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ON PBW-DEFORMATIONS OF BRAIDED EXTERIOR ALGEBRAS

MARCO MATASSA

Abstract. We classify PBW-deformations of quadratic-constant type of certain quantiza-
tions of exterior algebras. These correspond to the fundamental modules of quantum slN ,
their duals, and their direct sums. We show that the first two cases do not admit any defor-
mation, while in the third case we obtain an essentially unique algebra with good properties.
We compare this algebra with other quantum Clifford algebras appearing in the literature.

Introduction

The aim of this paper is to initiate a study of PBW-deformations of certain quantizations
of exterior algebras. Recall that a PBW-deformation of a quadratic algebra is a filtered al-
gebra such that its associated graded algebra coincides with the original quadratic one, see
for instance [BrGa96, PoPo05]. The name comes from the main example of the universal
enveloping algebra U(g) of a Lie algebra g, whose associated graded algebra is the symmetric
algebra S(g), as a consequence of the Poincaré–Birkhoff–Witt theorem. Other classical ex-
amples include Weyl algebras and Clifford algebras, which can be seen as PBW-deformations
of symmetric algebras and exterior algebras, respectively. Here we will focus on deformations
of quadratic-constant type, which classically correspond to Clifford algebras.

The quadratic algebras which we will consider are quantizations of the exterior algebras
Λ(V ), where V is a U(g)-module and g is a complex simple Lie algebra. It is well known that
the enveloping algebras U(g) admit quantizations Uq(g) as Hopf algebras, called quantized
enveloping algebras or Drinfeld-Jimbo algebras. As long as the parameter q is not a root of
unity, the representation theory of Uq(g) essentially parallels that of U(g), so that in particular
we have a Uq(g)-module corresponding to V . A construction that functorially associates to
V a quadratic Uq(g)-module algebra Λq(V ) is given in [BeZw08], and goes under the name
of braided exterior algebras. However in general these algebras do not have the same Hilbert
series as their classical counterparts. When this happens they are called flat, and the flat
simple modules have been classified in [Zwi09]. In the case of semisimple modules we can also
consider the possibility of taking appropriate twisted tensor products.

One motivation for studying deformations of braided exterior algebras comes from the non-
commutative geometry program of Connes [Con95]. In this theory the main objects of study
are spectral triples, whose main ingredients are Dirac-type operators, which are classically de-
fined using Clifford algebras. Hence developing appropriate quantum notions would lead to an
interesting interaction between this theory and that of quantum groups. Dirac operators for
a certain class of quantum homogeneous spaces, namely quantized irreducible flag manifolds,
have been defined long ago in [Krä04]. This definition only uses some rather general assump-
tions on what a quantum Clifford algebra should be. However, a more concrete model is
needed for a detailed analysis of these operators, for instance to determine their spectra. This
analysis was performed for the case of quantum projective spaces in [DADą10] and [Mat18a],
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where it was shown that these Dirac operators give rise to spectral triples. The general strat-
egy to prove such a result is to obtain some quantum version of the Parthasarathy formula,
see the discussion in [Mat17] and [Mat18b]. The proof of this formula in the classical case
crucially uses the commutation relations in the Clifford algebra. With such a general result
still lacking in the quantum setting, we hope that a better understanding of some structural
properties of quantum Clifford algebras will lead to some progress in this direction.

In this paper we will study PBW-deformations of braided exterior algebras corresponding
to certain modules of Uq(slN ). These are the fundamental module V and its dual V ∗, which
are known to be flat, and their direct sum, which we denote by H . First we will show that
the algebras Λq(V ) and Λq(V

∗) do not admit any non-trivial PBW-deformations of quadratic-
constant type. The direct sum case on the other hand is far more interesting, also because
we have to face the problem that Λq(H) is not flat. For this reason we will replace it by an
appropriate twisted tensor product of the algebras Λq(V ) and Λq(V

∗), which gives a quadratic
algebra with the same Hilbert series as Λ(H). This is defined in terms of the braiding in the
category of Uq(slN)-modules, up to an important rescaling. The main result is that in this case
we find a one-parameter family of PBW-deformations, which we denote by Clq(c) for c ∈ K

×.
They all turn out to be isomorphic for different values of c, as well as Uq(slN )-module algebras.
They admit a presentation which is very close to the classical case, namely

Clq(c) ∼= T (H)/〈x⊗ y + σ(x⊗ y)− (x, y)c : x, y ∈ H〉.

Here σ : H⊗H → H⊗H satisfies the braid equation, while the bilinear form (·, ·)c : H⊗H →
K is Uq(slN)-invariant and satisfies the symmetry property (·, ·)c ◦ σ = (·, ·)c.

The paper is organized as follows. In Section 1 we fix our conventions for quantized en-
veloping algebras. In Section 2 we recall the notions of PBW-deformations and twisted tensor
products. In Section 3 we recall the notion of braided exterior algebra, as well as determining
the braidings for the modules of interest. In Section 4 we recall some facts about the braid
equation and symmetrization. In Section 5 we show that there are no PBW-deformations
for the simple modules we consider. In Section 6 we discuss our approach to the semisim-
ple case, in terms of appropriate twisted tensor products. Next in Section 7 we classify the
PBW-deformations of these algebras. Finally in Section 8 we show some further properties
of these algebras, as well as the connection with other notions of quantum Clifford algebras.

1. Quantized enveloping algebras

In this section we fix some notation for complex simple Lie algebras and quantized en-
veloping algebras. Let g be a finite-dimensional complex simple Lie algebra. Denote by r the
rank of g, by {αi}

r
i=1 the simple roots and by {ωi}

r
i=1 the fundamental weights. Denote by

{aij}
r
i,j=1 the Cartan matrix. We will only consider the simply-laced case here.

For quantized enveloping algebras we use the conventions of [Jan96]. Let q ∈ C and suppose
it is not a root of unity. The quantized universal enveloping algebra Uq(g) is generated by the
elements {Ei, Fi, Ki, K−1

i }ri=1 satisfying the relations

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

KiEjK
−1
i = qaijEj , KiFjK

−1
i = q−aijFj ,

EiFj − FjEi = δij
Ki −K−1

i

q − q−1
,
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plus the quantum analogue of the Serre relations. The Hopf algebra structure is defined by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗ 1 +Ki ⊗Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi,

S(Ki) = K−1
i , S(Ei) = −K−1

i Ei, S(Fi) = −FiKi, ε(Ki) = 1, ε(Ei) = ε(Fi) = 0.

For q ∈ R, the compact real form of Uq(g) is defined by

K∗
i = Ki, E∗

i = KiFi, F ∗
i = EiK

−1
i .

Given λ =
∑r

i=1 niαi we will write Kλ = Kn1

1 · · ·Knr
r . Let ρ be the half-sum of the positive

roots of g. Then we have S2(X) = K−1
2ρ XK2ρ for any X ∈ Uq(g).

The finite-dimensional irreducible (Type 1) representations of Uq(g) are labelled by their
highest weights Λ as in the classical case. We denote these modules by V (Λ). For q ∈ R

there is a Hermitian inner product (·, ·) on V (Λ), unique up to a positive scalar factor, which
is compatible with the compact real form in the sense that

(av, w) = (v, a∗w), v, w ∈ V (Λ), a ∈ Uq(g).

We also need the braiding on the category of Type 1 representations. Given two Uq(g)-modules
V and W of this type, the braiding is defined by R̂V,W = τ ◦ RV,W . Here τ denotes the flip
and RV,W is the specialization of the universal R-matrix to the modules V and W . It turns
out that the braiding R̂V,W : V ⊗W → W ⊗ V is uniquely determined by the relation

R̂V,W (v ⊗ w) = q(wt(v),wt(w))w ⊗ v +
∑

i

wi ⊗ vi,

where wt(wi) > wt(w) and wt(vi) < wt(v). Here < denotes the natural partial order on the
set of weights. To determine R̂V,W we can start by fixing a highest weight vector and obtain
the other values using the action of Uq(g), since R̂V,W is a module map.

2. PBW-deformations and twisted tensor products

In this section we recall the notion of PBW-deformation of a quadratic algebra, following
[BrGa96], and that of twisted tensor product of algebras, following [ČSV95].

2.1. PBW-deformation. Let V be a vector space over a field K and denote by T (V ) its
tensor algebra. Fix a subspace R ⊂ V ⊗ V and denote by 〈R〉 the two-sided ideal generated
by R inside T (V ). The algebra obtained by quotienting by such an ideal, which we denote
by Q(V,R) := T (V )/〈R〉, is called a (homogeneous) quadratic algebra. More generally, write
F 2(V ) = K ⊕ V ⊕ (V ⊗ V ) and fix a subspace P ⊂ F 2(V ). Then the algebra Q(V, P ) =
T (V )/〈P 〉 is called a non-homogeneous quadratic algebra.

The algebra U = Q(V, P ) has a natural structure of a filtered algebra. Hence we have an
associated graded algebra, which we denote by grU . Consider the projection π : F 2(V ) →
V ⊗ V on the second homogeneous component. Set R = π(P ) and consider the homogeneous
quadratic algebra A = Q(V,R). We have a natural surjective map p : A→ grU .

Definition 2.1 ([BrGa96]). With the notation as above, we say that U = Q(V, P ) is a
PBW-deformation of A = Q(V,R) if the projection p : A→ grU is an isomorphism.

It is easy to derive two necessary conditions for U to be a PBW-deformation of A, which are
given in [BrGa96, Lemma 0.4]. The first condition implies that P ⊂ F 2(V ) can be described
in terms of two linear maps α : R→ V and β : R → K as

P = {x− α(x)− β(x) : x ∈ R}.
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The second condition can be written in terms of various relations between α and β. Here we
will consider only the case of quadratic-constant deformations, namely α = 0.

Lemma 2.2 ([BrGa96, Lemma 3.3]). Suppose α = 0. Then we must have β⊗ id− id⊗β = 0
on the intersection (R⊗ V ) ∩ (V ⊗ R) ⊂ V ⊗3.

In general these conditions are necessary but not sufficient. However, for the class of Koszul
algebras, these conditions turn out to be sufficient, as stated in the next theorem.

Theorem 2.3 ([BrGa96, Theorem 4.1]). Let U = Q(V, P ) and let A = Q(V,R) be its asso-
ciated quadratic algebra with R = π(P ). Suppose α and β satisfy the necessary conditions.
Suppose furthermore that A is a Koszul algebra. Then U is a PBW-deformation of A.

There are many equivalent definitions of a Koszul algebra. For these definitions the reader
can consult the appendix of [BrGa96] or the book [PoPo05].

2.2. Twisted tensor products. The idea of a twisted tensor product of two algebras is a
very natural one, and for this reason it has been studied independently by many authors.
Here we will follow the treatment of [ČSV95]. We assume all algebras to be unital and all
homomorphisms to preserve the units.

Definition 2.4 ([ČSV95, Definition 2.1]). Let A and B be algebras over K. A twisted tensor
product of A and B is an algebra C, together with two injective homomorphisms iA : A→ C
and iB : B → C, such that the canonical linear map (iA, iB) : A ⊗K B → C defined by
(iA, iB)(a⊗ b) = iA(a)iB(b) is a linear isomorphism.

Twisted tensor products can be characterized in terms of twisting maps. Indeed, given any
twisted tensor product (C, iA, iB) of two algebras A and B, there exists a twisting map τ , as
defined below, such that C is isomorphic to A⊗τ B [ČSV95, Proposition 2.7].

Given a K-linear map τ : B ⊗ A → A⊗ B, and denoting by µA and µB multiplication on
A and B, we can consider as a candidate for multiplication on A⊗ B the map

µτ := (µA ⊗ µB)(idA ⊗ τ ⊗ idB).

The notion of twisting map guarantees that this is an associative multiplication. The vector
space A⊗B, together with the multiplication map µτ , will be denoted by A⊗τ B.

Definition 2.5 ([ČSV95, Proposition/Definition 2.3]). Let τ : B⊗A→ A⊗B be a K-linear
map. Then it is called a twisting map if for all a ∈ A and b ∈ B it satisfies the conditions
τ(b⊗ 1) = 1⊗ b and τ(1⊗ a) = a⊗ 1, and moreover

τ(µB ⊗ µA) = µτ(τ ⊗ τ)(idB ⊗ τ ⊗ idA).

The multiplication µτ is associative if and only if τ is a twisting map.
If A and B are graded algebras, we say that τ is graded if τ(Bj ⊗Ai) ⊆ Ai ⊗Bj for all i, j.

We now summarize some properties related to twisted tensor products in the presence
of additional structure, see for example [WaWi18, Section 1]. Recall that if H is a Hopf
algebra, then an H-module algebra A is an algebra which is an H-module and such that
h · (aa′) = (h(1) · a)(h(2) · a

′) and h · 1A = ε(h)1A for all h ∈ H and a, a′ ∈ A.

Proposition 2.6. 1) Let A and B be H-module algebras. If τ is an H-module homomorphism
then the twisted tensor product A⊗τ B is an H-module algebra.

2) Let A and B be Koszul algebras. If τ is graded then A⊗τ B is a Koszul algebra.
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3. Braided exterior algebras and braidings

We begin this section by recalling the notion of braided exterior algebra, as defined in
[BeZw08]. Next we determine the braidings associated with certain simple modules of Uq(slN ).

3.1. Braided exterior algebras. The notion of braided exterior algebra provides a quantum
version of the classical exterior algebra. Given a Uq(g)-module V , we can functorially associate
to it an algebra Λq(V ) as follows [BeZw08]. First we define the subspace

S2
qV :=

⊕

λ>0

ker(R̂V,V − λ id) ⊂ V ⊗ V. (3.1)

This space is the span of the positive eigenvectors of R̂V,V , hence it is a quantum analogue
of the space of symmetric 2-tensors in V ⊗ V . Then we define the braided exterior algebra
Λq(V ) := T (V )/〈S2

qV 〉. Braided symmetric algebras are also defined in a similar fashion. By
definition we have that Λq(V ) is a quadratic algebra. Moreover, since the braiding R̂V,V is a
module map, it follows that Λq(V ) is a Uq(g)-module algebra.

While the definition makes sense for any Uq(g)-module V , only for some particular ones
we have that the Hilbert series of Λq(V ) and of the exterior algebra Λ(V ) coincide. When
this happens we say that V is a flat module. In this case it is known that Λq(V ) is a Koszul
algebra. Flat simple modules have been completely classified in [Zwi09]. The outcome of the
classification is that the flat modules essentially correspond to abelian nilradicals of parabolic
subalgebras of g, see [Zwi09, Main Theorem 5.6]. Geometrically these can be interpreted as
tangent spaces of the corresponding generalized flag manifolds.

3.2. Braidings. In the following we will be interested in studying various algebras associated
to the fundamental module of Uq(slN), which we denote by V := V (ω1), and its dual. The
first step will be to determine the braiding associated with these modules.

The module V (ω1) has a weight basis {vi}Ni=1, where the vector vi has weight λi := ωi−ωi−1,
with the convention that ω0 = ωN = 0. The Uq(slN )-module structure can be realized by

Kivj = qδij−δi,j−1vj , Eivj = δi,j−1vj−1, Fivj = δijvj+1.

The braiding for V ⊗V is well-known and can be found for example in [KlSc97, Section 8.4.2]
(taking into account the rescaling by q1/N ). Here and in the following we will write θ(n) for
the Heaviside step function defined by θ(n) = 0 for n ≤ 0 and θ(n) = 1 for n > 0.

Proposition 3.1. Let V = V (ω1). Then we have

R̂V,V (vi ⊗ vj) = qδij−
1

N vj ⊗ vi + θ(j − i)q−
1

N (q − q−1)vi ⊗ vj.

Next we will need the braiding for V ∗⊗V ∗. It is very similar to that of V ⊗V . First we fix
a basis for V ∗ as follows. Since V is a simple module, there exists a unique (up to a constant)
Uq(slN)-invariant pairing 〈·, ·〉 : V ∗⊗V → C. Then we denote by {wi}

N
i=1 the dual basis, that

is 〈wi, vj〉 = δij . It is easy to see that the Uq(slN)-module structure is given by

Kiwj = qδi,j−1−δijwj , Eiwj = −δijq
−1wj+1, Fiwj = −δi,j−1qwj−1.

Proposition 3.2. Let V ∗ ∼= V (ωN−1). Then we have

R̂V ∗,V ∗(wi ⊗ wj) = qδij−
1

Nwj ⊗ wi + θ(i− j)q−
1

N (q − q−1)wi ⊗ wj.

We will also need the braiding for V ∗ ⊗ V → V ⊗ V ∗, which we determine below.
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Proposition 3.3. The braiding R̂V ∗,V : V ∗ ⊗ V → V ⊗ V ∗ is given by

R̂V ∗,V (wi ⊗ vj) = q
1

N
−δijvj ⊗ wi − δijq

1

N (q − q−1)
i−1∑

k=1

vk ⊗ wk.

Proof. Observe that if R̂V ∗,V (wi ⊗ vj) contains the term vk ⊗ wℓ then it must have the same
weight as wi ⊗ vj. Since the vector wi has weight −λi = ωi−1 − ωi this leads to the condition
−λi + λj = λk − λℓ. More explicitly this reads

ωi−1 − ωi + ωj − ωj−1 = ωk − ωk−1 + ωℓ−1 − ωℓ.

Also from the properties of the braiding we have wt(vk) ≥ wt(vj) and wt(wℓ) ≤ wt(wi). This
is equivalent to k ≤ j and ℓ ≤ i, since v1 and wN are the highest weight vectors of V and V ∗.

Now consider the case i < j. Then, taking into account the facts listed above, we conclude
that vk ⊗ wℓ appears if and only if (k, ℓ) = (j, i). Similarly for i > j. From this we conclude
that the braiding takes the form R̂V ∗,V (wi ⊗ vj) = q

1

N vj ⊗ wi for i 6= j.
Now consider the case i = j. For i = 1 the result is true, since v1 is the highest weight

vector. We proceed by induction over i. We start by computing

R̂V ∗,V Fi(wi+1 ⊗ vi) = R̂V ∗,V (Fiwi+1 ⊗K−1
i vi) + R̂V ∗,V (wi+1 ⊗ Fivi)

= −R̂V ∗,V (wi ⊗ vi) + R̂V ∗,V (wi+1 ⊗ vi+1).

On the other hand we have

FiR̂V ∗,V (wi+1 ⊗ vi) = q
1

NFivi ⊗K−1
i wi+1 + q

1

N vi ⊗ Fiwi+1

= q
1

N
−1vi+1 ⊗ wi+1 − q

1

N
+1vi ⊗ wi.

Since R̂V ∗,V is a Uq(slN)-module map, the two expressions coincide. Hence we get

R̂V ∗,V (wi+1 ⊗ vi+1) = q
1

N
−1vi+1 ⊗ wi+1 − q

1

N
+1vi ⊗ wi + R̂V ∗,V (wi ⊗ vi).

Now plugging in the induction hypothesis and simplifying we obtain the result. �

3.3. Some useful facts. In this subsection we collect various useful facts about the modules
V and V ∗ and their braidings. We start by giving a vector space isomorphism between V and
V ∗ which intertwines their respective braidings.

Lemma 3.4. We have a vector space isomorphism ψ : V → V ∗, defined by ψ(vi) = wN+1−i,

such that R̂V ∗,V ∗(ψ ⊗ ψ) = (ψ ⊗ ψ)R̂V,V .

Proof. It is clear that it is an isomorphism, so we only have to check that it intertwines the
braidings. We apply R̂V ∗,V ∗ to (ψ ⊗ ψ)(vi ⊗ vj) = wN+1−i ⊗ wN+1−j . Under the replacement
(i, j) → (N +1− i, N +1− j) we have δij → δij and θ(i− j) → θ(j− i). Using these identities
in the expression given in Proposition 3.2 we obtain

R̂V ∗,V ∗(ψ ⊗ ψ)(vi ⊗ vj) = qδij−
1

N ψ(vj)⊗ ψ(vi) + θ(j − i)q−
1

N (q − q−1)ψ(vi)⊗ ψ(vj)

= (ψ ⊗ ψ)R̂V,V (vi ⊗ vj). �

Remark 3.5. This isomorphism does not respect the action of Uq(slN ), since the simple mod-
ules V = V (ω1) and V ∗ ∼= V (ωN−1) are not isomorphic.

It is well known that R̂V,V and R̂V ∗,V ∗ satisfy Hecke-type relations.
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Proposition 3.6. The braidings R̂V,V and R̂V ∗,V ∗ satisfy the Hecke-type relations

(R̂V,V − q1−
1

N )(R̂V,V + q−1− 1

N ) = 0, (R̂V ∗,V ∗ − q1−
1

N )(R̂V ∗,V ∗ + q−1− 1

N ) = 0.

Proof. It is immediate to check that vi ⊗ vj + qδij−1vj ⊗ vi with i ≤ j and vi ⊗ vj − qvj ⊗ vi
with i < j are eigenvectors with eigenvalues q1−

1

N and −q−1− 1

N , respectively. The case of V ∗

follows by applying the map ψ from Lemma 3.4, for example. �

Using these relations we can provide an equivalent description of the relations of the braided
exterior algebras Λq(V ) and Λq(V

∗), which are given by S2
qV and S2

qV
∗ as in equation (3.1).

Corollary 3.7. We have the identities

S2
qV = im(id + q1+

1

N R̂V,V ), S2
qV

∗ = im(id + q1+
1

N R̂V ∗,V ∗).

Proof. Since q1−
1

N is the only positive eigenvalue of R̂V,V , we have S2
qV = ker(R̂V,V − q1−

1

N id).
It follows from the quadratic relations of Proposition 3.6 that

ker(R̂V,V − q1−
1

N id) = im(R̂V,V + q−1− 1

N id).

This can be rewritten as S2
qV = im(id + q1+

1

N R̂V,V ). Similarly for V ∗. �

4. Braid equation and symmetrization

In this section we will recall some facts related to solutions of the braid equation. In
particular we will introduce symmetrization operators, which will play an important role in
checking the PBW-deformation condition later on.

4.1. Braid equation and rescaling. Let V be a vector space and σ : V ⊗ V → V ⊗ V be
a linear isomorphism. Write σ1 := σ ⊗ id and σ2 := id ⊗ σ. Then we say that σ satisfies
the braid equation if the equation σ1σ2σ1 = σ2σ1σ2 holds in V ⊗3. The pair (V, σ) is called a
braided vector space. The braid equation (or equivalently of the Yang-Baxter equation) plays
an important role in the theory of Hopf algebras, see for example [KlSc97, Section 8.1].

For reasons that will become clear later on, we will be interested in the following situation:
given a solution of the braid equation on a direct sum V =

⊕
i∈I Vi, we want to consider

a new map which is obtained from the given solution by rescaling its components by some
constants. It is very easy to prove, as we will do below, that this rescaled map is again a
solution of the braid equation. Given any linear map T : V ⊗ V → V ⊗ V we will write
T =

∑
i,j∈I Tij for its components, that is Tij : Vi ⊗ Vj → Vj ⊗ Vi.

Proposition 4.1. A map T : V ⊗ V → V ⊗ V satisfies the braid equation if and only if

(Tjk ⊗ id)(id⊗ Tik)(Tij ⊗ id) = (id⊗ Tij)(Tik ⊗ id)(id⊗ Tjk), ∀i, j, k ∈ I.

Proof. Consider T1T2T1. Then Vi ⊗ Vj ⊗ Vk is mapped into

Vi ⊗ Vj ⊗ Vk
Tij⊗id
−−−→ Vj ⊗ Vi ⊗ Vk

id⊗Tik−−−−→ Vj ⊗ Vk ⊗ Vi
Tjk⊗id
−−−−→ Vk ⊗ Vj ⊗ Vi.

Similarly consider T2T1T2. Then Vi ⊗ Vj ⊗ Vk is mapped into

Vi ⊗ Vj ⊗ Vk
id⊗Tjk

−−−−→ Vi ⊗ Vk ⊗ Vj
Tik⊗id
−−−−→ Vk ⊗ Vi ⊗ Vj

id⊗Tij

−−−→ Vk ⊗ Vj ⊗ Vi.

Comparing these two we obtain the stated conditions. �

Corollary 4.2. Suppose T =
∑

i,j∈I Tij satisfies the braid equation. Then T ′ =
∑

i,j∈I λijTij
satisfies the braid equation for any choice of scalars {λij}i,j∈I.
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Proof. By the previous result, T ′ should satisfy the conditions

λjkλikλij(Tjk ⊗ id)(id⊗ Tik)(Tij ⊗ id) = λijλikλjk(id⊗ Tij)(Tik ⊗ id)(id⊗ Tjk).

These are satisfied, since the prefactor is the same and T satisfies the braid equation. �

4.2. Symmetrization. Now suppose σ : V ⊗V → V ⊗V satisfies the braid equation. Using
σ we can define an analogue of the symmetrization operator, similarly to the classical case
with the flip map. In degree two and three this is given by

S2 := id + σ, S3 := id + σ1 + σ2 + σ1σ2 + σ2σ1 + σ1σ2σ1.

Of course the fact that σ satisfies the braid equation plays no role in the above definition.
However, this property is needed to prove the following.

Lemma 4.3. Suppose σ satisfies the braid equation. Then imS3 ⊂ (imS2 ⊗ V )∩ (V ⊗ imS2).

Proof. To show that imS3 ⊂ imS2 ⊗ V we observe that

S3 = (id + σ1) + (id + σ1)σ2 + (id + σ1)σ2σ1. (4.1)

Similarly to show that imS3 ⊂ V ⊗ imS2 we observe that

S3 = (id + σ2) + (id + σ2)σ1 + (id + σ2)σ1σ2, (4.2)

where we have used the braid equation σ1σ2σ1 = σ2σ1σ2. �

Using the symmetrization map we can produce, in some cases, a convenient basis for check-
ing the PBW-deformation condition. Indeed, this needs to be checked on the intersection
(R⊗V )∩ (V ⊗R), where R is the space of quadratic relations of the given quadratic algebra.

5. Case simple modules

In this section we will study PBW-deformations of quadratic-constant type for the braided
exterior algebras Λq(V (ω1)) and Λq(V (ωN−1)). We will show that they do not admit PBW-
deformations of this type. Hence there are no “quantum Clifford algebras” such that their
associated graded algebras coincide with these braided exterior algebras.

Recall that quadratic-constant deformations are characterized by maps β : R → K, where
R ⊂ V ⊗ V is the subspace of quadratic relations, such that β ⊗ id − id ⊗ β = 0 on the
intersection (R ⊗ V ) ∩ (V ⊗ R) inside V ⊗3. In order to check this condition we will consider
a convenient basis for this subspace, obtained via symmetrization.

In this section σ will denote the maps q1+
1

N R̂V,V for V (ω1) and q1+
1

N R̂V ∗,V ∗ for V (ωN−1).
Then σ satisfies the braid equation, as it is a given by a rescaling of the braiding.

Notation 5.1. We define Vij := S2(vi ⊗ vj) for i ≥ j and Wij := S2(wi ⊗ wj) for i ≤ j.

It follows from Corollary 3.7 that {Vij}i≥j and {Wij}i≤j are bases for the subspaces of
quadratic relations RV and RV ∗ , respectively. They are given explicitly by

Vij = vi ⊗ vj + qδij+1vj ⊗ vi, Wij = wi ⊗ wj + qδij+1wj ⊗ wi.

We introduce similar elements by symmetrization in degree three.

Notation 5.2. We define Vijk := S3(vi ⊗ vj ⊗ vk) for i ≥ j ≥ k. Similarly we define
Wijk := S3(wi ⊗ wj ⊗ wk) for i ≤ j ≤ k.
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In the next lemma we will show that

Vijk ∈ (RV ⊗ V ) ∩ (V ⊗ RV ), Wijk ∈ (RV ∗ ⊗ V ∗) ∩ (V ∗ ⊗ RV ∗),

and it will be clear that these elements are linearly independent. Then it follows that they are
bases for these subspaces of V ⊗3 and (V ∗)⊗3. Indeed the algebras Λq(V (ω1)) and Λq(V (ωN−1))
are flat, namely have the same Hilbert series as the corresponding classical exterior algebras,
hence by dimensional reasons the elements above give a basis.

Lemma 5.3. We have the identities

Vijk = Vij ⊗ vk + qδjk+1Vik ⊗ vj + qδij+δik+2Vjk ⊗ vi

= vi ⊗ Vjk + qδij+1vj ⊗ Vik + qδjk+δik+2vk ⊗ Vij .

Similarly we have the identities

Wijk = Wij ⊗ wk + qδjk+1Wik ⊗ wj + qδij+δik+2Wjk ⊗ wi

= wi ⊗Wjk + qδij+1wj ⊗Wik + qδjk+δik+2wk ⊗Wij .

Proof. Using the fact that i ≥ j ≥ k we compute

σ1(vi ⊗ vj ⊗ vk) = qδij+1vj ⊗ vi ⊗ vk, σ2(vi ⊗ vj ⊗ vk) = qδjk+1vi ⊗ vk ⊗ vj,

σ2σ1(vi ⊗ vj ⊗ vk) = qδij+δik+2vj ⊗ vk ⊗ vi, σ1σ2(vi ⊗ vj ⊗ vk) = qδjk+δik+2vk ⊗ vi ⊗ vj .

Plugging these into the expressions for S3 given by (4.1) and (4.2) and using the definition
of the elements Vij we obtain the result. To obtain the expressions for Wijk we use the
isomorphism ψ : V → V ∗ given in Lemma 3.4. Since ψ intertwines the braidings we have

Wijk = S3(ψ ⊗ ψ ⊗ ψ)(vN+1−i ⊗ vN+1−j ⊗ vN+1−k)

= (ψ ⊗ ψ ⊗ ψ)VN+1−i,N+1−j,N+1−k.

Then applying ψ to the expressions for Vijk we obtain the result. �

We are now ready to study PBW-deformations of these braided exterior algebras.

Theorem 5.4. For 0 < q < 1 there are no non-trivial PBW-deformations of quadratic-
constant type of the algebras Λq(V ) and Λq(V

∗).

Proof. We will show that (β ⊗ id − id ⊗ β)(Vijk) = 0 implies β(Vij) = 0, namely a trivial
deformation. Applying β ⊗ id− id⊗ β to the two expressions given in Lemma 5.3 we get

0 = β(Vij)vk + qδjk+1β(Vik)vj + qδij+δik+2β(Vjk)vi

− β(Vjk)vi − qδij+1β(Vik)vj − qδjk+δik+2β(Vij)vk.

The case N = 2 can be checked separately to show that β(Vij) = 0. Suppose N > 2 so that
we can take i, j, k to be all distinct. Then we obtain the condition

(q2 − 1)β(Vjk)vi + (1− q2)β(Vij)vk = 0.

Since q2 6= 1 this implies β(Vij) = 0 for all i 6= j. Next consider the case i = j and j 6= k.
Using β(Vab) = 0 for a 6= b we arrive at the condition (1 − q2)β(Vii)vk = 0, which implies
β(Vii) = 0. Finally the argument for Λq(V

∗) is completely identical. �
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6. Semisimple case

Since the simple modules V and V ∗ do not admit PBW-deformations, we consider some-
thing with a bit more structure like the semisimple module H := V (ω1)⊕V (ωN−1). However,
as we will explain below, instead of considering the braided exterior algebra Λq(H) we will
use a different construction, which will occupy the rest of this section.

6.1. A problem and a solution. An unpleasant feature of the algebra Λq(H) is its lack
of flatness, despite the algebras Λq(V ) and Λq(V

∗) being flat deformations. For example, for
N = 2 we have V ∼= V ∗ and in [Tuc13, Example 3.5.1.5] it is shown that Λq(V ⊕V ) is not flat
(actually this is shown for Sq(V ⊕ V ), but the result can be immediately modified). Hence
we do not even have a vector space isomorphism between Λq(H) and Λq(V )⊗ Λq(V

∗), which
clashes with our expectations from the classical setting.

A similar problem was encountered in [LZZ11], where the authors discuss a quantum version
of the first fundamental theorem of classical invariant theory. In the cited paper they observe
that the quantum symmetric algebra Sq(⊕

mV ), corresponding to m copies of a certain module
V , is not flat for m > 1. Their solution is to replace Sq(⊕

mV ) with a twisted tensor product
of m copies of Sq(V ), which is easily seen to be flat for all m.

Here we will use the same strategy and take the twisted tensor product of Λq(V ) and
Λq(V

∗). However, unlike [LZZ11], we will not simply use the braiding on the category of
Uq(slN)-modules as a twisting map, but we will consider a rescaled version of it. On one
hand this is needed to introduce the appropriate minus signs for a tensor product of exterior
algebras. On the other hand we will see that a non-trivial choice of this rescaling will be
needed to obtain non-trivial PBW-deformations of quadratic-constant type.

6.2. Relations of a twisted tensor product algebra. The following lemma is fairly
straightforward, and describes the space of relations of a twisted tensor product of two Koszul
algebras, which is the setting we are interested in.

Lemma 6.1. Let A = Q(V,RV ) and B = Q(W,RW ) be Koszul algebras. Let τ : B ⊗ A →
A⊗B be a graded twisting map. Then the twisted tensor product A⊗τ B is isomorphic to the
Koszul algebra Q(V ⊕W,P ), where P = RV ⊕ RW ⊕RV,W and

RV,W = {w ⊗ v − τ(w ⊗ v) : v ∈ V, w ∈ W}.

Proof. We have already recalled in Proposition 2.6 that, given these assumptions, A ⊗τ B is
a Koszul algebra, hence we only need to determine the space of quadratic relations. It is
immediate, using the properties of a twisting map, to show the following identities

(a⊗ 1) · (a′ ⊗ 1) = aa′ ⊗ 1, (1⊗ b) · (1⊗ b′) = 1⊗ bb′,

(a⊗ 1) · (1⊗ b) = a⊗ b, (1⊗ b) · (a⊗ 1) = τ(b⊗ a).

The first two identities show that A and B are subalgebras, hence we get the relations RV

and RW . Next, writing τ(b⊗ a) =
∑

i ai ⊗ bi and using the last two identities, we get
∑

i

(ai ⊗ 1) · (1⊗ bi) =
∑

i

ai ⊗ bi = (1⊗ b) · (a⊗ 1).

Since τ is a graded twisting map, that is τ(Bi ⊗ Aj) ⊂ Aj ⊗ Bi, it suffices to impose this
relation on the generators. Hence we get the subspace of relations

RV,W = {w ⊗ v − τ(w ⊗ v) : v ∈ V, w ∈ W} ⊂ (V ⊕W )⊗2.

By dimensional reasons these are all the relations. �
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6.3. Exterior algebra. We will now define a quantum analogue of the exterior algebra Λ(H),
which will not coincide with the braided exterior algebra Λq(H), as explained above. Instead
we will take an appropriate twisted tensor product of Λq(V ) and Λq(V

∗).
The twisting map we will use is built from the braiding of the category of Uq(slN)-modules,

which we have denoted by R̂. Observe that R̂Λq(V ∗),Λq(V ) is completely determined by R̂V ∗,V

and by the multiplication maps ∧, by naturality of the braiding. Moreover it is easy to see
that, if we rescale the braiding R̂V ∗,V by λ ∈ K×, then there is a unique way to extend this
to a graded twisting map. This motivates the following definition.

Definition 6.2. Let τλ : Λq(V
∗)⊗Λq(V ) → Λq(V )⊗Λq(V

∗) be the twisting map determined
by τλ(w ⊗ v) = −λR̂V ∗,V (w ⊗ v), with v ∈ V , w ∈ V ∗ and λ ∈ K

×. Then we define
Λq,λ(H) := Λq(V )⊗τλ Λq(V

∗) to be the twisted tensor product with respect to τλ.

Observe that τλ is a graded twisting map and a Uq(slN)-module homomorphism. Then,
since Λq(V ) and Λq(V

∗) are Koszul algebras, it follows from Proposition 2.6 that Λq,λ(H) is a
Uq(slN)-module algebra which is Koszul. We denote by RH ⊂ H⊗H its subspace of quadratic
relations. From Lemma 6.1 we have that RH = RV ⊕RV ∗ ⊕RV,V ∗ , where

RV,V ∗ = {w ⊗ v + λR̂V ∗,V (w ⊗ v) : v ∈ V, w ∈ V ∗}.

These relations can be written in a more uniform way if we make the following definition.

Notation 6.3. We define the linear map σλ : H ⊗H → H ⊗H by

σλ :=





q1+
1

N R̂V,V , V ⊗ V

λ−1
R̂
−1
V ∗,V , V ⊗ V ∗

λR̂V ∗,V , V ∗ ⊗ V

q1+
1

N R̂V ∗,V ∗ , V ∗ ⊗ V ∗

.

We will sometimes omit the subscript λ to avoid excessive clutter. With this definition we
can write down the relations in a way which parallels the classical case.

Proposition 6.4. We have Λq,λ(H) ∼= T (H)/〈RH〉, where RH = im(id + σλ).

Proof. We need to show that RH = RV ⊕RV ∗ ⊕RV,V ∗ can be rewritten as RH = im(id+ σλ).
It follows from Corollary 3.7 that we can write

im(id + σλ)(V ⊗ V ) = RV , im(id + σλ)(V
∗ ⊗ V ∗) = RV ∗ .

Next we have (id + σλ)(V
∗ ⊗ V ) = RV,V ∗ . Finally we show that (id + σλ)(V ⊗ V ∗) = RV,V ∗ .

Observe that V ⊗ V ∗ = λR̂V ∗,V (V
∗ ⊗ V ), since λR̂V ∗,V is an isomorphism. Then

(id + σλ)(V ⊗ V ∗) = (id + λ−1
R̂
−1
V ∗,V )λR̂V ∗,V (V

∗ ⊗ V ) = (λR̂V ∗,V + id)(V ∗ ⊗ V ).

From this computation we obtain the conclusion. �

Remark 6.5. The classical exterior algebra Λ(H) is isomorphic to T (H)/〈im(id + τ)〉, where
τ is the flip map τ(x⊗ y) = y ⊗ x. Clearly we have

im(id + τ)(V ⊗ V ∗) = im(id + τ)(V ∗ ⊗ V ).

Hence in the classical limit q → 1 the algebra Λq,λ(H) reduces to the exterior algebra Λ(H)
and the linear map σλ reduces to the flip map τ , provided that λ→ 1.
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The linear map σλ satisfies the braid equation, since it is defined in terms of R̂. Moreover we
have RH = imS2, where S2 is the symmetrizer defined by σλ. Then it follows from Lemma 4.3
that imS3 is contained in the intersection (RH⊗H)∩(H⊗RH). Using this fact we will obtain
a basis of this subspace, which we will use to check the PBW-deformation condition.

7. PBW-deformations in the semisimple case

In this section we classify the PBW-deformations of quadratic-constant type for the algebras
Λq,λ(H). We start by giving a convenient basis for the intersection (RH⊗H)∩(H⊗RH) ⊂ H⊗3,
which will be used to check the deformation condition for the linear map β : RH → K.

7.1. Basis elements. We begin by writing down a basis for the subspace of quadratic re-
lations RH = im(id + σλ) ⊂ H ⊗ H . First observe that the elements Vij and Wij from
Notation 5.1 can be written as Vij = (id + σλ)(vi ⊗ vj) and Wij = (id + σλ)(wi ⊗ wj).

Notation 7.1. We define Mij := (id + σλ)(wi ⊗ vj). We will also write λ′ := λq
1

N .

More explicitly, these elements are given by the expression

Mij = wi ⊗ vj + λ′q−δijvj ⊗ wi − λ′δij(q − q−1)

i−1∑

k=1

vk ⊗ wk. (7.1)

It is clear that {Vij}i≥j , {Wij}i≤j and {Mij}i,j give a basis of RH .
Next we need to determine a basis for the intersection (RH⊗H)∩(H⊗RH) ⊂ H⊗3. Clearly

Vijk and Wijk from Notation 5.2 belong to this intersection, since RV , RV ∗ ⊂ RH .

Notation 7.2. We define the elements Xijk := S3(wi ⊗ vj ⊗ vk) for j ≥ k.

In the next lemma we obtain explicit expressions for Xijk.

Lemma 7.3. We have the identity

Xijk = λ′2q−δij−δikVjk ⊗ wi + qδjk+1Mik ⊗ vj +Mij ⊗ vk

− λ′2(q − q−1)
i−1∑

ℓ=1

(δikq
−δijVjℓ + δijq

−δℓkVℓk)⊗ wℓ

+ δijθ(j − k)λ′2(q − q−1)2
k−1∑

ℓ=1

Vkℓ ⊗ wℓ.

We also have the identity

Xijk = wi ⊗ Vjk + λ′q−δijvj ⊗Mik + λ′q−δik+δjk+1vk ⊗Mij

− λ′(q − q−1)

i−1∑

ℓ=1

vℓ ⊗ (δijMℓk + δikq
δjk+1Mℓj).

Proof. The two identities follow by applying the two expressions for S3 given by (4.1) and
(4.2) to the elements wi ⊗ vj ⊗ vk. First we compute

σ1(wi ⊗ vj ⊗ vk) = λ′q−δijvj ⊗ wi ⊗ vk − δijλ
′(q − q−1)

i−1∑

ℓ=1

vℓ ⊗ wℓ ⊗ vk.
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Next, since we have the condition j ≥ k, we get σ2(wi ⊗ vj ⊗ vk) = qδjk+1wi ⊗ vk ⊗ vj . Then

σ1σ2(wi ⊗ vj ⊗ vk) = λ′q−δik+δjk+1vk ⊗ wi ⊗ vj − δikq
δjk+1λ′(q − q−1)

i−1∑

ℓ=1

vℓ ⊗ wℓ ⊗ vj .

The most complicated term is the one obtained by applying σ2σ1. We compute

σ2σ1(wi ⊗ vj ⊗ vk) = σ2

(
λ′q−δijvj ⊗ wi ⊗ vk − δijλ

′(q − q−1)

i−1∑

ℓ=1

vℓ ⊗ wℓ ⊗ vk

)

= λ′q−δijvj ⊗

(
λ′q−δikvk ⊗ wi − δikλ

′(q − q−1)
i−1∑

ℓ=1

vℓ ⊗ wℓ

)

− δijλ
′(q − q−1)

i−1∑

ℓ=1

vℓ ⊗

(
λ′q−δℓkvk ⊗ wℓ − δℓkλ

′(q − q−1)

ℓ−1∑

m=1

vm ⊗ wm

)
.

Since we have the condition j ≥ k we obtain the identity

δij

i−1∑

ℓ=1

ℓ−1∑

m=1

δℓkvℓ ⊗ vm ⊗ wm = δijθ(j − k)
k−1∑

m=1

vk ⊗ vm ⊗ wm.

Hence the expression for σ2σ1(wi ⊗ vj ⊗ vk) can be rewritten as

σ2σ1(wi ⊗ vj ⊗ vk) = λ′2q−(δij+δik)vj ⊗ vk ⊗ wi

− λ′2(q − q−1)
i−1∑

ℓ=1

(δijq
−δℓkvℓ ⊗ vk ⊗ wℓ + δikq

−δijvj ⊗ vℓ ⊗ wℓ)

+ δijθ(j − k)λ′2(q − q−1)2
k−1∑

ℓ=1

vk ⊗ vℓ ⊗ wℓ.

Then the result follows by using the definitions of Vij and Mij. �

Notation 7.4. We define the elements Yijk := S3(wi ⊗ wj ⊗ vk) for i ≤ j.

In the next lemma we obtain explicit expressions for Yijk.

Lemma 7.5. We have the identity

Yijk = Wij ⊗ vk + λ′q−δjkMik ⊗ wj + λ′qδij−δik+1Mjk ⊗ wi

− λ′(q − q−1)

k−1∑

ℓ=1

(δjkMiℓ + δikq
δij+1Mjℓ)⊗ wℓ.

We also have the identity

Yijk = wi ⊗Mjk + qδij+1wj ⊗Mik + λ′2q−δjk−δikvk ⊗Wij

− λ′2(q − q−1)
k−1∑

ℓ=1

vℓ ⊗ (δikq
−δjkWℓj + δjkq

−δiℓWiℓ)

+ δjkθ(j − i)λ′2(q − q−1)2
i−1∑

m=1

vm ⊗Wmi.



14 MARCO MATASSA

Proof. Since i ≤ j we have σ1(wi ⊗ wj ⊗ vk) = qδij+1wj ⊗ wi ⊗ vk. Next we compute

σ2(wi ⊗ wj ⊗ vk) = λ′q−δjkwi ⊗ vk ⊗ wj − δjkλ
′(q − q−1)

j−1∑

ℓ=1

wi ⊗ vℓ ⊗ wℓ.

Combining these two expressions we obtain

σ2σ1(wi ⊗ wj ⊗ vk) = λ′qδij−δik+1wj ⊗ vk ⊗ wi − δikλ
′qδij+1(q − q−1)

i−1∑

ℓ=1

wj ⊗ vℓ ⊗ wℓ.

The most complicated piece to compute is

σ1σ2(wi ⊗ wj ⊗ vk) = λ′q−δjkσ1(wi ⊗ vk ⊗ wj)− δjkλ
′(q − q−1)

j−1∑

ℓ=1

σ1(wi ⊗ vℓ ⊗ wℓ)

= λ′q−δjk

(
λ′q−δikvk ⊗ wi − δikλ

′(q − q−1)

i−1∑

ℓ=1

vℓ ⊗ wℓ

)
⊗ wj

− δjkλ
′(q − q−1)

j−1∑

ℓ=1

(
λ′q−δiℓvℓ ⊗ wi − δiℓλ

′(q − q−1)

i−1∑

m=1

vm ⊗ wm

)
⊗ wℓ.

Proceeding as in the previous lemma we find

σ1σ2(wi ⊗ wj ⊗ vk) = λ′2q−δjk−δikvk ⊗ wi ⊗ wj

− λ′2(q − q−1)

k−1∑

ℓ=1

vℓ ⊗ (δikq
−δjkwℓ ⊗ wj + δjkq

−δiℓwi ⊗ wℓ)

+ δjkθ(j − i)λ′2(q − q−1)2
i−1∑

m=1

vm ⊗ wm ⊗ wi.

Plugging these into the two expressions for S3 we obtain the result. �

It is clear from their expressions that the elements {Xijk}i,j≥k and {Yijk}i≤j,k are linearly
independent. Then, together with {Vijk}i≥j≥k and {Wijk}i≤j≤k, they give a basis of the
intersection (RH ⊗ H) ∩ (H ⊗ RH). Indeed the algebra Λq,λ(H) is a flat deformation of the
classical exterior algebra Λ(H), hence by dimensional reasons we have a basis.

7.2. PBW-deformations. We start by investigating the condition (β⊗id−id⊗β)(Xijk) = 0.

Lemma 7.6. Suppose (β ⊗ id− id⊗ β)(Xijk) = 0 for all Xijk.
1) If λ′ 6= q then β(Mij) = 0 for all i and j.
2) If λ′ = q then β(Mij) = δijc for some c ∈ K.

Proof. To compute (β ⊗ id − id ⊗ β)(Xijk) = 0 we use the expressions for Xijk given in
Lemma 7.3. Taking into account that β(Vab) = 0 for all a, b we obtain

0 = qδjk+1β(Mik)vj + β(Mij)vk

− λ′q−δijβ(Mik)vj − λ′q−δik+δjk+1β(Mij)vk

+ λ′(q − q−1)

i−1∑

ℓ=1

(δijβ(Mℓk) + δikq
δjk+1β(Mℓj))vℓ.
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We omit the verification of the case N = 2, which can be checked separately. Suppose that
N > 2, so that is possible to choose i, j, k are all distinct. We get

(q − λ′)β(Mik)vj + (1− λ′q)β(Mij)vk = 0.

This implies β(Mij) = 0 for i 6= j. Next consider the case i = j = k. We obtain

0 = (q + q−1)(q − λ′)β(Mii)vi,

where we have used that β(Mij) = 0 for i 6= j. Then we must have β(Mii) = 0 unless λ′ = q.
To check the remaining cases we fix λ′ = q. Let us rewrite the general condition as

0 = q(qδjk − q−δij )β(Mik)vj + (1− q−δik+δjk+2)β(Mij)vk

+ q(q − q−1)

i−1∑

ℓ=1

(δijβ(Mℓk) + δikq
δjk+1β(Mℓj))vℓ.

We are left with checking the cases where exactly two indices coincide. In the case j = k and
i 6= j we see that the condition is identically satisfied. Next for i = k and i 6= j we have

q(q − q−1)
i−1∑

ℓ=1

qβ(Mℓj)vℓ = 0.

Recall that the elements Xijk are defined for j ≥ k. In this case this implies j > i and hence
the term above vanishes. Finally we are left with the case i = j and j 6= k. We get

−q(q − q−1)β(Mii)vk + q(q − q−1)

i−1∑

ℓ=1

β(Mℓk)vℓ = 0.

As above we have i = j > k. Hence this condition can be rewritten as

−q(q − q−1)β(Mii)vk + q(q − q−1)β(Mkk)vk = 0.

Since 0 < q < 1 we conclude that β(Mii) = β(Mkk) for i > k. �

Next we check the PBW-deformation condition for the elements Yijk.

Lemma 7.7. Suppose λ′ = q and β(Mij) = δijc. Then (β⊗ id− id⊗β)(Yijk) = 0 is satisfied.

Proof. We apply the linear map β to the two expressions for Yijk given in Lemma 7.5. First,
using β(Wij) = 0 and β(Mij) = δijc, we compute

c−1(β ⊗ id)Yijk = δikq
−δjk+1wj + δjkq

δij−δik+2wi − q(q − q−1)

k−1∑

ℓ=1

(δjkδiℓ + δikq
δij+1δjℓ)wℓ.

Since i ≤ j by definition of the elements Yijk, we have the identity
k−1∑

ℓ=1

(δjkδiℓ + δikq
δij+1δjℓ)wℓ = δjkθ(j − i)wi.

Plugging this in and simplifying we obtain the expression

c−1(β ⊗ id)Yijk = δikq
−δjk+1wj + δjkq

2wi − δjkθ(j − i)q(q − q−1)wi.

But then a simple inspection shows that it is the same as the other term

c−1(id⊗ β)Yijk = δjkwi + δikq
δij+1wj.
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For example in the case i 6= j and j = k we get

c−1(β ⊗ id)Yijj = q2wi − q(q − q−1)wi = wi.

On the other hand we have c−1(id⊗ β)Yijj = wi. �

Now we are ready to classify the PBW-deformations of the algebra Λq,λ(H).

Theorem 7.8. The PBW-deformations of Λq,λ(H) of quadratic-constant type are as follows.

1) For λ 6= q1−
1

N there are no non-trivial deformations.

2) For λ = q1−
1

N the non-trivial deformations are parametrized by c ∈ K× and given by

β(Vij) = β(Wij) = 0, β(Mij) = δijc.

Proof. Recall that Λq,λ(H) is a Koszul algebra, since it is the twisted tensor product of two
Koszul algebras. Hence the condition β⊗ id− id⊗β = 0 on (RH ⊗H)∩(H⊗RH) is sufficient,
as well as necessary. A vector space basis for (RH ⊗H) ∩ (H ⊗RH) is given by the elements

{Vijk}i≥j≥k, {Wijk}i≤j≤k, {Xijk}i,j≥k, {Yijk}i≤j,k.

We have seen in Theorem 5.4 that β(Vij) = β(Wij) = 0. On the other hand the conditions
for β(Mij) follow from Lemma 7.6 and Lemma 7.7. �

8. Further properties

In this section we will explore some further properties of the PBW-deformations obtained in
the previous section, which we will denote from now by Clq(c). We will obtain a presentation
similar to the classical setting, prove that they are Uq(slN )-module algebras and that they
are isomorphic for different values of c ∈ K×. Finally we will compare this quantum Clifford
algebra to other notions of quantum Clifford algebras defined by other authors.

Recall that in this section we only consider the value λ = q1−
1

N and βc(Mij) = δijc for
some c ∈ K×. We will also write the linear map σλ for this value simply as σ. Finally recall
that we denote by 〈·, ·〉 : V ∗ ⊗ V → C the Uq(slN )-invariant pairing such that 〈wi, vj〉 = δij .

Proposition 8.1. The algebra Clq(c) is isomorphic to

T (H)/〈x⊗ y + σ(x⊗ y)− (x, y)c : x, y ∈ H〉,

where the bilinear form (·, ·)c : H ⊗H → C is defined by

(·, ·)c :=





c〈·, ·〉, V ∗ ⊗ V

c〈·, ·〉 ◦ q−1+ 1

N R̂
−1
V ∗,V , V ⊗ V ∗

0, V ⊗ V, V ∗ ⊗ V ∗

.

Proof. The algebra Clq(c) was defined as the quotient of T (H) by the ideal generated by the
subspace Pc = {x − βc(x) : x ∈ RH}. Recall that RH = im(id + σ) by Proposition 6.4 and
that it is spanned by the elements Vij , Wij and Mij. We want to show that Pc is equal to
{x ⊗ y + σ(x ⊗ y)− (x, y)c : x, y ∈ H}. It is clear that the latter contains the elements Vij

and Wij. Next, since Mij = (id + σ)(wi ⊗ vj) and βc(Mij) = δijc, we have

Mij − βc(Mij) = wi ⊗ vj + σ(wi ⊗ vj)− (wi, vj)c.

However Mij can be written in two different ways, since (id+σ)(V ⊗V ∗) = (id+σ)(V ∗⊗V ),
as observed in the proof of Proposition 6.4. Indeed observe that

Mij = (id + q1−
1

N R̂V ∗,V )(wi ⊗ vj) = (id + q−1+ 1

N R̂
−1
V ∗,V )q

1− 1

N R̂V ∗,V (wi ⊗ vj),
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from which it follows that Mij = (id + σ)q1−
1

N R̂V ∗,V (wi ⊗ vj). Then we need to have

(id + σ − (·, ·)c)(wi ⊗ vj) = (id + σ − (·, ·)c)q
1− 1

N R̂V ∗,V (wi ⊗ vj).

This implies that the bilinear form should satisfy (wi, vj)c = (·, ·)c ◦ q
1− 1

N R̂V ∗,V (wi ⊗ vj). But
this is satisfied, since on V ⊗ V ∗ we have defined (·, ·)c = c〈·, ·〉 ◦ q−1+ 1

N R̂
−1
V ∗,V . �

Remark 8.2. Observe that the bilinear form (·, ·)c is not symmetric, unlike the classical case.
On the other hand it satisfies the property (·, ·)c ◦ σ = (·, ·)c, which reduces to the symmetric
case in the classical limit, since σ reduces to the flip map.

Remark 8.3. In the classical limit (·, ·)c reduces to a multiple of the Killing form on slN , since
V and V ∗ can be realized as certain Lie subalgebras u+ and u− of slN (see below).

This presentation shows that Clq(c) essentially coincides with the quantum Clifford algebra
defined in [BCDRV96], where the starting point is a braiding satisfying the Hecke condition.
It is also a convenient way to show that Clq(c) is a Uq(slN)-module algebra.

Corollary 8.4. The algebras Clq(c) are Uq(slN)-module algebras.

Proof. It suffices to show that the subspace of relations is invariant under the action of Uq(slN ).
By Proposition 8.1 this can be written as {x ⊗ y + σ(x⊗ y)− (x, y)c : x, y ∈ H}. It suffices
to notice that the bilinear form (·, ·)c is Uq(slN)-invariant, since it is defined in terms of the
equivariant maps 〈·, ·〉 and R̂

−1
V ∗,V . Then we obtain the conclusion. �

Next we show that the algebras Clq(c) for different values of c are isomorphic.

Proposition 8.5. We have Clq(c) ∼= Clq(1) as Uq(slN)-module algebras.

Proof. We can obtain an isomorphism of two non-homogeneous quadratic algebras Q(V, P )
and Q(V ′, P ′) as follows. Suppose we have a vector space isomorphism f : V → V ′ such that
T (f)P = P ′, where T (f) : T (V ) → T (V ′) is the extension of f to the corresponding tensor
algebras. Then T (f) induces an algebra isomorphism. Now consider the map

f(vi) = cvi, f(wi) = wi, c ∈ K
×.

It is clearly an equivariant automorphism of H = V ⊕V ∗. Consider the presentation given in
Proposition 8.1 and let Pc = {x⊗ y + σ(x⊗ y)− (x, y)c : x, y ∈ H}. Then it is immediate to
check that T (f)Pc = P1, using the fact that (·, ·)c = c(·, ·)1 and (V, V )1 = (V ∗, V ∗)1 = 0. �

Finally we discuss the connection between Clq(c) and the quantum Clifford algebras intro-
duced in [KrTu13]. We refer to this paper for all unexplained material appearing below.

Let us briefly review the definition of these algebras. Let g be a complex simple Lie algebra.
We consider a cominuscule parabolic subalgebra and denote by l its Levi factor, and by u±
its nilradical and its opposite. The Uq(l)-modules u± are simple, hence there is a unique
Uq(l)-invariant dual pairing 〈·, ·〉 : u− ⊗ u+ → C, up to a scalar. It can be extended to a dual
pairing 〈·, ·〉k : Λ

k
q(u−)⊗Λk

q (u+) → C as in [KrTu13, Proposition 3.6]. The module u+ acts on
Λq(u+) by left multiplication, denoted by γ+. We also obtain an action of u− on Λq(u+) by
dualizing right multiplication on Λq(u−). We denote this action by γ−. By [KrTu13, Theorem
5.1] the map Λq(u−)⊗ Λq(u+) → EndC(Λq(u+)) is an equivariant isomorphism.

Hence the algebra EndC(Λq(u+)), together with its factorization in terms of γ− and γ+, can
be considered a quantum Clifford algebra, which we will denote by C̃lq. It should be thought
of as the Clifford algebra of the complex tangent space u+ ⊕ u−.
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Remark 8.6. The extension of the dual pairing given in [KrTu13, Proposition 3.6] is certainly
not unique. We have at least the choice of a scalar in each degree. As a matter of fact, it
is necessary to make such a choice of scalars to recover the relations of the classical Clifford
algebra, as discussed in [Mat18a]. For this reason, even though we will simply denote such
an algebra by C̃lq, the choice of such scalars is understood.

Proposition 8.7. The PBW-deformation Clq(c) is isomorphic to the quantum Clifford alge-

bra C̃lq, with an appropriate choice of scalars for the latter.

Proof. Let {ei} and {fi} be dual bases of u+ and u− with respect to the dual pairing 〈·, ·〉.
Moreover we assume that {ei} is an orthonormal basis with respect to an invariant Hermitian
inner product. We write ei = γ+(ei) and ii = γ−(fi) as in [Mat18a]. By definition these
operators satisfy the relations of Λq(u+) and Λq(u−), respectively. Their cross-relations are
computed in [Mat18a, Proposition 6.5] and [Mat18a, Proposition 6.6], and are given by

iiej + q1−δijej ii − δijq(q − q−1)
i−1∑

k=1

ekik = δij id.

We remark that the bases {vi} and {wi} used in this paper do not coincide exactly with {ei}
and {fi}, but they are related by a rescaling of the form ei = civi and fi = c−1

i wi. However
it is immediate to check that these relations remain the same under such a rescaling.

The relations above should be compared to the expression for Mij given in (7.1), with
λ′ = q. We see that we obtain exactly the relations of Clq(1), that is with parameter c = 1.
The relations for c 6= 1 can also be obtained in this way, namely by rescaling the dual pairing
〈·, ·〉k : Λ

k
q(u−)⊗ Λk

q(u+) → C, as explained in [Mat18a]. �
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