
Data Center Traffic Scheduling with Hot-Cold Link Detection
Capabilities

Anis Yazidi

Department of Computer Science

Oslo Metropolitan University

Oslo, Norway

anisy@oslomet.no

Hussein Abdi

Department of Computer Science

Oslo Metropolitan University

Oslo, Norway

Boning Feng

Department of Computer Science

Oslo Metropolitan University

Oslo, Norway

ABSTRACT
Software-Defined Networking (SDN) has been one of the most dis-

cussed areas in computer networking over the last years. The field

has raised an extensive amount of research, and led to a transforma-

tion of traditional network architectures. The architecture of SDN

enables the separation of the control and data planes and centralizes

the network intelligence. Today’s data center networks are clusters

of thousands of machines. The most used routing protocol in Data

centers is Equal-Cost Multi-Path Protocol (ECMP) which relies on

a per-flow static hashing that is known to cause bandwidth loss

because of long term collisions. In this paper, a traffic engineer-

ing approach built on the concept of SDN is presented that aims

to enhance the least-loaded link routing mechanism with intelli-

gent monitoring capabilities. In this perspective, we introduce Hot

and Cold link detection (HCLD) mechanism. Our HCLD permits

to dynamically re-route heavy flows from heavily utilized links

(Hot links) while attracting more flows to lowly utilized links (Cold

links). Comprehensive experimental results show that the devised

flow scheduling solution outperforms the widely used ECMP. Re-

sults also demonstrate that dynamic monitoring of traffic statistics

could be used to better utilize the total available bandwidth of the

network in a reactive manner.

CCS CONCEPTS
• Networks → Network resources allocation; Traffic engineering
algorithms;

KEYWORDS
Data Center, Traffic Engineering, SDN, Hot Link, Cold Link, ECMP

ACM Reference Format:
Anis Yazidi, Hussein Abdi, and Boning Feng. 2018. Data Center Traffic

Scheduling with Hot-Cold Link Detection Capabilities. In International
Conference on Research in Adaptive and Convergent Systems (RACS ’18),
October 9–12, 2018, Honolulu, HI, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3264746.3264797

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RACS ’18, October 9–12, 2018, Honolulu, HI, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5885-9/18/10. . . $15.00

https://doi.org/10.1145/3264746.3264797

1 INTRODUCTION:
The number of Data centers owned by large public and private orga-

nizations has witnessed a dramatic increase during the last decade.

In parallel with the rise of cloud computing, many organizations

choose to move their operations, storage and computation to data

centers owned by cloud computing providers [2].

A data center network is traditionally based on a layered [4] [9]

or a three-tier approach. Such a three-tier network architecture con-

sists of three layers of switches and routers. The layered approach

is designed to enhance scalability, high performance and flexibility

and to also improve the maintenance associated with data center

networks. These layers are explained below:

Internet

Load Balancer Load balancer

...

...

Layer 3

Core layer

Internet

Layer 2

Access Routers

L2 Switch L2 Switch

L2 Switch L2 Switch L2 Switch L2 Switch

Border Routers

Server Racks ...

Access and aggregation

layers

Figure 1: The architecture of a traditional layered data cen-
ter.

• Access layer: This is where the servers are physically con-

nected to the network by connections to the Layer 2 switches,

also called the Access or Edge switches.

• Aggregation layer: This layer provides functions such as ser-

vice module integration, Layer 2 domain definitions, span-

ning tree and default gateway redundancy.

• Core layer: This layer handles all the incoming and outgoing

traffic that comes in and leaves the data center. This layer

provides the connectivity required to various aggregation

modules. It handles the Layer 3 networking with the access

and border routers.

Due to the exponential growth of the cloud in data centers and

the evolution of the computers, computing power is no longer the

© Authors | ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record
was published in RACS '18 Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, http://dx.doi.org/10.1145/3264746.3264797

https://doi.org/10.1145/3264746.3264797
https://doi.org/10.1145/3264746.3264797

RACS ’18, October 9–12, 2018, Honolulu, HI, USA Anis Yazidi, Hussein Abdi, and Boning Feng

constraining factor in data centers. The servers are becoming in-

creasingly powerful and as the phenomenon of Cloud Computing

grows, the number of communicating machines correspondingly

has dramatically increases. Thus, data centers are faced with in-

herent problems in the traditional data center network (DCN) ar-

chitecture. This leads to real problematic issues such as bandwidth

bottlenecks, oversubscription in the higher layers and the under-

utilization of the lower layers of the data center network [3]. To

resolve this, several new approaches to designing data center net-

work topologies have been proposed in the recent years, one of

which is the “tree topology” discussed below).

A tree topology: As mentioned previously, modern-day data

centers usually follow traditional three-tier (or three-layer) network

architectures. At the lowest level, referred to as the access tier, hosts
connect to one or multiple access switches. Each of the access

switches is connected to one or multiple aggregate switches at the

aggregation layer. The aggregation switches, in turn, connect to

multiple core switches at the core layer. This design creates a tree-

like topology where packets are forwarded according to a Layer 2

logical topology [8]. The higher level network elements are usually

enterprise-level devices and are often highly oversubscribed.

ECMP or Equal-Cost Multi-Path is considered as the state of the

art forwarding protocol in data center and enterprise environments

[6]. ECMP is used to statically assign flows across available paths

using flow hashing. The static mapping does not take account for

current network utilization or flow size resulting in hash collisions

among elephant flows.

The goals of this paper is to investigate how we can remediate

to existing flow-aware mechanisms such as per-flow scheduling

techniques in Data Centers, namely ECMP, so that we can optimize

the usage of network resources. The reliance on per-flow static

hashing of current IP multi-pathing protocols tends to cause sub-

stantial bandwidth losses because of long term collisions. Therefore,

the paper aims to solve these issues by creating an intelligent flow

scheduling component that takes the advantage of the global view

of the network provided by SDN.

2 RELATED RESEARCH
Al-Fares et al. [1] propose to leverage the high-end commodity

switches to support the full aggregate bandwidth. Curtis et al. [5]

introduced, Mahout, a traffic management system, aiming to solve

underutilized bisection bandwidth by implementing an Openflow

central controller for better detection and handling of large elephant

flows. Both papers advocate dynamic traffic flows rather than the

traditional static ECMP routing. In a subsequent work, Alfares et

al. [2] present a dynamic flow scheduling system, called Hedera.

Hedera schedules flows based on Global-first-fit. According to the

Global-first-fit, a flow is assigned to the first path that fits that flow,

i.e, a path that has enough capacity. Hedera implementation consists

of a simulated data center with 8,192 hosts and the simulation

results showed an improvement of the bisection bandwidth by 96

percent.

Trestian et al. [10] differentiates between long-lived and short-

lived flows. Dedicated traffic management mechanisms are used

to handle the long-lived or elephant flows while short-lived or

mice flows are handled with baseline routing methods. The pa-

per explains through an example that traditional ECMP routing

mechanism can cause congestion to short-lived flows. Trestian et al.

present MiceTrap, an OpenFlow-based traffic engineering method

targeting short-lived flows in data centers.

Long et al. [7] introduce Laberio, a routing algorithm for balanc-

ing the traffic dynamically during data transmission in OpenFlow

enabled data center networks. Laberio finds the biggest flow in

busiest link, and reroutes it to a new available alternative path.

3 OUR SOLUTION: LEAST-LOADED ROUTING
WITH HOT-COLD LINK DETECTION
CAPABILITIES

Figure 2: Flowchart of least-loaded routing function

The proposed routing component will be based on routing flows

dynamically based on link utilization over all paths on the network.

The overall approach is depicted in Fig. 2. The least-loaded routing

component adopts the following logic: the controller has a global

view of all installed paths among switches, end-hosts, and provides

the foundation for creating new routing functions to forward traffic

flow based on any given rule. When a new flow enters the network,

the controller performs a check on all links capacities and the

flow demand will be performed. If the flow demand and each link

utilized values in designated paths are greater than the overall link

capacities, then the routing component will be called to install the

flow to a new path which has the available capacities of links.

ECMP routing component
This controller component uses a static network description

to create paths. It contains a mode for routing based on a hash

function, called reactive mode which will be implemented for the

ECMP routing. In this mode hashing will come from the ECMP

5-tuple. The same way the proposed routing component will be

Data Center Traffic Scheduling with Hot-Cold Link Detection Capabilities RACS ’18, October 9–12, 2018, Honolulu, HI, USA

executed, this module will also be run along with Mininet and a

FatTree topology.

Least-loaded routing pseudocode
The implementation of the least-loaded routing function is de-

scribed as a pseudocode in detail below:

Algorithm 1: Least-loaded link function

Input: Set of N links to be assigned to K flows

Output: List of high capacity links to be used by flows

for i, path in paths do
AboveCongestionThreshold = False;

ListPaths <—- possible paths from src to dst;
SortPaths <—- by position from left to right;
AllPaths = LenдthPaths ;

for i in range(0, AllPaths) do
LinkID = Links(path[i], path[i + 1]);

if LinksLinkID + FlowDmd > Capacity then
AboveCongestionThreshold = True;

for i in sorted(Links.values() do
LinkID = Linkspathi,i+1 ;

LinkID += FlowDmd;

end
return path;

end
end

end

HCLD: Flow modification
HCLD,Hot-link and Cold-link Detectionwill serve as a flow rerout-

ing component. As more flows enter the network some of the paths

and links will be more utilized than others. To achieve an overall

good bisection bandwidth and an efficient utilization of the network

resources, large flows that demand more than what each link can

carry will be redirected to more suitable paths. Flow modification

will occur each time a flow is larger than the link threshold value,

which will trigger the rerouting method in this component to select

a new route. Links that are marked as congested will be categorized

as hot-links, which will be links to avoid routing traffic through.

Consequently links that are not much utilized will be categorized

as cold-links. The demand of each flow will calculated based total

bytes divided by duration of the flow and divided by link band-

width. All these attributes will be collected using the OpenFlow

flow statistic counters, and when the demand is known the flow

will either pass through using the intended paths or redirected. To

install the new route, OpenFlow modification messages will be sent

from the controller to the switches and then the new route for the

specific flow will be installed in the switches flow tables.

Traffic Statistics and flow modification component
OpenFlow switches are equipped with multiple counters for cap-

turing flow entries and monitoring of interfaces. To capture link

usage statistics and measure each link, the received and transmitted

byte counters of the interfaces will be accessed. Other information

such as packet counters are also available. The collection of traffic

statistics will be achieved by implementing OpenFlow’s statistics re-

quest and reply messages between the controller and switches. Two

types of statistics will be focused on while running the experiments,

port and flow statistics.

Port and flow statistics
To strengthen the proposed routing component of Least-loaded,

the used bandwidth of each link must be monitored and calcu-

lated. OpenFlow provides with port-level functionalities making

it possible to get detailed statistics of ports on each switch. The

controller will periodically send a OFPortStatsRequest message and

the switches will respond with a OFPortStatsReply that contains

information of switches retrieved from their counters. Statistics

such as the number of transmitted and received bytes will be used

to calculate link utilization. As the link utilization is measured a

check for congestion will also be performed. A threshold at 70% of

the links capacity will be set and if utilization is above or equal to

this threshold then an event will be raised to the controller.

Statistics per-flow is desired to obtain from switches across the

network. Every switch offers byte counters for flow entries along

the flow path. Each switch has a flow-table containing the flow

entries and some flow statistics. As the experiments generate traffic

flows among different end-host on the network we will measure

how the two routing components perform in terms of how many

packets and bytes are transmitted and received, and for how long

flows are alive. A summary of OpenFlow counters is given in Table

1.

Table 1: OpenFlow counters

Counters

Per Interface Per Flow

Received Bytes

Transmitted Bytes

Received Packets

Transmitted Packet

Received Drops

Transmit Drops

Receive Errors

Transmit Errors

Receive Frame Alignment Errors

Receive Overrun Errors

Collision

Received Bytes

Received Packets

Duration (sec)

Duration (nanosec)

4 EXPERIMENTS
4.1 Network Topology
In this paper, the FatTree data center network architecture will be

used to test the effect of the proposed routing component compared

to the existing multipathing routing.

Characteristics
The FatTree topology will be organized by two main elements;

layers and a k value. In the k FatTree there are k pods, each contain-

ing two layers (edge and aggregate) of k/2 switches. In the lowest

layer, half of edge switch ports connect to k/2 hosts and the remain-

ing will be directly connected to k/2 aggregate switches. Aggregate
switches are connected to

k/22

RACS ’18, October 9–12, 2018, Honolulu, HI, USA Anis Yazidi, Hussein Abdi, and Boning Feng

Figure 3: FatTree topology used in the paper

core switches. Core switches are responsible of connecting all the

pods in the network together.

4.2 Traffic Pattern design
For all experiment sets different traffic patterns will be generated

and implemented. To fully compare the performance of the pro-

posed least-loaded component to current hash-based multipath

forwarding such as ECMP, generating a variety of traffic patterns

that stress the simulated network is an important aspect of this

project. The different patterns are divided into three categories:

1. Stride[i]: Host x sends to host y by the rule of y = (x + i)mod
(num_of_hosts).

2. Random: Host x sends to any other host in the network.

3. Hotspot: One host in the network becomes the target host

all other host sends to.

Figure 4: Traffic flow patterns

For illustration purposes, Fig. 4 shows how flows will imple-

mented from source to destination hosts with the three traffic pat-

terns. A stride flow will be generated as the pink flow from host

1 to host 8. The blue flow from host 6 to host 8 is an example of a

random flow. Hotspot flows will in the implementation consist of

one host being the target host receiving flows from all other hosts

in the network. This illustrated as an example where hosts 9, 10,

11, 12 all send hostspot flows to the target host 13.

In the exception of the ‘stride’ traffic pattern, these patterns

contain an element of randomness at the selection of destination

host. The traffic patterns will be created in a python script, and

besides the source and destination IP addresses it will also contain

port number, flow size, start and end time of each flow and a flow

sequence number. Each file will be used to generate the traffic with

iperf and a corresponding file of results will stored and used in

later analysis.

Experiment A: Compare scheduling performance of least-Loaded

and ECMP on FatTree topology with 16 hosts, 20 switches and 48

links. Collect flow statistics from switch interface counters. From

collected flow statistics enable HCLD component to ensure load

balancing by redirecting flows from hot-links and attract flows to

cold-links.

Experiment B: Compare scheduling performance of least-Loaded

and ECMP on FatTree topology with 54 hosts, 45 switches and 164

links.

Experiment C: Compare scheduling performance of least-Loaded

and ECMP on FatTree topology with 128 hosts, 80 switches and

348 links.

4.3 Experiment A
4.3.1 Experiment A: results. The experiment A was conducted on

a k = 4 FatTree topology, which resulted in 16 end hosts and 20

switches.

Figure 5: Experiment A: FatTree k=4

The script implemented the traffic pattern files, generated traffic

flows using iperf and saved the results of total average throughput

of each pattern files. The experiment was run first on the POX

controller using the least-Loaded module and then on the ECMP

module. Traffic flows was generated as samples and a total of 30

samples were run on all traffic patterns. Throughput was collected

by adding up the the number of rx and tx bytes from each sample

when generating flows on each traffic pattern. The least-Loaded

component generated much higher total average throughput than

ECMP, with an average of 942875000 bytes per second (7.543 Gbps

and a standard deviation of 0.5345). ECMP managed to deliver an

average of data transfer rate at 578125000 bytes per second (4,625

Gbps and a standard deviation of 1.0606).

4.3.2 Experiment A: analysis. In the experiment A set the size of

the network made it easier to generate traffic flows from the traffic

Data Center Traffic Scheduling with Hot-Cold Link Detection Capabilities RACS ’18, October 9–12, 2018, Honolulu, HI, USA

patterns that were created. This experiment set was also the one

which resulted in least variance in the results of throughput of data

in both the routing components. The result shows that the least-

loaded component was able to successfully transfer much more

flows than ECMP for all patterns. There are a couple of reasons

for these results; firstly the ECMP uses a static hash-based scheme

where the forwarding paths are determined by a hash of the desti-

nation host IP. Due to this the switches in the network will route

the traffic solely based on these entries installed in the flow tables,

disregarding the available capacity on other paths and links in net-

work. During the experiment time, the total average throughput

would therefore be less when some flows must "wait" to pass links

that don’t have enough capacity to allow transmission through.

Secondly, the least-Loaded component on the other hand uses a less

controlled approach where flows are installed on switches based

on paths with more link capacity available.

0 20 40 60 80 100 120 140

0

1

2

3

4

5

6

7

8

9

10

Time (sec)

M
b

p
s

TX rates

Least-loaded s1-s7 ECMP s2-s9

Figure 6: TX rates Experiment A

While monitoring interfaces of the switches during experiment

run transmitted and received bytes were captured for both rout-

ing components. These statistics helped to view how much per

interface the switches could transmit and receive when compar-

ing the two components. Least-loaded delivered higher value of

transmitted bytes per interface and held a more stable course over

the experiment time. While, ECMP yielded lower performance and

the values contained a notable number of variance. From these

statistics it was also possible to see that ECMP would reach a limit

in transmitting bytes, then as time goes and the interface waits

for available capacity it then fills the link with the new flow that

arrives and decreases again.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

M
b

p
s

Time (sec)

RX rates

Least-loaded s12-s20 ECMP s6-s14

Figure 7: RX rates Experiment A

Similarly for received bytes the experiment returned higher re-

sults with least-loaded component then with ECMP. The highest

number of received bytes for least-Loaded was recorded at 1125000

bytes while for ECMP the result was 625000 bytes. When measuring

the throughput and comparing the scheduling performance of both

modules, the mean and standard deviation of both components was

collected on all traffic patterns.

Table 2: Descriptive statistics of routing modules perfor-
mance in set A

Component Mean Stddev

Least-Loaded 7.82525 0.62498

ECMP 4.64788 0.62966

4.4 Experiment B: results
4.4.1 Experiment B: results. Experiment B was conducted on a k =

6 FatTree topology, consisting of 54 hosts and 48 switches. The same

baseline experiment for experiment A was executed on this larger

network. This network provided more paths and links between

each source and destination and among switches. As the network

was larger it took longer time to both build and wait for all switches

to connect to the controller.

RACS ’18, October 9–12, 2018, Honolulu, HI, USA Anis Yazidi, Hussein Abdi, and Boning Feng

Figure 8: Experiment B: FatTree k=6

With larger network topology the bisection bandwidth in the

network increased from experiment A. The scheduling performance

of the routing modules however gave the same output results as

in experiment A; least-Loaded module was able to generate better

throughput than ECMP. The total average throughput for least-

loaded was measured at 1604162500 bytes per second (12.833 Gbps

with a standard deviation at 3.481). For ECMP the total average

throughput was measured at 771125000 bytes per second (6.169

Gbps with a standard deviation at 4.297). The whole experiment

took approximately 25 minutes to run.

4.4.2 Experiment B: analysis. In experiment set B the FatTree topol-

ogy was increased to size k = 6, introducing more than double the

amount of switches and hosts. The results from this experiment

shows that the proposed least-loaded routing was able to outper-

form ECMP in scheduling performance and deliver higher through-

put of data on all traffic patterns. The experiment set resulted in

the largest variance of throughput in both of the modules, but most

for ECMP. ECMPs low throughput on 4 out of 8 traffic patterns are

the most notable. ECMP delivered an average of 4 Gbps on hotspot

and all random traffic patterns before managing to deliver higher

but expected throughput on the remaining traffic patterns.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0 15 30 45 60 75 90 105 120 125 140 155 170 185 200 215 230

C
o

lli
si

o
n

 r
at

e
 %

Time (sec)

PACKET COLLISIONS

ECMP Least loaded

Figure 9: Packet loss rate experiment B

Component Mean Stddev
Least-Loaded 7.82525 0.62498

ECMP 4.64788 0.62966

The experiment run with least-loaded component also delivered

lower results than expected on the same traffic patterns as ECMP.

For these communication patterns collision in path assignments,

more specific for ECMP hash function, could be the reason for the

variance in results as this would occur within the same switch

or at a downstream switch resulting in flows being wasted not

completing the transfer from source to destination.

Table 3: ECMP descriptive statistics Experiment B

Traffic Pattern Mean (gbps) Stddev

Hotspot 3.672 0.718

Random1 3.459 0.735

Random2 3.201 0.944

Stride1 13.735 0.931

4.5 Experiment C
4.5.1 Experiment C: result. Experiment C was conducted on a k
= 8 FatTree topology, the largest network in the experiment with

128 hosts and 80 switches. The network and traffic flow generation

was built and executed from a script. The process of building the

network and establishment of switch connection was long. Traffic

flow was generated manually in Mininet CLI due to inconsistency

in the iperf results from the automated script.

Data Center Traffic Scheduling with Hot-Cold Link Detection Capabilities RACS ’18, October 9–12, 2018, Honolulu, HI, USA

Figure 10: Experiment B: FatTree k=8

The results in this experiment set showed an increase in the total

average throughput for both routing modules. The proposed least-

loaded module was still able to perform better than ECMP. least-

loaded measured an average of 1568375000 bytes per second (12.547

Gbps with a standard deviation of 1.607) while ECMP delivered

a result of 875000000 bytes per second (7.102 Gbps with standard

deviation of 1.414)

4.5.2 Experiment C: analysis. Experiment set C contained the largest

number of nodes in network with 128 hosts, 80 switches and 348

links. The process of building the network was long and time-

consuming. The results of the experiment shows that least-loaded

component was able to deliver higher rate of throughput than

ECMP and therefore provides better scheduling performance. In

these results the variance of the traffic patterns were not that high

as the previous experiment set, and both least-Loaded and ECMP

distributed the traffic flows without any low or high spikes between

the traffic patterns. ECMP managed to deliver a total average of

828125000 bytes per second (6.625 Gbps) on all traffic patterns,

while least-loaded delivered a total average of 1359375000 bytes

per second (10.875 GBps).

The traffic statistics component was executed along with the

experiment run, collecting transmitted bytes at core switch s0 to
downstream switch s6 in aggregate layer. Received bytes were also

captured at switch s8 from switch s2. As traffic flows are traversing

from source to destination hosts, the statistics module was able

to collect these values from the interface counters of the selected

switches.

Figure 11: FatTree topology flow statistics collection

The results also shows that the least-loaded component used

much less time to determine path and links selection based on the

available bandwidth on the network, providing a better scheduling

performance. While ECMP module runs the traffic flows based on

forwarding rules determined by the hash of the destination IP, the

flows being generated will run into paths containing links with

less capacity as the flows are continuously sampled during the 30

iterations, resulting in lower total throughput.

4.6 Least-Loaded with HCLD
The experiment of running the FatTree topology size k = 4 with the

least-Loaded and Hotlink and Coldlink Detection showed two kind

of results; modification of large flows from heavily utilized links or

hotlinks and assigning flows to lowly utilized links or coldlinks. The
flow modification component was able to perform flow demand

estimation and determine whether the demand was above or under

the bandwidth threshold. The component captured 3 large flows

that were redirected to more suitable paths and was able to assign

2 flows to links that had high capacity available. The bandwidth

consumption on selected links after reassignment was monitored,

for the hotlinks the results show that link capacity decreased with

time and for coldlinks it increased as seen in Fig. 12.

After the reassignment of flows, whether restricting flows to

pass through i.e. hotlinks or attracting flows i.e. coldlinks the re-
sults showed a distinct behavior where heavily utilized links had

with time more capacity available and the underutilized links were

more frequently used and became high priority links as flows were

generated. This is illustrated in Fig. 13

5 CONCLUSION
The key goal of this paper was to investigate how a per-flow schedul-

ing method could be designed and implemented in order to provide

better scheduling performance against one of the most used tech-

niques today in ECMP, and how traffic statistics could be used to

help achieve this.

The paradigm of SDN was chosen as the foundation for building

the data center network, designing and implementing a controller

that became the intelligence of the network.

RACS ’18, October 9–12, 2018, Honolulu, HI, USA Anis Yazidi, Hussein Abdi, and Boning Feng

10

20

25

40

55 56
59 60

65 66 67

75
72

65

50 50

45

10

15 16 17

30

45 45 45

50 50 50 50

60

70
72

77
80

70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70

0

10

20

30

40

50

60

70

80

90

0 15 30 45 60 75 90 105 120 125 140 155 170 185 200 215 230

b
an

d
w

id
th

 u
se

d
 %

Time (sec)

FLOW MODIFICATION: HOT-LINK

Least loaded ECMP Threshold

Event: hotlink detection. Redirecting
flows.

Figure 12: Redirection of flows from hotlink

5
7

9
11

13
15

17
19

21

35

45

55
57

59 60 61 61

10

20

30

40 40 40

45

55

60

65 65 65 65

70 70

75
77

30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

0

10

20

30

40

50

60

70

80

90

0 15 30 45 60 75 90 105 120 125 140 155 170 185 200 215 230

b
an

d
w

id
th

 u
se

d
 %

Time (sec)

FLOW MODIFICATION: COLD-LINK

Least loaded ECMP Threshold

Event: cold link attracks new
flow

Figure 13: Assignment of flows to coldlink

The technical aspect of the problem statement is addressed by

developing two components for adopting SDN in order to solve the

per-flow scheduling issue of ECMP. One component was developed

for routing traffic based on link utilization, and one component for

statistics gathering and flow modification. For both components,

an underlying infrastructure of an OpenFlow controller was im-

plemented along with the implementation of Mininet in order to

emulate a data center network. The least-loaded component was

able to achieve the expected shortcomings of ECMP with the ability

of routing elephant flows without long term collisions. The statis-

tics component was developed using OpenFlow switch interface

and port counters to collect flow statistics. The collected statistics

was then used to determine if flows should be rerouted. The flow

modification part of the component, namely, "HCLD" or Hotlink

and Coldlink detection mechanism enabled the flows to be rerouted

away from heavily utilized links and attracted more flows to lowly

utilized links. The effect of the detection mechanism helped to

improve the overall usage of the network resources.

REFERENCES
[1] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center

network architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (Aug. 2008), 63–74.
[2] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A.

Hedera: Dynamic flow scheduling for data center networks. In Proceedings of
the 7th USENIX Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2010), NSDI’10, USENIX Association, pp. 19–19.

[3] Bilal, K., Malik, S. U. R., Khalid, O., Hameed, A., Alvarez, E., Wijaysekara,

V., Irfan, R., Shrestha, S., Dwivedy, D., Ali, M., et al. A taxonomy and survey

on green data center networks. Future Generation Computer Systems 36 (2014),
189–208.

[4] Cisco. Data Center Architecture Overview . http://www.cisco.com/c/en/us/td/

docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html. [Online;

accessed 22-February-2015].

[5] Curtis, A. R., Kim, W., and Yalagandula, P. Mahout: Low-overhead datacenter

traffic management using end-host-based elephant detection. In 2011 Proceedings
of INFOCOM (April 2011), pp. 1629–1637.

[6] Hopps, C. Analysis of an equal-cost multi-path algorithm, 2000.

[7] Long, H., Shen, Y., Guo, M., and Tang, F. Laberio: Dynamic load-balanced

routing in openflow-enabled networks. In 2013 IEEE 27th International Conference
on Advanced Information Networking and Applications (AINA) (March 2013),

pp. 290–297.

[8] Meng, X., Pappas, V., and Zhang, L. Improving the scalability of data center

networks with traffic-aware virtual machine placement. In INFOCOM, 2010
Proceedings IEEE (2010), IEEE, pp. 1–9.

[9] Press, C. Cisco data center infrastructure 2.5 design guide.

[10] Trestian, R., Muntean, G. M., and Katrinis, K. Micetrap: Scalable traffic

engineering of datacenter mice flows using openflow. In 2013 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 2013) (May 2013),

pp. 904–907.

 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html

	Abstract
	1 Introduction:
	2 Related Research
	3 Our Solution: Least-loaded routing with Hot-Cold link detection Capabilities
	4 Experiments
	4.1 Network Topology
	4.2 Traffic Pattern design
	4.3 Experiment A
	4.3.1 Experiment A: results
	4.3.2 Experiment A: analysis

	4.4 Experiment B: results
	4.4.1 Experiment B: results
	4.4.2 Experiment B: analysis

	4.5 Experiment C
	4.5.1 Experiment C: result
	4.5.2 Experiment C: analysis

	4.6 Least-Loaded with HCLD

	5 Conclusion
	References

