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Abstract—We present preliminary results on sensor data 

prediction in a smart home environment with a limited number 

of binary sensors. The data has been collected from a real home 

with one resident over a period of 17 weeks. We apply Recurrent 

Neural Network with Long Short-Term Memory to a text 

sequence derived from the sensors’ events to predict the next 

event in a sequence. We compare our system’s characteristics and 

results to a baseline method and to similar work in the area. Our 

implementation achieved a peak accuracy of 69% for a set with 

13 sensors in total - motion, magnetic and power sensors - and 

75% for five motion sensors. 
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I. INTRODUCTION 

The Assisted Living project is an interdisciplinary project 
with experts in the field of nursing and occupational therapy, 
ethics, and technology [1]. The aim is to develop assisted living 
technology (ALT) to support older adults with mild cognitive 
impairment or dementia (MCI/D) to live a safe and independent 
life at home. MCI and dementia consist of a cognitive decline 
that can affect attention, concentration, memory, 
comprehension, reasoning, and problem solving [2]. In order to 
support older adults with MCI/D in their everyday life, several 
functions in smart home environments have been investigated 
in the past years. This includes assisting functions such as 
prompting with reminders or encouragement, diagnosis tools, 
as well as prediction, anticipation and prevention of hazardous 
situations. The majority of these functions requires reliable 
activity recognition and prediction algorithms to work properly.  

Even though several algorithms have been reported in the 
literature for activity recognition and prediction, to the extent of 
our knowledge such prediction algorithms have not yet been 
proven to be accurate enough to be implemented in real homes. 
In addition, there is no complete study comparing the different 
available algorithms, testing different configurations for input 
of data,   or providing guidelines as to which application areas 
they are best suited for. In a previous work that is currently in 
press [3], we applied two state-of-the-art probabilistic 
algorithms on binary sensor data acquired from a real home and 
carried out sequence prediction. We compared their 
performance in several configurations and provided guidelines 
on applications. In this paper, we report results for the same 

task applying recurrent neural network (RNN) with long short-
term memory (LSTM). 

II. RELATED WORK 

There has been a great deal of research on data prediction 
algorithms in the past years [4]. Such algorithms can be applied 
in a large range of domains, including sensor event and activity 
prediction for several functionalities in smart homes. Examples 
include improved automation functions (e.g. turn on the heater 
sufficient time prior to the person arriving at home); prompting 
systems (e.g. prompt a person to execute a necessary activity in 
case it was not performed) [5]; or anomaly detection in certain 
behavior patterns (e.g. movement, everyday habits, etc.) and 
therefore indicate the onset or progress of a condition [6]. 

Among others, probabilistic methods have been 
investigated for sequential data prediction. The Active LeZi 
(ALZ) was applied on the dataset from Mavlab testbed, which 
comprises 50 binary sensors, and achieved a peak accuracy of 
47% [7]. The SPEED (sequence prediction via enhanced 
episode discovery) algorithm was tested on the same dataset as 
ALZ and achieved an accuracy of 88.3% when the same 
dataset was used both for training and for testing [8]. Both 
algorithms translate the data of the binary sensors to a sequence 
of letters and build a tree based on the past observations. They 
are based on Markov models, hence the most probable next 
event can be predicted based on the current state, by using the 
Prediction by Partial Matching algorithm (PPM) [9]. 

Besides probabilistic algorithms, neural networks have also 
been used for sensor event prediction, typically recurrent neural 
networks. In [10] the models Echo State Network (ESN), Back 
Propagation Through Time (BPTT), and Real Time Recurrent 
Learning (RTRL) were compared and the ESN achieved a root 
square mean error (RMSE) of 0.06 in a fourteen-day dataset 
from six binary sensors (four motion and two magnetic). In 
these networks, the number of input and output values 
corresponds to the amount of sensors in the dataset, and each 
can assume value ‘0’ or ‘1’ for being “off” or “on” at a certain 
time slot. The prediction was made for the next six hours. In a 
later work, a Non-linear Autoregressive Network (NARX) was 
compared to an Elman network, with both using as input and 
output the start time and end time of a sensor’s activation [11]. 
In this case, each sensor had its own network that was trained 
and tested on a twenty-day dataset from the same six binary 
sensors. The NARX performed better when predicting only the 
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next step, with a RMSE ranging from 0.06 to 0.09, depending 
on the sensor.  

A similar study was conducted for an office environment 
comprising sixteen rooms. The dataset was collected via an app 
the employees had in a personal data assistant (PDA), where 
they registered manually whenever they arrived and left a 
certain room [12].  Both the Elman network and a multilayer 
perceptron network to predict the next room a person would go 
to in the office were applied. There were four participants in the 
study and the Elman network presented the best results, with a 
maximum accuracy of 91% for one participant and a minimum 
of 70% accuracy for another. In this study, each user was 
modelled by a separate network. The input corresponded to the 
last two rooms codified in four bits each since there were 16 
rooms in total. The output was the next room to be occupied 
and was codified in the same manner. This work compared 
these neural networks with other methods – Bayesian network, 
state prediction and Markov predictor – where comparable 
results were achieved [13]. 

Other related research includes prediction of the next 
activity as well as the time, location, and day it would occur 
using Bayesian networks, which achieved 74% of activity 
prediction [14]. Prediction of the time when a certain activity 
will take place has also been investigated using decision trees 
[15] and time series [16].  

In a previous work, we applied both SPEED and ALZ to 
our data from one real smart-home and reached an accuracy of 
75% and 53%, respectively [3]. In the current work, we use 
neural networks, since they have been shown in the literature to 
achieve good performance for this task. Our dataset contains 
events from 13 binary sensors, i.e. twice as many as used in 
[10], [11] and less than one third of the number of sensors used 
in the Mavlab testbed. The number of sensors is comparable to 
the work in [12], however, the sensor testbed in that work 
comprised primarily motion sensors.  

III. FIELD TRIAL 

Our field trial involves ten independent one-bedroom 
apartments within a community care facility for people over 65 
years old. Each apartment comprises a bedroom, a living room, 
open kitchen area, a bathroom, and an entrance hall (Fig. 1). 

The purpose of the trial and the deployed sensor system 
have been decided in close collaboration with the residents [1]. 
A minimal number of binary sensors has been deployed in our 
trial in order to both minimize surveillance of the residents in 
their private homes, and comply with the technical and 
economic constraints imposed by the research project this work 
is a part of. The set of sensors has subsequently been chosen so 
that it can enable the realization of useful functions for older 
adults with MCI/D as these were indicated after dialogue cafes 
with the users [1]. We chose to include sensors that indicate 
occupancy patterns (movement around the apartment) and 
some daily activities – kitchen-related activities, dressing, 
being in bed, and leisure activities (reading, watching TV, 
listening to radio). Hence, the system comprises motion, 
magnetic, and power sensors. A motion sensor 
(Pyroelectric/Passive Infrared - PIR) detects motion through the 
change of the infrared radiation in its field of view. It sends a 

message ‘1’ when a motion is detected. Magnetic sensors 
indicate whether doors, windows, and drawers are open or 
closed, by sending messages ‘1’ and ‘0’, respectively. Power 
sensors measure the electricity usage of a certain appliance, and 
can therefore indicate whether it is turned on or off, and send 
messages ‘1’ and ‘0’ respectively.  

Fig. 1 shows the schematic of an apartment that comprises 
15 sensors in total:  

• Seven motion sensors: one in each area of the apartment 
and two over and by the bed to indicate whether the 
person is in bed; 

• Four magnetic sensors: back and entrance doors, 
wardrobe, and cutlery drawer; 

• Four power sensors on appliances: nightstand lamp, 
coffee machine, TV, and living room/ reading lamp. 

The sensors are connected wirelessly through Z-Wave and 
xComfort protocols to a Raspberry Pi 3, which receives the 
data and transfers it for storage in a secure server (TSD). The 
data comprises timestamp (date and time with precision up to 
seconds), sensor ID, and sensor message (binary). An example 
scenario is shown in Table I: the resident goes to the living 
room (sensor ID 4), turns on the TV (sensor ID 23), goes to the 
kitchen (sensor ID 5) and makes coffee (on and off sensor ID 
20) and goes back to the living room. 

 

Fig. 1. Sensors system in the field trial apartment 

TABLE I. BINARY SENSORS DATA FOR AN EXAMPLE SCENARIO 

Timestamp Sensor ID Sensor message 

2018-03-25 14:35:55 4 1 

2018-03-25 14:37:46 23 1 

2018-03-25 14:38:13 5 1 

2018-03-25 14:39:00 20 1 

2018-03-25 14:41:02 20 0 

2018-03-25 14:41:58 4 1 



 

 

IV. SENSOR DATA PREDICTION 

We apply LSTM network to predict the next sensor event in 
a sequence. In addition, we implement a baseline for 
comparison. 

A. Baseline 

The baseline consists of a table with the probability of each 
sensor being the next activated sensor depending on the 
preceding sensor(s). The memory length, i.e. the number of 
previous events the prediction is based on, can vary. The 
predicted next event (next activated sensor) is the one with the 
highest probability of being activated right after the last 
sensor(s) in the sequence. 

An example from our data is shown in Table II. The table 
considers a memory length of one event, i.e. the probability 
prediction is based on the previous event only. For instance, 
from a training dataset we computed that after the bedroom 
motion sensor was activated, the most probable next sensor 
event was the bathroom motion sensor in 53% of the samples. 
Based on that, the event predicted after the bedroom would 
therefore be the bathroom motion sensor. Similarly, if the last 
sensor in a sequence were the living-room motion sensor, the 
next predicted event would be the motion sensor in the kitchen. 

B. Recurrent Neural Network 

RNNs have been extensively applied to sequence prediction 
tasks because of the property of keeping an internal memory, 
which is a great advantage for inputs that are sequential in time. 
Examples of applications can be text generation [17], speech 
recognition [18] and pattern recognition in music [19]. The 
LSTM [20] is an RNN architecture designed to be better at 
storing and accessing information than the standard RNN [21]. 

1) LSTM Network Configuration 

 
The input and output of the LSTM network are the data 

from the sensors translated to a sequence of letters, as it was 
performed by the ALZ algorithm [7]. Each sensor is 
represented by a letter, hence an event sequence becomes a text 
sequence. For instance, the example scenario data in Table I 
would be represented as “abcda”, where ‘a’, ‘b, ‘c’ and ‘d’ 
represent sensors ID 4, 23, 5 and 20.  

TABLE II. PREDICTION TABLE FOR SET OF 5 MOTION SENSORS FOR THE 

BASELINE METHOD 

Last 

Sensor 

Next Predicted Sensor 

Bathroom Bedroom 
Living 

room 
Kitchen Entrance 

Bathroom 0 0.926 0.051 0.007 0.017 

Living 
room 

0.018 0.398 0 0.435 0.149 

Bedroom 0.527 0 0.454 0.008 0.011 

Kitchen 0.005 0.062 0.885 0 0.048 

Entré 0.054 0.210 0.630 0.107 0 

 

 

The LSTM network is configured as a text generation 
network. The input is a certain number of sensor events – equal 
to the memory length – and the output is the predicted next 
event in the sequence (Fig. 2).  

2) Implementation 

 
A stateless LSTM network model was implemented in 

Python 3 using Keras open source library for neural networks. 
A number of parameters were tuned based on the model 
learning:  

• Memory length (number of events) of the network, i.e. 
number of events to predict the next one from; 

• Number of hidden layers and number of neurons in 
each; 

• Batch size: number of samples used for training each 
iteration of the epoch; 

• Learning rate: parameter used in the optimization, 
which had 0.01 as the optimal for all our trained 
models; 

• Optimization function, loss function and activation 
functions in the hidden layer and output layer: Adam, 
categorical cross-entropy, hyperbolic tangent and 
softmax, respectively. 

We have calculated results for two different sets of sensors: 
13 sensors and only 5 motion sensors (PIRs). Two motion 
sensors from the original set – motion by and over the bed – 
were not used in the modeling due to unreliable data. In 
addition, we have obtained results for three data collection 
durations: two, thirteen, and seventeen weeks.  

The values of each parameter for our best prediction 
accuracy are shown in Table III. 

 

Fig. 2. Configuration of input and output in our LSTM network 

implementation with ALZ data 



 

 

TABLE III. PARAMETER VALUES IN OUR LSMT NETWORK IMPLEMENTATION 

Parameter Values in our best model 

Memory length 6 

Number of hidden layers 1 

Number of neuron in hidden layer 64 

Batch size 128 

Learning rate 0.01 

Epochs 500 

V. RESULTS AND DISCUSSIONS 

For the results presented in this section, the data are split 
into training (80%) and testing (20%) sets for both the baseline 
and the LSTM network model. In addition, the results of the 
LSTM network are acquired by running the model three times 
with different compositions of training/testing sets from the 
same dataset. 

Table IV shows the number of events for each investigated 
configuration. The sensors system corresponds to one of the 
apartments in our field trial, as described in section III – except 
the motion sensors by and over the bed. We can notice that 
motion sensors generate a much larger number of events 
compared to power and magnetic sensors. Therefore, we have 
balanced our dataset using weights for each sensor. These are 
computed using the “compute_class_weight” function of the 
Scikit-learn open source library. The weight is the total number 
of samples divided by the number of occurrences of the class. 
Hence, it is used for penalizing mistakes in samples - the higher 
the weight, the larger the penalty to the error of the 
corresponding sensor.  

Table V presents the accuracy obtained with the baseline 
for each combination of set of sensors and number of weeks, 
for a range of memory lengths (number of preceding events).  

The baseline achieves a best accuracy of 67% for the set 
with only motion sensors (5 sensors). This is intuitively 
understandable since here there are few options of next event to 
predict and events are not intertwined, meaning that one sensor 
needs to go off before the next can be activated. 

We notice that with the baseline the optimal number of 
sensor events to predict from is three. Intuitively, one could 
think that this behavior is not surprising since the number of 
sensors is rather small and the occurrence of each sensor may 
thus be associated to the occurrence of very few other sensors. 
Furthermore, increasing the size of the data does not have a 
significant effect on the accuracy of the baseline, except when 
the memory length is relatively long. This may be due to the 
fact that the longer patterns of five-six events are less frequent 
and require larger data sizes in order to manifest themselves 
and affect the overall accuracy. Nevertheless, a memory length 
of three events still leads to the highest accuracy. 

 It is evident from Table II that there is noise in the 
data. For instance, although it is not possible to go from the 
entrance hall directly to the kitchen, some of the data represent 
this (1%). Binary sensors can show faulty activation e.g. 
erroneous activation of motion sensors by sunlight, bouncing of 

contact sensors, or switch-off delays of motion sensors [22]. 
This is not such a big a problem for the baseline method 
because of the relatively small amount of the noisy data 
compared to the number of correct events. Therefore, the 
baseline table of probabilities is hardly affected by the noisy 
data, as the event with the highest probability, and hence the 
predicted event, corresponds to possible rather than erroneous 
occurrences. For the LSTM network on the other hand, such 
erroneous events in the training set may affect the performance 
a great deal as the network learns erroneous patterns. We have 
therefore carried out a data cleaning process where we deleted 
samples that contain events that are not possible from our 
dataset. This cleaning process had a significant effect on the 
attained accuracy. 

The LSTM network prediction accuracy and RMSE values 
vs. the size of the training dataset are shown in Fig. 3 and Fig. 
4, respectively. These results were obtained with a network 
with one hidden-layer, comprising 64 neurons, and a memory 
length of 6 events, as described in section IV.  

We can notice that the accuracy increases steadily for larger 
training dataset. The peak accuracy is 69% when about 5000 
events are used for training, and the mean accuracy is 67%. All 
models are tested with the same test set, which contains 2000 
events. With that amount of data, we cannot see that the 
network stabilizes. More data is evidently needed for that, and 
the accuracy may then also improve.  

Fig. 5 and 6 shows the prediction accuracy of the LSTM 
network for several memory lengths. The maximum average 
accuracy is achieved with six events. The accuracy increases 
steadily up to this point, when it appears to decrease slowly. 
Though marginal, this shows that the LSTM network is better 
able to find the relation between the input features than the 
baseline is. Also note that the baseline achieved its best 
performance for a memory length of three events. 

TABLE IV. NUMBER OF EVENTS PER SIZE OF DATA AND PER SET OF SENSORS 

Set of sensors (number of sensors) 
Number of 

weeks 
Number of events  

All (13) 

2 2712 

13 12520 

17 16050 

PIRs (5) 

2 2084 

13 9820 

17 12631 

 
TABLE V. ACCURACY OF BASELINE METHOD 

Set of 

sensors 

Number 

of weeks 
Accuracy per memory length (# events) 

1 2 3 4 5 6 

All 

2 0.490 0.576 0.517 0.450 0.376 0.329 

13 0.521 0.565 0.614 0.600 0.552 0.501 

17 0.504 0.546 0.583 0.551 0.512 0.470 

PIRs 

2 0.608 0.644 0.670 0.616 0.612 0.577 

13 0.607 0.634 0.626 0.627 0.618 0.592 

17 0.538 0.623 0.624 0.620 0.617 0.600 



 

 

 

 

Fig. 3. Accuracy vs. number of events for the LSTM network with text 

sequence  

 

 
Fig. 4. RMSE vs. number of events for the LSTM network with text sequence 

 

Finally, we analyse the results in more detail in Table VI 
with both accuracy and RMSE values for training and testing 
sets, and peak accuracy from the testing set.  It is evident that 
the accuracy can vary dramatically depending on the set of 
sensors. Having half of the sensors, only motion sensors that 
cannot have intertwined events, leads to the highest prediction 
accuracy with a mean of 74%, while with the 13 sensors the 
mean accuracy is 67%. For the investigated sizes of data, the 
accuracy increases by about 8-10% when only motion sensors 
are used as compared to the set with all the sensors. 

When the size of the training dataset is insufficient, the 
model tends to over-fit, and therefore achieves lower test 
accuracy than training accuracy. This is the case for two weeks 
of data in both sets of sensors. By increasing the dataset to 13 
weeks in the case of PIR sensors only, the difference between 
training and test accuracy decreases, and with 17 weeks of data 
the training and testing accuracy are almost equal. This 
indicates that the network has had sufficient training data to 
achieve maximum accuracy. In the case of 13 sensors, the 
difference between training and test accuracy does decrease 
with increasing amount of data. However, with 17 weeks of 
data the training accuracy is still considerably better than the 

test accuracy indicating that more data is required to improve 
accuracy.  

In summary, for a limited amount of data the baseline 
achieves better accuracy than the LSTM. An accuracy of 67% 
is achieved with 2 weeks of data from the PIRs only, and an 
accuracy of 61% is achieved for 13 weeks of data from all 
sensors. However, for a sufficient amount of data the LSTM 
achieves better accuracy than the baseline. Indeed as the 
amount of data increases, the model improves from 60% to 
67% mean accuracy for all sensors and from 70% to 74% mean 
accuracy for only PIRs. In addition, the LSTM may improve 
further with additional data while this is not the case of the 
baseline.  

In our previous paper in press [3] we have presented results 
for sequence prediction using probabilistic methods. The ALZ 
algorithm reached its maximum accuracy of 53% with just 250 
events, from the 2 weeks of data, for all sensors. Training the 
algorithm with more events did not improve the accuracy. The 
SPEED algorithm reached 75% accuracy with 2 weeks of data 
and all sensors. Note that the input in this case includes the 
‘off’ events as well. Since our system does not have many 
sensors that can have their ‘on’ and ‘off’ events intertwined, the 
‘off’ events are easier to predict since they often happen right 
after the ‘on’ events. This is confirmed by our results [3]. 

Fig. 5. Accuracy vs. memory length using LSTM network for 17 weeks of     
data 

 

Fig. 6. RMSE vs. memory length using LSTM network for 17 weeks of data 



 

 

TABLE VI. RESULTS LSTM NETWORK 

Set of 

sensors 

Number 

of weeks 

Accuracy RMSE 

Train Test Test peak Train Test 

All 

2 0.652 ± 0.007 0.598 ± 0.027 0.628 0.161 ± 0.007 0.171 ± 0.002 

13 0.691 ± 0.006 0.661 ± 0.014 0.679 0.148 ± 0.005 0.157 ± 0.001 

17 0.699 ± 0.006 0.673 ± 0.016 0.693 0.144 ± 0.006 0.154 ± 0.002 

PIRs 

2 0.743 ± 0.005 0.699 ± 0.009 0.711 0.192 ± 0.005 0.204 ± 0.003  

13 0.741 ± 0.000 0.735 ± 0.008 0.743 0.195 ± 0.000 0.197 ± 0.003 

17 0.741 ± 0.004 0.742 ± 0.012 0.751 0.197 ± 0.004 0.196 ± 0.004 

 

VI. CONCLUSIONS AND FUTURE WORK 

 
Activity recognition and prediction algorithms in smart 

home environments using binary sensors have been indicated to 
be useful for a number of functionalities. Most of the work 
reported in the literature has been carried out using data 
collected in lab environments and testbeds, with scripted 
activities. Such smart home testbeds typically include a quite 
large number of sensors, e.g. the Mavlab testbed deployed 
around 50 sensors [7]. 

In this paper, we have presented results on sensor event 
prediction based on data from a real home collected using only 
15 binary sensors, over a period of seventeen weeks. We have 
applied LSTM network and obtained a peak prediction 
accuracy of 69% and 75% for sets of 13 and 5 sensors 
respectively. To the extent of our knowledge, this is the first 
time this type of neural network has been used in the prediction 
of the next sensors on a dataset obtained from a real home. We 
have compared its prediction accuracy with a baseline, and 
investigated both methods with respect to a number of 
parameters such as memory length, size of the dataset, and the 
number of sensors. The accuracy achieved by the baseline was 
58% for all the sensors over the 17 weeks, with a memory 
length of three events. The LSTM network achieved the best 
mean accuracy of 68% over the same period with a memory 
length of six events. This shows that such networks are more 
effective in learning patterns and finding temporal relations 
among features.  

A much higher prediction accuracy is required before such 
algorithms are applicable to real homes. Future work will 
include the time component in order to improve the accuracy of 
our models as this has been indicated to lead to a considerable 
improvement [10], [23]. 
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