A Population-Based Incremental Learning
Approach to Network Hardening

Alexander Paulsen ?, Anis Yazidi ?, Boning Feng® and Xinming Ou®
& Computer Science Department, Oslo Metropolitan University
b Computer Science and Engineering Department, University of South Florida

Abstract.

Enterprise networks constantly face new security challenges. Obtaining com-
plete network security is almost impossible, especially when usability requirements
are taken into account. Previous research has provided ways to identify multi-stage
attacks caused by network vulnerabilities and misconfigurations, but few have ad-
dressed ways to circumvent those multi-stage attacks, especially when usability
requirements are taken into account. The latter problem is reckoned as Network
Hardening problem [10] and is known to be an NP hard combinatorial problem.
In this paper, we map the network hardening problem to a constrained optimiza-
tion problem and resort to the theory of Population-Based Incremental Learning
(PBIL) in order to solve it. We devise two approaches based on the PBIL, namely
the Acceptance-Rejection approach, and the Penalty-based approach. Our aim is
to tighten the security of the network by minimizing the number of privileges that
an attacker can gain over network under some usability constraints measured in
terms of the number of configurations in a network that can be activated or can-
not be deactivated. The Acceptance-Rejection approach disqualifies configurations
that violate the usability constraint while the Penalty-based approach relaxes the
latter constraint by attempting to find a compromise between security and usabil-
ity of the configuration. While the Acceptance-Rejection approach can be seen as
a simple alternative to the state of the art MinCostSAT solution adopted in [10],
the Penalty-based approach is, to the best of our knowledge, the first solution in
the literature that tries to find such compromise. Experimental results show that the
devised approaches are computationally efficient, scalable and reliable.

Keywords. Security Tightening, Population Based Incremental Learning, Acceptance-
Rejection, Penalty-based Approach

1. Imntroduction

Targeted attacks usually exploit multiple vulnerabilities in a so-called multi-stage attack
to elevate their privileges and access in a network, hopefully evading security mecha-
nisms. Intrusion detection systems generate large amounts of alerts, and for a system
administrator, it is easy to overlook an ongoing multi-stage attack. Vulnerability analy-
sis implies that every vulnerability shall be removed, but this is not usually the case in
practice. Removing vulnerabilities is complicated as a result of the reduced availability
of patches and upgrades, costs, and demands regarding efficiency, usability and uptime.
Vulnerability scanners are tools which can assist system administrators in identifying
vulnerabilities in a system [9]. However, these scanners can only identify vulnerabilities

This is the authors' accepted manuscript of a chapter published in New Trends in Intelligent Sofiware Methodologies, Tools and Techniques by 10S Press.
The final version is available online at: https://dx.doi.org/10.3233/978-1-61499-900-3-941.

in isolation. Attack graph tools can enhance the information from a vulnerability scan
to give more contextual meaning about possible multi-stage attacks in a graphical man-
ner. Previous studies have provided solutions to how to identify network vulnerabilities,
but few of them have addressed how to correct them. Vulnerability scanning of large
networks results in massive amounts of data, which can be used to generate complex
attack graphs that are often unreadable and overwhelming. One of the intentions of the
attack graph is to provide a basis for future security decisions. However, attacks graphs
are not usually human-readable even for a small-size network and thus cannot provide
an efficient and satisfactory basis for decisions. Few methods are available for tightening
the security in a network by using the information from the attack graphs, in addition to
taking usability and network requirements into account. In this paper, we map the net-
work hardening problem to a constrained optimization problem and resort to the theory
of Population-Based Incremental Learning (PBIL) for solving it [5].

The aim of this paper is to tighten the security of the network by minimizing the
number of privileges that an attacker can gain over network under some usability con-
straints measured in terms of the number of configurations in a network that can be ac-
tivated or cannot be deactivated. We devise two approaches based on the PBIL, namely
an Acceptance-Rejection approach, and a Penalty-based approach. The Acceptance-
Rejection approach disqualifies configurations that violate the usability constraint while
the Penalty-based approach relaxes the latter constraint by attempting to find a com-
promise between security and usability of the configuration. The Acceptance-Rejection
can be seen as a simple alternative to the state of the art MinCostSAT solution adopted
in [10]. The Penalty-based approach is the first reported approach in the literature that
allows to explore more secure solutions as the cost of some violation of the usability
constraint, which is a major contribution in itself [10].

2. Background and related work
2.1. Attack Graphs

There are multiple attack graph tools available such as Topological Analysis of Network
Attack Vulnerability (TVA) [12], Attack Graph Toolkit [19] and Cauldron [16]. Multi-
host, multi-stage Vulnerability Analysis (MulVAL) is an open source project developed
by Ou et al. [15] at Princeton University. In this paper, we resort to MulVAL as a attack
graph tool.

MulVAL uses information from vulnerability databases, configuration information
from each node as well as other relevant information to graph the pre and post conditions
from each exploit and how they interact with each other in a network. Additionally, the
tool makes available textual formats of attack paths. The reasoning engine also scales
well (O(n?)) with network size. It works with Nessus and OVAL vulnerability scanners.

The information MulVAL processes can be organized into three different entities
shown in an attack graph: configuration entities, exploit entities and privilege entities.

e System configurations are represented as rectangular shapes. These include host
access permissions, existing vulnerabilities, applications, etc.

e Privileges are represented as diamond-shapes. A privilege is what an attacker can
gain through exploits.

e Exploits are represented as elliptical shapes. A potential exploit links the pre-
conditional configuration entities, which enables the exploit, with the effect of the
attack, the post-conditional privileges [10].

Arcs coming out from an exploit entity form logical AND relations, meaning all of
the child relations must be true in order for the exploit can be used. Removing only one
of the child relations would be sufficient for the exploit to be unavailable. In the Mul VAL
attack graph in Figure 1, we can express the exploits in the following boolean formulas:

el = ¢l AN 2
e2 = pl AN 3
e3 = ¢4 AN 5
N\
D CaD
<> (7] [=]
C=D
] [

Figure 1. Example of MulVAL attack graph.

Arcs from privilege entities like pI and p2 form logical OR relations. This indicates
that only one of its child relations need to be true in order for a privilege to be achieved.
Either e2 or e3 is required for obtaining privilege p2.

p2 = €2 V €3
2.2. Network Hardening

In security communities, network hardening has often been considered an art rather than
a science [20]. Experienced security analysts perform tedious work to identify and prior-
itize different vulnerabilities and network weaknesses to be fixed and patched. To make
network hardening more like a science than an art, systematic approaches to automati-
cally computing potential hardening solutions are essential.

For network hardening, we need to measure the overall security of a network. Pre-
vious research [21] states that a crucial element of measuring network security lies in
understanding the interplay between network components such as how vulnerabilities
can be combined by attackers in an advancing multi-stage attack. This study framework
focuses on computing overall security with respect to critical resources. Two dependency
models are presented, one captured by attack graphs, and another by additional functions.

The latter affects the measure of network components but does not enable it to be reach-
able. Another approach measures the security strength of a network using the weakest
attacker model, i.e. the weakest adversary who can successfully penetrate the network
[17]. Moreover, some other studies measure the likelihood of a software being vulnera-
ble to attacks using a metric called attack surface [11,13]. This is a security metric for
comparing the relative security of similar software systems where the attack surface is
an indicator of the software’s security.

Network hardening with respect to initial conditions level was introduced in 2003
[14]. The article states that an approach using configuration elements is beneficial com-
pared to exploit-level approaches as it resolves hardening irrelevancies and redundan-
cies better. The aim of the research conducted was to find a set of initial conditions that
can disable a goal condition at a minimum cost. The authors represent the resources in
a network as logical propositions of initial conditions where vulnerabilities are viewed
as Boolean variables. A false condition would mean the condition is suggested disabled
for hardening. The presented product does not scale well as the number of terms in the
equation can grow exponentially in the number of conditions in the network.

In [10], Homer and Ou propose to formulate network hardening as Boolean satis-
fiability problem. In this perspective, the authors proposes two SAT solving techniques,
namely MinCostSAT and UNSAT Core Elimination. This approach reduces complex
problems to manageable levels in addition to requiring minimal user interaction in order
to rapidly fix misconfigurations that can lead to multi-stage attacks. Human interaction
includes making decisions about the relative value of specific instances of security and
usability enabling the research to take account of both security and usability require-
ments. Results show that this approach is scalable and effective.

In [14], Noel et al. introduce a framework for computing the minimum-cost solution,
while guaranteeing the security of given critical resources. The proposed solution uses a
graph-based representation of exploit dependencies. The representation in the study has
low-order polynomial complexity in contrast to exponential complexity, which has been
found in most studies according to the authors.

2.3. Population-Based Incremental Learning

Population-based incremental learning (PBIL) is a probabilistic model commonly used
for optimization of large dynamic combinatorial search problems. It is a combination of
evolutionary optimization [4] and hill climbing [6] according to Baluja [1]. The method
incorporates genetic algorithms (GA) and competitive learning for function optimization,
but rather than being based on population-genetics, PBIL is similar to learning automata
in which each automaton chooses actions independently. The combination of these two
methods constitutes a tool that is much simpler than a GA and outperforms GA on many
optimization problems. The intention of the algorithm is to generate a real-valued prob-
ability vector which, when sampled, reveals high evaluation solution vectors with high
probability [2].
The features of PBIL are as follows [5]:

1. PBIL has no crossover and fitness proportional operators.

2. For each iteration, a set of samples is generated according to the current proba-
bility vector. The set of samples is evaluated according to the problem-specific
function.

3. Only the elite solution and the one being evaluated are stored.

Evolutionary Algorithms (EA), which utilize the principles of natural selection and
population genetics (e.g. GAs), have become common in optimization and search tech-
niques due to their powerful capabilities for finding solutions to difficult problems. Espe-
cially in static environments, where the landscape does not change during computation
[7]. However, real-world environments are often prone to changes, making traditional
EAs unsuitable as they cannot adapt properly to changed environments once converged
[22]. In contrast, PBIL has proven itself to be very successful when compared to dif-
ferent standard genetic and hill climbing algorithms on various benchmarking [3] and
real-world [8] problems.

For each iteration, a set of samples is generated according to the current probabil-
ity vector. The set of samples is evaluated according to the problem-specific function.
Finally, the probability vector is learnt and shifted towards a solution with the best re-
sult. The distance the probability vector is pushed each iteration depends on a parameter
called the learning rate (LR) which weights the previous vector with the new vector. The
learning rate is commonly set to be 0.05. For the next iteration, when the probability
vector is updated, a new set of solutions is generated according to the updated proba-
bility vector. The algorithm ends when the termination conditions are satisfied, usually
when all vectors have converged (normally towards O or 1) or the number of iterations
has reached a maximum number.

As an example, the solution to a problem can be represented as a vector of 1’s and
0’s. The initial value of a probability vector is normally 0.5 and a converged final prob-
ability vector can be for example 0.99, 0.01, 0.01, 0.01, 0.99, 0.99. Sampling from an
initial vector reveals random solution vectors since there is an equal probability of gen-
erating 0 or 1. As the search progresses, the values in the probability vectors will shift
towards 1 or 0. The pseudo code for PBIL is exemplified in Algorithm 1.

The initial probability vectors are established. The new sample vectors are generated
and then evaluated, and sorted from best to worst. The highest evaluation vectors are kept.
The learning rate (LR) determines how fast the probability vectors shifts each iteration.
The probability is defined as:

probabilityVector; = (probabilityVector; x (1.0 — LR)) + (LR X vector;) where
probabilityVector; is the probability of generating a 1 in bit position ; and vector; is the
i position in the solution vector which the probability vector is shifted towards. LR is the
learning rate.

3. Approach

In this section, we will show how network hardening can be mapped into a constrained
optimization problem. A tool is developed with the goal of analyzing the current net-
work security state, based on data from an attack graph, and to be able to compute a so-
lution which will provide increased network security. More specifically, the tool should
suggest what configurations should be fixed or patched. We will present two approaches
both based on PBIL, one Acceptance-Rejection approach, and the other a Penalty-based
approach. These approaches will be described later in this paper.

The attack graph tool used in this research is MulVAL. MulVAL is open source and
uses external sources to enrich vulnerability data. In addition, Mul VAL uses a command-

Algorithm 1 The basic version of the PBIL algorithm for a binary alphabet, adapted
from [2]
PBIL CONSTANTS:
NUMBER_SAMPLES: the number of vectors generated before updating of the prob-
ability vector.
LR: the learning rate, how fast to exploit the search performed (0.05).
NUMER_OF_VECTORS_TO_UPDATE_FROM: the number of vectors in the current
population which are used to update the probability vector.
LENGTH: number of bits in the solution (determined by the problem encoding).
foriin 1: LENGTH do
Pli]=0.5
end for
S is an array of integer
while NOT termination condition do
#HkEk Generate Samples *¥#Hk
foriin 1: NUMBER_SAMPLES do
solution_vectors[i] :=
generate_sample_vector_from_probabilities(P)
evaluations[i] :=
evaluate_Solution (solution_vectors[i])
solution_vectors :=
sort_vectors_from_best_to_worst_according_to_evaluations()
end for
x##% Jpdate Probability Vector towards best solutions®##
for jin 1: NUMBER VECTORS_-TO.UPDATE do
foriin 1: LENGTH do
P[i] := P[i] * (1 - LR) + solution_vectors[j][i]* LR
end for
end for
end while

line interface which is useful for fully automated graphing solutions. We aspire to max-
imize network security while maintaining a constraint based on the maximum number
of configurations in a network that can be activated. The standard PBIL method itself
does not have the ability to solve constrained optimization problems and is rather de-
signed originally for solving unconstrained optimization problem. In order to mitigate
this limitation, we rely on two algorithms, namely Acceptance-Rejection and Penalty
based PBIL. Section 3.2 provides an introduction to these two constrained optimization
methods.

3.1. Measuring security

A naive approach would evaluate security in terms of the number of vulnerabilities an
attacker is able to exploit. However, when evaluating security, it is important to consider
the consequences we wish to avoid. In terms of an attack graph, an exploit leads to a
privilege, and a privilege can be considered a consequence (POST condition) of realiz-
ing an exploit. Multiple exploits may lead to the same privilege, they namely form an

OR relation. Fixing/patching a vulnerability may not be sufficient to avoid the conse-
quence/privilege, as another vulnerability might incur the same result. In such case, an
attacker would simply use another exploit in order to obtain a desired privilege. There-
fore, we propose to evaluate security in terms of the total number of privileges an attacker
from the Internet is able to gain.

3.2. Constrained optimization

We formulate the network hardening problem as a constrained optimization problem.
The Acceptance-Rejection approach does not allow the violation of the constraints in the
generation process of the possible configurations while the Penalty-based approach “re-
laxes” the constraint and permits to obtain a compromise between security and usability.

It is worth mentioning that Acceptance-Rejection approach and the Penalty-based
approach are inspired by the Cross-Entropy method (CE) [18] due to Rubinstein and
Kroese. The CE method is widely applied in discrete optimization tasks and has similar-
ities to PBIL.

The Acceptance-Rejection approach does not allow the violation of the constraints
in the generation process of the possible configurations

The Penalty-based approach is generally more applicable and quite easy to imple-
ment. It involves using a penalty parameter which penalizes solutions violating the con-
straints without totally discarding them. The Penalty-based approach is very sensitive to
the choice of the penalty parameter.

In a nutshell, the main difference with [14,10] lies mainly in the fact that, by using
the Penalty-based approach, we allow relaxation of the constraints compared to using
hard constraints. For example, the study [10] formulates the network hardening prob-
lem as MinCostSAT problem and thus only configurations that satisfy the usability con-
straints are considered as feasible solutions. In our work, we allow a partial violation of
the constraints so that we can still obtain a solution even if all possible configurations are
unfeasible according to the MinCostSAT approach [10].

3.3. Constraints

Some human interaction is needed for hardening the network with some constraints on
the feasible configuration.

3.3.1. Maximum configuration constraint

The user of the tool should decide a threshold for how many configurations the tool
should suggest to fix or patch. In a network of 100 exploit-related configurations for
example, a network and system administrator would for instance like to know which
ten configurations should be fixed in order to provide the best security. In an optimal
network, all vulnerable services should be patched at all times, but in real life, this is
not the case. Bearing this in mind, a network and system administrator must do some
prioritization when hardening the network. Thus, the administrator wants to know what
he should fix immediately in order to increase security in the network.

As an example, in a network of 145 exploit-related configurations ¢ = (c1y---C145),
we can envisage for example that the administrator can fix/patch approximately ten con-
figurations within this time limit. Therefore, the network hardening tool should suggest
a maximum of ten configurations that should be fixed or patched.

3.4. Notations

Given a list of exploit-related configurations:

c= (01,62,63...,CN).

PBIL generates samples each with a vectorial length N:
x = (x1,%2,x3...xy) Where x; € {0,1}

] 1lifciisenabled

| 0if ¢ is disabled

Xi

Enabled configurations are exploit-related configurations which are turned on, also
regarded as not suggested patched/fixed, TRUE configurations or in the code read as
1. Disabled configurations are exploit-related configurations which are turned off, also
regarded as suggested paiched/fixed, FALSE configurations or in the code read as 0.

f=Y.I(x; = 0) represents the number of disabled exploits where] (.) is the indicator
function.

PBIL generates samples based on probability vectors:
p=(p1,p2,p3...,pn) Where p; is the probability that x; = 1.

3.5. Proposed approach

The input data will be retrieved from MulVAL’s generated csv-files, namely VER-
TICES.CSV and ARCS.CSV. The initial configurations, exploits and privileges can be re-
trieved from VERTICES.CSV. The general structure of the program where one lap of the
loop is one iteration is given below:

1: converged=False

2: count=0

3: while (converged == False) and (count < max_-iterations) do
4: genNum=generateVectors()

5. avg=findBestLists(genNum)

6: sample=updateProbVector(avg)

7. converged=hasConverged(sample)

8: count=count+l

9: end while

e Line 3: Continue to next iteration as long as one element of the probability vector
has not converged and the highest number of iterations is not reached.

e Line 4: For each component of the probability vector, generate a random number
between 0 and 1. If the generated number is less than the corresponding probabil-
ity vector component value, then the configuration can be regarded as be TRUE
(1), otherwise regard the configuration as FALSE (0). Check whether a disquali-
fied configuration is FALSE, and change it to TRUE. When using the Acceptance-
Rejection method, ignore samples that exceed a given number of FALSE con-
figurations (threshold 7). Stop generating samples when there are X number of
accepted samples. X is recommended to be 100.

Notation | Description

m Number of privileges an attacker can gain from a given configuration
Number of FALSE configurations in a sample. f = Y I(x; = 0) described in 3.4.
Threshold. The threshold states a cut-off point for undesired FALSE configurations.

The penalty parameter.

Penalty. Penalty pe = 8 X (f —1).

Calculated security Acceptance-rejection approach: s = m. Penalty approach: s = m + pe.
Table 1. Notations

o ||~ =

Complexity | Description
Nodes: 8
Exploits: 17
Medium Configurations: 16

Privileges: 14

Table 2. Overview of networks used in experiments

e Line 5: Evaluate each sample according to the measured security described in
section 3.1. Let measured security be m, where optimal security m is 0. When
using the penalty approach, add the penalty pe to the number of privileges an
attacker can realize (m). The suggested approach is to only add a penalty to sam-
ples that exceed a threshold (1) of FALSE configurations (f) in a sample. Let
pe = B x (f —1). The penalty parameter 8 and threshold parameter 7 should be
established based on the total number of configurations given in the attack graph
to ensure scalability. In both approaches, Acceptance-Rejection and Penalty, se-
curity s is measured by s = m, meanwhile samples penalised in the penalty ap-
proach by exceeding f >t are calculated as s = m~+ B x (f —1). The samples with
the top ten fitness values from the total number of 100 samples are summarized
by their mean vector, which we call mean of the elite samples.

e Line 6: Now the update probability vector is recomputed as a convex combination
of the previous update probability vector and the mean of the elite sample. The
learning rate (LR) indicates how much weight should be given to the mean of the
elite sample. The suggested LR should be 0.05 or 0.1.

e Line 7: The probability vector is checked to determine whether it has converged
or not. It has not converged if one of the component did not converge, namely,
there exists an index i such as p; > 0.01 AND p; < 0.99.

4. Experiments
4.1. Networks Configurations

We consider a network firewalls, one perimeter firewall and one internal firewall. How-
ever, the number of configurations and exploits are lower than network 1.

4.1.1. Illustrations of suggested network topology

Figure 2. Network Topology.

4.2. Experiment

The main goal of this experiment is to observe how the two approaches, Penalty and
Acceptance-Rejection, compare with an LR of 0.1 and an LR of 0.05. Another intention
is to observe how Acceptance-Rejection sample generation progresses over iterations.
This network has been given the following constraints:

e Maximum configuration constraint: 4
e Configuration disqualify constraint: *11°,'25°,12°,38°,739°,’57°
4.2.1. Acceptance-Rejection

The maximum configuration constraint implies that all generated samples with more than
four disabled values should be rejected. The results are found in Table 3 and Table 4 for
different learning rates, 0.1 and 0.05 respectively.

Experiment LR=0.1 Experiment LR=0.05
Suggested solution Iterations | Seconds Suggested solution Iterations | Seconds
('13°,°26°,°40°,°58") | 65 11.6 (13’,°26°,°40°,°58’) | 173 30.6
(’14°,°26°,°32°,°58’) | 64 11.8 (C14°,°26°,°40°,°58’) | 198 359
(’14°,°26°,°40%,°58") | 71 12.8 (13°,°26°,°32°,°58) | 175 30.7
(C14°,°26°,°40°,°58) | 75 13.4 (14°,°26°,°32°,°58’) | 198 34.9
(13°,°26°,°40",°58") | 85 15.2 Cl14,°26°,°32’,°58’) | 186 32.9
(’13%,°26°,°40%,°58”) | 102 18.1 (C14°,°26°,732°,°58’) | 164 29.3
(14°,°26°,°40%,°58”) | 90 16.3 (C14°,°26°,°40°,°58’) | 148 26.1
(’13°,726°,°32°,°58’) | 70 12.5 (14°,°26°,°32°,°58’) | 177 31.7
Table 3. Results Network 2 Acceptance- Table 4. Results Network 2 Acceptance-
Rejection LR=0.1 rejection LR=0.05

4.2.2. Penalty

A=1 and t=4
The threshold value ¢ represents how the Penalty-based approach annotates the maxi-

mum configuration constraint. The results are found in Table 5 and Table 6 for different
learning rates, 0.1 and 0.05 respectively.

For Table 6, the mean number of iterations for convergence is 161 while
80 in Table 5.

Experiment LR=0.1 Experiment LR=0.05

Suggested solution Iterations | Seconds Suggested solution Iterations | Seconds
(C14°,°26°,°32’,°58") | 69 14.9 (13’,°26°,°32°,°58%) | 129 24.3
(13°,°26°,°40%,°58") | 73 16.8 C14,°26°,°40°,°58) | 179 324
(13%,°26°,°40°,°58’) | 86 16.5 (C14°,°26°,°32°,°58’) | 146 26.7
(14°,°26°,32°,°58’) | 75 13.7 (C14°,°26°,°32°,°58’) | 213 394
(13’,°26%,°32°,°58") | 65 12.1 (14°,°26°,°40°,°58’) | 152 2179
C14°,°26,°32,°58") | 73 13.5 (13’,°26°,°32’,°58’) | 177 322
(C14°,°26,°40°,°58") | 77 14.6 C14°,°26°,°32’,°58’) | 152 27.9
(’13’,°26°,°40°,°58’) | 83 153 (13’,°26%,°32°,°58’) | 156 28.3
Table 5. Results Network 2 Penalty LR=0.1. Table 6. Results Network 2 Penalty LR=0.05.

We can observe the fact that the suggested solution results in each experiment vary to
some degree. However, the experiments are more or less similar. However, regardless of
the computation output, the reduced attack graphs are identical. The hardening reduces
the number of accessible privileges from 18 to 2.

Figure 3 illustrates how the Acceptance-Rejection approach generates samples per
iteration in this experiment.

Figure 3. Rejected samples per iteration.

4.3. Analysis

The results prove that a network can be hardened with simple steps. All experiments
show that the initial attack graph is reduced dramatically after running the presented tool.
The results also show that the given constraints also are maintained.

We can observe in terms of iterations that doubling the learning rate approximately
halves the number of iterations needed for all probability vectors to converge. We can
observe that the methods Acceptance-Rejection and Penalty have little variation in num-
ber of iterations when solving the same task. What also is worth noting is that the
Acceptance-Rejection method generates a noticeable greater amount of samples during
a computation as illustrated in Figure 3. Figure 3 tells us that the method generates an

enormous amount of samples the first iterations compared with the Penalty method, and
the number decreases exponentially with the number of iterations. In the given network
environments, the time of generating more samples is negligible when comparing the
two methods. However, using the Acceptance-Rejection method with a very low thresh-
old and in more complex environments might result in notably increased computation
time. What also is important is that a very low threshold can result in a solution which
will not harden the network significantly. The user of the tool will need to have a realis-
tic approximation when determining the threshold value, because one cannot necessarily
expect the tool to provide a good solution with only being able to suggest just a few
fixes/patches in a large network with numerous constraints.

However, the effectiveness of two methods prove themselves when changing the
learning rate. Table 4 proves that the penalty method spends less time per iteration than
the Acceptance-Rejection method when having a low learning rate of 0.05. The tables
are turned when doubling the learning rate (0.10), then the Acceptance-Rejection method
proves itself more effective per iteration in a computation as Table 5 proves.

When increasing the learning rate dramatically, even up to 0.1, the results remain
unchanged and the computation time gets reduced enormously. Even though the results in
our experiments showed the most optimal solution with the given constraints, increasing
the learning rate decreases the reliability of the solution considerably. To consider the
results reliable, the learning rate should not exceed 0.1, and lower rates are even more
reliable.

5. Conclusion

There is a significant research attention on generating attack graphs that give better in-
sights into the network security, but little attention was given to network hardening. In
this paper, we devise a novel solution to the network hardening problem that is motivated
by the need to balance network security and usability. In this perspective, we extend the
PBIL algorithm to handle usability constraints by proposing the Acceptance-Rejection
and Penalty methods. The conducted experiments show that complex initial attack graphs
can be simplified dramatically resulting into a more secure network.

References

[1] S.Baluja. Population-based incremental learning. a method for integrating genetic search based function
optimization and competitive learning. Technical report, DTIC Document, 1994.

[2] S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In Machine
Learning: Proceedings of the Twelfth International Conference, pages 38—46, 1995.

[3] S.Balujaand S. Davies. Using optimal dependency-trees for combinatorial optimization: Learning the
structure of the search space. Technical report, DTIC Document, 1997.

[4] D.B. Fogel. An introduction to simulated evolutionary optimization. Neural Networks, IEEE Transac-
tions on, 5(1):3-14, 1994.

[5] K. Folly. Multimachine power system stabilizer design based on a simplified version of genetic algo-
rithms combined with learning. In Intelligent Systems Application to Power Systems, 2005. Proceedings
of the 13th International Conference on, pages 7-pp. IEEE, 2005.

[6] I.P. Gentand T. Walsh. Towards an understanding of hill-climbing procedures for sat. In AAA, vol-
ume 93, pages 28-33, 1993.

(71
[8]
[l
[10]

[11]
[12]

[13]

[14]

[15]
[16]

[n

[18]
[19]
[20]
[21]

[22]

D. E. Golberg. Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989,
1989.

1. Greene. Population-based incremental learning as a simple, versatile tool for engineering optimiza-
tion. In Proceedings of the First International Conf. on EC and Applications, pages 258-269, 1996.

H. Holm, T. Sommestad, J. Almroth, and M. Persson. A quantitative evaluation of vulnerability scan-
ning. Information Management & Computer Security, 19(4):231-247, 2011.

J. Homer and X. Ou. Sat-solving approaches to context-aware enterprise network security management.
Selected Areas in Communications, IEEE Journal on, 27(3):315-322, 2009.

M. Howard, J. Pincus, and J. M. Wing. Measuring relative attack surfaces. Springer, 2005.

S. Jajodia, S. Noel, and B. O. Berry. Topological analysis of network attack vulnerability. In Managing
Cyber Threats, pages 247-266. Springer, 2005.

P. Manadhata, J. Wing, M. Flynn, and M. McQueen. Measuring the attack surfaces of two ftp daemons.
In Proceedings of the 2nd ACM workshop on Quality of protection, pages 3~10. ACM, 2006.

S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network hardening via exploit
dependency graphs. In Computer Security Applications Conference, 2003. Proceedings. 19th Annual,
pages 86-95. IEEE, 2003.

X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based network security analyzer. In
USENIX security, 2005.

S. OHare, S. Noel, and K. Prole. A graph-theoretic visualization approach to network risk analysis. In
Visualization for Computer Security, pages 60-67. Springer, 2008.

J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security metric for network
configuration security analysis. In Proceedings of the 2nd ACM workshop on Quality of protection,
pages 31-38. ACM, 2006.

R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2004.
O. Sheyner and J. Wing. Tools for generating and analyzing attack graphs. In Formal methods for
components and objects, pages 344-371. Springer, 2004.

L. Wang, M. Albanese, and S. Jajodia. Network Hardening - An Automated Approach to Improving
Network Security. Springer Briefs in Computer Science. Springer, 2014.

L. Wang, A. Singhal, and S. Jajodia. Toward measuring network security using attack graphs. In
Proceedings of the 2007 ACM workshop on Quality of protection, pages 49-54. ACM, 2007.

S. Yang and X. Yao. Experimental study on population-based incremental learning algorithms for dy-
namic optimization problems. Soft Computing, 9(11):815-834, 2005.

