z2 =
∑

i,j,k,l

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂(zkl)zli.

Note that Z2 = 0 due to Lemma 5.2. We rewrite it in the form

Z2 = q−(αs,αs)
∑

i,j,k,l

∑

{a,b,c,d}

q(2ρ,λi)T ija2b2
a1b1c1d1

T jka3b3
a2b2c2d2

T klli
a3b3c3d3z

a1b1∂zc1d1 ∧ ∂zc2d2 ∧ ∂zc3d3 .

By the same type of computations we did for Z1 we obtain

Z2 = q−(αs,αs)
∑

a1,b1

∑

d1,d2

q(2ρ,λa1 )za1b1∂zb1d1 ∧ ∂zd1d2 ∧ ∂zd2a1 .

Using Lemma 5.2 this can be rewritten as

Z2 = q−(αs,αs)
∑

i,j,k

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂zki.

But since Z2 = 0 this implies the second identity. �

5.2. The Kähler form. We will now introduce a 2-form κ ∈ Ω•, which we will later show
to satisfy the conditions defining a Kähler form. It is defined by

κ := i
∑

i,j,k

q(2ρ,λi)zijdzjk ∧ dzki.

Here i :=
√
−1 denotes the imaginary unit and λi = wt(vi).

We begin by showing that κ is left Cq[G]-coinvariant. In this proof we will consider the zij

as elements of Cq[G/PS], so that ∆ denotes the coproduct of Cq[G].

Lemma 5.4. The element κ is left Cq[G]-coinvariant.



12 MARCO MATASSA

Proof. We have zij = uλ
iNS(u

λ
Nj), as seen in the proof of Corollary 3.4. We will omit the

superscript λ for notational convenience. Then we easily compute

∆(zij) =
∑

a,b

uiaS(ubj)⊗ zab,

in accordance with the fact that Cq[G/PS] is a left coideal. Next recall that in a left-covariant
FODC Γ we have ∆Γ(adb) = ∆(a)(id⊗ d)(∆(b)). Then we obtain

∆Γ(κ) = i
∑

i,j,k

∑

a,b,c,d,e,f

q(2ρ,λi)uiaS(ubj)ujcS(udk)ukeS(ufi)⊗ zabdzcd ∧ dzef .

Next we use the identities following from the Hopf algebra structure
N∑

k=1

S(uik)ukj = δij ,

N∑

k=1

q(2ρ,wtvk−wtvj)ukjS(uik) = δij,

where the second one follows from the fact that S2(uij) = q(2ρ,wtvi−wtvj)uij. Finally

∆Γ(κ) = i
∑

i

∑

a,b,d,f

q(2ρ,λi)uiaS(ufi)⊗ zabdzbd ∧ dzdf

= i
∑

a,b,d

q(2ρ,λa)1⊗ zabdzbd ∧ dzda.

Therefore we get ∆Γ(κ) = 1⊗ κ, that is κ is left Cq[G]-coinvariant. �

We can now easily show that the 2-form κ satisfies most of the requirements of a Kähler
form, as described in Definition 2.3.

Proposition 5.5. The 2-form κ satisfies the following properties:

(1) it is closed,

(2) it belongs to Ω(1,1),

(3) it is central and real.

Proof. (1) Using the identities in Lemma 5.2 it is easy to see that

dκ = i
∑

i,j,k

q(2ρ,λi)dzij ∧ dzjk ∧ dzki

= i
∑

i,j,k

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂zki + i
∑

i,j,k

q(2ρ,λi)∂zij ∧ ∂zjk ∧ ∂zki.

But it follows from Lemma 5.3 that both terms vanish, hence dκ = 0.
(2) Again using Lemma 5.2 it is immediate to see that

κ = i
∑

i,j,k

q(2ρ,λi)zij∂zjk ∧ ∂zki = i
∑

i,j

q(2ρ,λi)∂zij ∧ ∂zji.

This implies that κ ∈ Ω(1,1) for the natural complex structure on Ω•.
(3) It is a general fact that every left Cq[G]-coinvariant d-closed form is central, see [ÓBu17,

Corollary 4.6] (this result requires B+Ω1 = Ω1B+, which holds in our case as explained in the
next subsection). Since κ is left Cq[G]-coinvariant by Lemma 5.4 and d-closed, we conclude
that it is central. To show that κ is real we use (zij)∗ = zji and compute

κ∗ = i
∑

i,j

q(2ρ,λi)∂(zji)∗ ∧ ∂(zij)∗ = i
∑

i,j

q(2ρ,λi)∂(zij) ∧ ∂(zji) = κ. �
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To finish the proof that κ is a Kähler form we need to check the condition on the Lefschetz
map L : Ω• → Ω•, as given in Definition 2.1. We will do this in the next subsection.

5.3. Finishing the proof. Let us first briefly explain our strategy. Since Ω• has dimension
M := dimC(g/pS) (see below), we need to show that the map LM−k : Ωk → Ω2M−k is an
isomorphism for all k = 0, · · · ,M −1. By applying the functor Φ from Takeuchi’s categorical
equivalence, it suffices to show the same property for Φ(LM−k) : Φ(Ωk) → Φ(Ω2M−k). We will
show that this can be checked upon choosing an appropriate basis of Φ(Ω•).

Recall that for an irreducible flag manifold we have S = Π\{αs} for some s ∈ {1, · · · , r}.
We will write I := {1, · · · , N}, where N = dimV (ωs), and define the index set

I(1) := {i ∈ I : (ωs, ωs − αs − wtvi) = 0}.
As in [HeKo06, Section 3.2.1], the elements of I(1) label certain Uq(lS)-submodules of V (ωs)
and its dual. It is known that #I(1) = dimC(g/pS) and we will write M = dimC(g/pS).

Now consider Φ(Ω•) = Ω•/B+Ω•, as in Takeuchi’s categorical equivalence. It turns out that
Φ(Ω•) inherits an algebra structure from Ω•. This is because B+Ω• = Ω•B+, as explained in
[HeKo06, Section 3.3.4]. Let us introduce the notation

xi := [∂ziN ], yi := [∂zNi], i ∈ I(1),

where we use [·] to denote the equivalence classes in the quotient Ω•/B+Ω•.

Lemma 5.6. We have

[∂zij ] =

{
xi i ∈ I(1), j = N

0 otherwise
, [∂zij ] =

{
yi i = N, j ∈ I(1)
0 otherwise

.

Proof. This is shown in the proofs of [HeKo06, Proposition 3.3] and [HeKo06, Proposition
3.4]. It can also be easily deduced from [HeKo04, Lemma 8]. �

The algebra Φ(Ω•) can be endowed with a filtration which can be used to show that
dimΦ(Ωk) =

(
2M
k

)
, as for the classical exterior algebra. Moreover, a vector space basis

for Φ(Ω•) can be obtained by taking appropriate products of the generators {xi, yi : i ∈ I(1)}.
For details on this filtration see [HeKo06, Sections 3.3.1 and 3.3.4].

Next we will show that we can choose a basis with a particularly nice property, as explained
in the next lemma. We denote by m be the smallest positive integer such that m(P, P ) ⊂ Z,
where P is the weight lattice. Moreover recall the following terminology: given an algebra A
and a vector space basis {ei}i, the structure constants are the coefficients ckij appearing in the
expansion ei · ej =

∑
k c

k
ijek with respect to the given basis.

Lemma 5.7. We can choose a basis for the algebra Φ(Ω•) in such a way that the structure

constants are in Z[q1/m, q−1/m] for all 0 < q ≤ 1.

Proof. Denote by UZ
q (g) the integral form of Uq(g), see for instance [ChPr95, Chapter 9.2].

Fix a basis {vi}i∈I of V (ωs) in such a way that the Z[q, q−1]-module generated by the basis
{vi}i∈I is invariant under UZ

q (g). Then the same holds for the dual basis {fi}i∈I of V (ωs)
∗.

Moreover recall that the linear span of the generators {xi : i ∈ I(1)} and {yi : i ∈ I(1)} can be
identified with appropriate Uq(lS)-submodules of V (ωs)

∗ and V (ωs), respectively.
Consider the subalgebra of Φ(Ω•) generated by the {xi : i ∈ I(1)}. The relations for this

algebra are given in [HeKo06, Proposition 3.6 (ii)]. Upon carefully analyzing this proof, we
find that we can choose a basis {xA}A in such a way the structure constants are in Z[q, q−1].
A similar result holds for the subalgebra of Φ(Ω•) generated by the {yi : i ∈ I(1)}.
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Next we look at the cross-relations between the {xi : i ∈ I(1)} and the {yi : i ∈ I(1)}. These
appear in [HeKo06, Proposition 3.11 (ii)] and given in terms of the braiding R̂V,V ∗ , up to a
prefactor. With our choice of bases it can be shown that the matrix coefficients of R̂V,V ∗ are
in Z[q1/m, q−1/m], see for instance [ChTu14, Lemma 4.10] and the discussion in that section.
Fractional powers of q are required since the R-matrix takes the form R = R̃ · D, where
D(vλ ⊗ vµ) = q(λ,µ)vλ ⊗ vµ for weight vectors while R̃ has matrix coefficients in Z[q, q−1].

Putting all together, we have shown that we can choose a basis of Φ(Ω•) in such a way that
the structure constants are in Z[q1/m, q−1/m] for all 0 < q < 1. Since Laurent polynomials in
q1/m are continuous for q > 0, the result also extends to q = 1. �

We are now ready to show that κ is an almost symplectic form, as in Definition 2.1.

Proposition 5.8. The map LM−k : Ωk → Ω2M−k is an isomorphism for all k = 0, · · · ,M−1,
except possibly for finitely many values of q. In particular this is true when q is transcendental.

Proof. Using Takeuchi’s categorical equivalence, it is enough to prove the corresponding result
for the linear map Φ(LM−k) : Φ(Ωk) → Φ(Ω2M−k). Moreover, as Φ(Ωk) and Φ(Ω2M−k) have
the same dimension, it suffices to show that Φ(LM−k) is injective.

We fix a basis for Φ(Ω•) as in Lemma 5.7 and we denote by V • the underlying vector
space. In this way we have the same vector space V • for all 0 < q ≤ 1, and we consider the
multiplication of Φ(Ω•) as a linear map V • ⊗ V • → V • depending on the parameter q.

In the same manner the map Φ(LM−k) can be seen as a linear map V k → V 2M−k depending
on the parameter q, since it is given by the formula Φ(LM−k)v = Φ(κM−k)∧ v for v ∈ Φ(Ωk).
In particular, using the formulae given in Lemma 5.6, we obtain

Φ(κ) = i
∑

i∈I(1)

q(2ρ,λi)yi ∧ xi.

Let us write {v(k)i }i for the fixed basis of V k for k = 0, · · · , 2M . Then we have

Φ(LM−k)v
(k)
i =

∑

j

cji (q)v
(2M−k)
j .

By Lemma 5.7 we have that all the coefficients cji (q) are in Z[q1/m, q−1/m], since the structure
constants for the multiplication in Φ(Ω•) satisfy this property.

Now let us write M(q) for the matrix representing the linear map Φ(LM−k) : V k → V 2M−k.
Since M(q) has entries {cji (q)}i,j, it follows that detM(q) is a Laurent polynomial in q1/m.
Suppose that detM(1) 6= 0, so that detM(q) is not the zero polynomial. Under this assump-
tion, detM(q) can only vanish for finitely many values of q. Moreover, as the polynomial
detM(q) has coefficients in Z, it is never zero when q is transcendental.

Hence we only need to show that detM(1) 6= 0, that is the map Φ(LM−k) : V k → V 2M−k is
an isomorphism for q = 1. In the classical limit the algebra Φ(Ω•) becomes isomorphic to the
exterior algebra

∧
(WC), where W = spanR{xi, yi : i ∈ I(1)} is a real vector space of dimension

2M . The vector space W carries a natural symplectic structure and Φ(κ) = i
∑

i∈I(1)
yi ∧ xi

is its canonical form (up to a scalar). Finally it follows from classical results that the map
Φ(LM−k) : V k → V 2M−k is an isomorphism, see for instance [Huy05, Chapter 1.2]. �

Using this fact, it is immediate to prove the main result of this section.

Theorem 5.9. The pair (Ω(•,•), κ) is a Kähler structure for Ω•, except possibly for finitely

many values of q. In particular this is true when q is transcendental.
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Proof. This follows by combining Proposition 5.5 and Proposition 5.8. We have that κ is a
central, real 2-form such that LM−k : Ωk → Ω2M−k is an isomorphism for k = 0, · · · ,M − 1,
hence is an almost symplectic form according to Definition 2.1. Next Ω• has a natural complex
structure and κ ∈ Ω(1,1), hence it is a Hermitian form according to Definition 2.2. Finally κ
is d-closed and hence a Kähler form according to Definition 2.3. �

This proves the conjecture formulated in [ÓBu17, Conjecture 4.25], with the possible ex-
ception of finitely many values of q. Since for the quantum projective spaces this result is
valid for all 0 < q < 1, we expect this to be the case in full generality.

Appendix A. Some identities for the braiding

In this appendix we will derive some identities for the components of the braiding, which
are related to its behaviour under the operations of duality and adjoint. These are used in
the main text to prove the compatibility of the differential calculi with the ∗-structure.

A.1. Basic facts. Let V and W be finite-dimensional Uq(g)-modules. Fix bases {vi}i of V
and {wi}i of W . Then for the braiding R̂V,W : V ⊗W → W ⊗ V we write

R̂V,W (vi ⊗ wj) =
∑

k,l

(R̂V,W )klijwk ⊗ vl.

Consider the double dual Uq(g)-module V ∗∗. To any vector v ∈ V we can associate the
linear functional ṽ ∈ V ∗∗ on V ∗ defined by ṽ(f) := f(v). The map v 7→ ṽ is an isomorphism
of vector spaces but not of Uq(g)-modules. On the other hand, it is simple to check that the

map ηV : V → V ∗∗ given by ηV (v) := K̃2ρv is an isomorphism of Uq(g)-modules. This is
because in our conventions we have S2(X) = K2ρXK−1

2ρ for all X ∈ Uq(g).
We will also need Uq(g)-invariant inner products. Fixing (·, ·)V on V , we will write jV :

V → V ∗ for the conjugate-linear map given by jV (v)(w) := (v, w)V . Then

(jV (v), jV (w))V ∗ := (K2ρw, v)V

is an invariant inner product on V ∗. To check this claim one uses the fact that (·, ·)V is
invariant and the identities S2(X) = K2ρXK−1

2ρ and S(X)∗ = S−1(X∗).

A.2. The identities. We will now derive some identities for the components of the braiding
R̂V,W under the operations of duality and adjoint.

Lemma A.1. We have the identities

(R̂V ∗,W )klij = (R̂−1
V,W )ikjl , (R̂−1

W,V ∗)klij = (R̂W,V )
ik
jl .

Proof. We recall a general result valid for (strict) braided monoidal categories with duals from
[EGNO16]. Let C be a braided monoidal category with braiding c. Let X, Y be objects of C
and let X∗ be the left dual of X. Then according to [EGNO16, Lemma 8.9.1] we have

cX∗,Y = (evX ⊗ idY⊗X∗) ◦ (idX∗ ⊗ c−1
X,Y ⊗ idX∗) ◦ (idX∗⊗Y ⊗ coevX),

c−1
Y,X∗ = (evX ⊗ idY⊗X∗) ◦ (idX∗ ⊗ cY,X ⊗ idX∗) ◦ (idX∗⊗Y ⊗ coevX).

(A.1)

Here evX : X∗ ⊗ X → 1 and coevX : 1 → X ⊗ X∗ are the evaluation and coevaluation
morphisms associated with the left dual object X∗.
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We apply this to the category of finite-dimensional Uq(g)-modules. In this case, given a
Uq(g)-module V , the evaluation and coevaluation morphisms are given by

evV (f ⊗ v) = f(v), coevV (1) =
∑

i

vi ⊗ fi.

Here v ∈ V and f ∈ V ∗, while {vi}i is a basis of V and {fi}i is a dual basis of V .
Now consider R̂V ∗,W : V ∗ ⊗W → W ⊗ V . Using the first relation of (A.1) we compute

R̂V ∗,W (fi ⊗ wj) = (evV ⊗ idW⊗V ∗) ◦ (idV ∗ ⊗ R̂−1
V,W ⊗ idV ∗)(fi ⊗ wj ⊗

∑

k

vk ⊗ fk)

=
∑

k

(evV ⊗ idW⊗V ∗)(fi ⊗
∑

a,b

(R̂−1
V,W )abjkva ⊗ wb ⊗ fk)

=
∑

b,k

(R̂−1
V,W )ibjkwb ⊗ fk.

Comparing this to R̂V ∗,W (fi ⊗ wj) =
∑

b,k(R̂V ∗,W )bkijwb ⊗ fk we get the first identity. The
second identity follows from the second relation of (A.1) in a similar way. �

Next we derive some identities involving double duals.

Lemma A.2. We have the identities

(R̂V ∗∗,W )klij = q(2ρ,wt(vl)−wt(vi))(R̂V,W )klij , (R̂V,W ∗∗)klij = q(2ρ,wt(wk)−wt(wj))(R̂V,W )klij .

Proof. Consider the Uq(g)-module isomorphism ηV : V → V ∗∗ defined previously. Then using
naturality of the braiding R̂V,W we obtain

R̂V ∗∗,W = (idW ⊗ ηV ) ◦ R̂V,W ◦ (η−1
V ⊗ idW ).

Using the fact that ηV (vi) = q(2ρ,wt(vi))ṽi we compute

R̂V ∗∗,W (ṽi ⊗ wj) = (idW ⊗ ηV ) ◦ R̂V,W (q−(2ρ,wt(vi))vi ⊗ wj)

= q−(2ρ,wt(vi))(idW ⊗ ηV )(
∑

k,l

(R̂V,W )klijwk ⊗ vl)

= q−(2ρ,wt(vi))q(2ρ,wt(vi))
∑

k,l

(R̂V,W )klijwk ⊗ ṽl.

This gives the first identity. The second identity is proven similarly by considering the identity
R̂V,W ∗∗ = (ηW ⊗ idV ) ◦ R̂V,W ◦ (idV ⊗ η−1

W ), which also follows by naturality. �

Finally we derive some identities which combine those derive above with complex conjuga-
tion. These identities are used to prove the main result of Section 4.

Proposition A.3. Let {vi}i be an orthonormal basis of V and {fi}i the dual basis of V ∗.

(1) We have (R̂V,V )klij = (R̂V ∗,V ∗)lkji.

(2) We have (R̂V,V ∗)klij = (R̂V,V ∗)lkji.

Proof. (1) We have the identity R̂∗
V,W = R̂W,V , see for instance [NeTu13, Example 2.6.4].

From this is easily follows that (R̂V,W )klij = (R̂W,V )
ij
kl, provided that we use orthonormal bases

for V and W . Using this fact and Lemma A.1 we compute

(R̂V,V )klij = (R̂V,V )
ij
kl = (R̂−1

V,V ∗)
jl
ik = (R̂V ∗,V ∗)lkji.
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(2) First we observe that the dual basis {fi}i is not orthonormal. Indeed, using the fact
that fi = jV (vi) and the definition of the inner product on V ∗, we compute

(fi, fj)V ∗ = (K2ρvj , vi)V = δijq
(2ρ,wtvi).

Hence we obtain an orthonormal basis by setting f ′
i = q−(ρ,wtvi)fi. We write the formulae for

the braidings with respect to the orthonormal bases {vi}i and {f ′
i}i as follows

R̂V,V ∗(vi ⊗ f ′
j) =

∑

k,l

aklijf
′
k ⊗ vl, R̂V ∗,V (f

′
i ⊗ vj) =

∑

k,l

bklijvk ⊗ f ′
l .

From these we immediately get the relations

(R̂V,V ∗)klij = q(ρ,wtvj−wtvk)aklij , (R̂V ∗,V )
kl
ij = q(ρ,wtvi−wtvl)bklij .

Then using the identity (R̂V,W )klij = (R̂W,V )
ij
kl for orthonormal bases we get

(R̂V,V ∗)klij = q(ρ,wtvj−wtvk)aklij = q(ρ,wtvj−wtvk)bijkl = q(2ρ,wtvj−wtvk)(R̂V ∗,V )
ij
kl.

Using again the identities from Lemma A.1 we get (R̂V ∗,V )
ij
kl = (R̂V ∗∗,V ∗)lkji. Finally we get rid

of the double dual by using Lemma A.2 and obtain

(R̂V,V ∗)klij = q(2ρ,wtvj−wtvk)(R̂V ∗∗,V ∗)lkji = (R̂V,V ∗)lkji. �

Appendix B. Differential calculus identities

In this appendix we will derive some identities related to the differential calculus Γd. Accord-
ing to [HeKo06, Proposition 3.3 (ii)] and [HeKo06, Proposition 3.4 (ii)], the right B-module
structures of the FODCs Γ∂ and Γ∂ are given by the formulae

∂(z)z = q(αs,αs)Tz∂(z), ∂(z)z = q−(αs,αs)Tz∂(z),

where the indices are suppressed and we define the linear map

T := (R̂V,V ∗)23(R̂V,V )12(R̂
−1
V ∗,V ∗)34(R̂

−1
V,V ∗)23.

Writing out the indices explicitly for the first relation, we have

∂(zij)zkl = q(αs,αs)
∑

a,b,c,d

T ijkl
abcdz

ab∂(zcd).

where the components of T are given by

T ijkl
abcd =

∑

p,q,r,s

(R̂V,V ∗)jkpq(R̂V,V )
ip
ar(R̂

−1
V ∗,V ∗)

ql
sd(R̂

−1
V,V ∗)rsbc .

Our aim is to derive some identities for the map T .

Lemma B.1. We have the identity
∑

j,k,l

T ijkl
abcdT

jj′k′l′

klc′d′ = δdc′T
ij′k′l′

abcd′ .

Proof. Writing out the left-hand side of the equation we have
∑

j,k,l

T ijkl
abcdT

jj′k′l′

klc′d′ =
∑

j,k,l

∑

p,q,r,s

(R̂V,V ∗)jkpq(R̂V,V )
ip
ar(R̂

−1
V ∗,V ∗)

ql
sd(R̂

−1
V,V ∗)rsbc

×
∑

p′,q′,r′,s′

(R̂V,V ∗)j
′k′

p′q′(R̂V,V )
jp′

kr′(R̂
−1
V ∗,V ∗)

q′l′

s′d′(R̂
−1
V,V ∗)r

′s′

lc′ .
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Using Lemma A.1 we get (R̂V,V )
jp′

kr′ = (R̂−1
V,V ∗)

p′r′

jk . Then summing over j, k we obtain
∑

j,k,l

T ijkl
abcdT

jj′k′l′

klc′d′ =
∑

l

∑

p,q,r,s

(R̂V,V )
ip
ar(R̂

−1
V ∗,V ∗)

ql
sd(R̂

−1
V,V ∗)rsbc

×
∑

q′,s′

(R̂V,V ∗)j
′k′

pq′ (R̂
−1
V ∗,V ∗)

q′l′

s′d′(R̂
−1
V,V ∗)

qs′

lc′ .

Next, we get (R̂−1
V,V ∗)

qs′

lc′ = (R̂V ∗,V ∗)s
′c′

ql again by Lemma A.1. Summing over q, l we obtain
∑

j,k,l

T ijkl
abcdT

jj′k′l′

klc′d′ = δd,c′
∑

p,r,s

(R̂V,V )
ip
ar(R̂

−1
V,V ∗)rsbc

∑

q′

(R̂V,V ∗)j
′k′

pq′ (R̂
−1
V ∗,V ∗)

q′l′

sd′ .

Upon relabeling we obtain the identity we were after. �

Finally we derive an identity for a particular contraction of the tensor T .

Lemma B.2. We have the identity
∑

i,j

q(2ρ,λi)T ijji
abcd = δadδbcq

(2ρ,λa).

Proof. First of all we have
∑

i,j,k,m

q(2ρ,λi+λm)(R̂−1
V,V ∗)mm

jk T ijki
abcd =

∑

i,m

∑

r,s

q(2ρ,λi+λm)(R̂V,V )
im
ar (R̂

−1
V ∗,V ∗)mi

sd (R̂
−1
V,V ∗)rsbc .

Next using Lemma A.1 we can rewrite

(R̂−1
V ∗,V ∗)mi

sd = (R̂V ∗,V )
sm
di = (R̂−1

V,V )
ds
im.

Also by weight reasons we have (R̂V,V )
im
ar = 0 unless λi + λm = λa + λr. Then we obtain

∑

i,j,k,m

q(2ρ,λi+λm)(R̂−1
V,V ∗)

mm
jk T ijki

abcd = δa,dq
(2ρ,λa)

∑

r

q(2ρ,λr)(R̂−1
V,V ∗)

rr
bc .

Now suppose that
∑

m q(2ρ,λm)(R̂−1
V,V ∗)mm

jk = cδjk for some c 6= 0. Plugging this identity in the
previous equation gives the claim of the lemma, hence it suffices to prove that it holds.

Let us consider the following vectors

IV,V ∗ =
∑

i

vi ⊗ fi ∈ V ⊗ V ∗, JV ∗,V =
∑

i

q−(2ρ,λi)fi ⊗ vi ∈ V ∗ ⊗ V.

It is easy to see that they are Uq(g)-invariant. Since V is irreducible, we must have

R̂−1
V ∗,V (IV,V ∗) = cJV ∗,V , c ∈ C.

Moreover c 6= 0 since R̂V ∗,V is invertible. In components this gives the identity
∑

i

(R̂−1
V ∗,V )

kl
ii = δklcq−(2ρ,λk). (B.1)

On the other hand using Lemma A.1 and Lemma A.2 we can rewrite

(R̂−1
V,V ∗)klij = (R̂V ∗,V ∗)ljki = (R̂−1

V ∗,V ∗∗)
ji
lk = q(2ρ,λi−λl)(R̂−1

V ∗,V )
ji
lk.

Finally using this and (B.1) we obtain
∑

m

q(2ρ,λm)(R̂−1
V,V ∗)mm

ij = q(2ρ,λi)
∑

m

(R̂−1
V ∗,V )

ji
mm = δijcq

(2ρ,λi).

This is the identity we wanted to establish, which concludes the proof. �
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