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Abstract— Incremental quantile estimators like the the deter-
ministic multiplicative incremental quantile estimator by Yazidi
and Hammer (2017) are simple and efficient algorithms to esti-
mate and track quantiles when data are received sequentially.
The estimators merely relying on the sign of the difference
between the quantile estimate and the current observation
which seems like a waste of information from the data stream.
In this paper we suggest a novel incremental estimator that
rather use the magnitude of the observations. The intuition
behind our approach is that the magnitude is more informative
than the sign of the difference. Extensive experiments show
that our estimators clearly outperform legacy state-of-the-art
quantile estimators.

I. INTRODUCTION

In this paper we consider the problem of estimating
quantiles when data arrive sequentially (data stream). The
problem has been considered for many applications like
portfolio risk measurement in the stock market [10], [1],
fraud detection [29], signal processing and filtering [25],
climate change monitoring [30], SLA violation monitoring
[23], [24] and back-bone network monitoring [8].

Suppose that we are interested in estimating the quantile
related to some probability g. The most natural estimator is to
use the ¢ quantile of the sample distribution. Unfortunately,
such a quantile estimator has clear disadvantages for data
streams as computation time and memory requirement are
linear to the number of samples received so far from the
data stream. Such methods thus are infeasible for large data
streams.

Several algorithms have been proposed to deal with those
challenges. Most of the proposed methods fall under to the
category of what can be called histogram or batch based
methods. The methods are based on efficiently maintaining
a histogram estimate of the data stream distribution such that
only a small storage footprint is required. A thorough review
of state-of-the-art histogram and batch methods is given in
the related work section (Section II).

Another ally of methods are the so-called incremental
update methods. The latter methods are based on performing
small updates of the quantile estimate every time a new
sample is received from the data stream. Generally, the
current estimate is a convex combination of the estimate
at the previous time step and a quantity depending on the
current observation. One of the first and prominent examples
of this family of methods is the algorithm attributed to
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Tierney (1983) [26] which is based on the stochastic learning
theory. A few modifications of the Tierney method have been
suggested, see e.g. [7], [4], [5], [6].

In data stream applications, a common situation is that
the distribution of the samples from the data stream varies
with time. Such system or environment is referred to as a
dynamical system in the literature. Unfortunately, histogram
based methods usually perform poorly in estimating quantiles
in such systems and we are left with incremental methods
as typically the only viable lightweight alternatives [5].

Current state-of-the art incremental estimators, like [7],
[4] and the more recently the deterministic multiplicative
incremental quantile estimator (DUMIQE) [28], do not use
the values of the received samples directly to update the
estimate, but only wether the value of the sample is above
or below some threshold which is in this case the value of
the current quantile estimate. Intuitively, this seems like a
waste of information received from the data stream. In this
paper, we thus present an estimator that uses the value of the
received sample directly when updating the quantile estimate.
The estimator is such that the update step size is proportional
to the distance between the current estimate and the value
of the sample. If the distance is large our estimator is off
track and large jumps should be initiated to rapidly get the
estimator back on track.

II. RELATED WORK

In this Section we shall review some of the related work
on estimating quantiles from data streams. However, as we
will explain later, these related works require some memory
restrictions which renders our work radically distinct from
them. In fact, our approach requires storing only one sample
value in order to update the estimate. The most representative
work for this type of “streaming” quantile estimator is due to
the seminal work of Munro and Paterson [18]. In [18], Munro
and Paterson described a p-pass algorithm for selection using
O(n'/(?P)) space for any p > 2. Cormode and Muthukrish-
nan [9] proposed a more space-efficient data structure, called
the Count-Min sketch, which is inspired by Bloom filters,
where one estimates the quantiles of a stream as the quantiles
of a random sample of the input. The key idea is to maintain
a random sample of an appropriate size to estimate the
quantile, where the premise is to select a subset of elements
whose quantile approximates the true quantile. From this
perspective, the latter body of research requires a certain
amount of memory that increases as the required accuracy of
the estimator increases [27]. Furthermore, in the case where
the underlying distribution changes over time, those methods
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suffer from large bias in the summary information since the
stored data might be stale [7]. Examples of these works
include [3], [27], [18], [11], [12]. Guha and McGregor [12]
advocate the use of random-order data models in contrast
to adversarial-order models. They show that computing the
median requires exponential number of passes in adversarial
model while requiring O(loglog n) in random order model.

In [7], the authors proposed a modification of the stochas-
tic approximation algorithm [26]. While Tierney [26] uses
a sample mean update from previous quantile estimates, [7]
propose an exponential decay in the usage of old estiamtes.
This modification is particularly helpful in the case of non-
stationary environments in order to cope with non-stationary
data. Indeed, a “weighted” update scheme is applied to
incrementally build local approximations of the distribution
function in the neighborhood of the quantiles.

In many network monitoring applications, quantiles are
key indicators for monitoring the performance of the sys-
tem. For instance, system administrators are interested in
monitoring the 95% quantile of the response time of a
web-server so that to hold it under a certain threshold.
Quantile tracking is also useful for detecting abnormal events
and in intrusion detection systems in general. However, the
immense traffic volume of high speed networks impose some
computational challenges: little storage and the fact that the
computation needs to be “one pass” on the data. It is worth
mentioning that the seminal paper of Robbins and Monro
[21] which established the field of research called “stochastic
approximation” [15] have included an incremental quantile
estimator as a proof of concept of the vast applications of
the theory of stochastic approximation. An extension of the
latter quantile estimator which first appeared as example in
[21] was further developed in [14] in order to handle the case
of “extreme quantiles”. Moreover, the estimator provided by
Tierney [26] falls under the same umbrella of the example
given in [21], and thus can be seen as an extension of it.

As Arandjelovic remarks [2], most quantile estimation
algorithms are not single-pass algorithms and thus are not
applicable for streaming data. On the other hand, the single
pass algorithms are concerned with the exact computation of
the quantile and thus require a storage space of the order of
the size of the data which is clearly an unfeasible condition
in the context of big data stream.

Thus, we submit that all work on quantile estimation using
more than one pass, or storage of the same order of the size
of the observations seen so far is not relevant in the context
of this paper.

When it comes to memory efficient methods that require
a small storage footprint, histogram based methods form an
important class. A representative work in this perspective is
due to Schmeiser and Deutsch [22]. In fact, they proposed
to use equidistant bins where the boundaries are adjusted
online. Arandjelovic et al. [2] use a different idea than
equidistant bins by attempting to maintain bins in a manner
that maximizes the entropy of the corresponding estimate of
the historical data distribution. Thus, the bin boundaries are
adjusted in an online manner. Nevertheless, histogram based

methods have problems to deal with dynamic data where the
underlying distribution changes over time [5]. In addition,
they are prone to outliers that might corrupt the estimates of
the distribution.

In [19], the authors propose a memory efficient method
for simultaneous estimation of several quantiles using inter-
polation methods and a grid structure where each internal
grid point is updated upon receiving an observation. The
application of this approach is limited for stationary data.
The approximation of the quantiles relies on using linear and
parabolic interpolations, while the tails of the distribution are
approximated using exponential curves. It is worth mention-
ing that the latter algorithm is based on the P? algorithm
[13].

In [13], Jain et al. resort to five markers so that to
track the quantile, where the markers correspond to different
quantiles and the min and max of the observations. Their
concept is similar to the notion of histograms, where each
marker has two measurements, its height and its position.
By definition, each marker has some ideal position, where
some adjustments are made to keep it in its ideal position
by counting the number of samples exceeding the marker.
In simple terms, for example, if the marker corresponds to
the 80% quantile, its ideal position will be around the point
corresponding to 80% of the data points below the marker.
However, such approach does not handle the case of non-
stationary quantile estimation as the position of the markers
will be affected by stale data points. Then based on the
position of the markers, quantiles are computed by supposing
that the curve passing through three adjacent markers is
parabolic and by using a piecewise parabolic prediction
function.

In fact, the insertion can be handled easily using either
sequential or batch updates, while quantile update upon
deletion requires more complex forms of updates.

Finally, Lou et al. [16] perform extensive experiments to
compare several of the algorithms described above.

III. INCREMENTAL QUANTILE ESTIMATOR USING THE
MAGNITUDE OF OBSERVATIONS

Let X, denote a stochastic variable representing the
possible outcomes from a data stream at time n and let x,,
denote a random sample (realization) of X,,. We assume that
X, is distributed according to some distribution f,,(x) that
varies dynamically with time n. We denote the cumulative
distribution of X,, with F,,(z), i.e. P(X,, < z) = F,(z).
Further let Q),,(¢) denote the quantile associated with prob-
ability g, ie P(Xy < Qu(q) = Fu(Qu(q)) = q.

Yazidi and Hammer [28] introduced the DUMIQE estima-
tor given by

én+1(q) — @n (C]) + )‘qén (Q)
Qn+1(9)  Qu(g) — A1 — @)Qn(q)

if 2, > Qn(q)

if z,, < @vn(q)
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The intuition behind the algorithm is simple. If the received
sample gets a value below (above) the current quantile es-
timate, the estimate is decreased (increased). The “weights”



g and 1 — ¢ is included to ensure convergence to the
true quantile. Even though the estimator is really simple,
it was shown to document state-of-the-art performance for
tracking quantiles of dynamic data streams [28]. However,
the estimator only uses the sign of the difference between
the current estimate and the received sample and it may be a
potential to achieve more efficient estimators by using more
information from the data stream.

We now suggest a novel quantile estimator where the
update step size is proportional to the distance between the
received sample and current estimate. The intuition is that
if the distance is large the estimator is off track and large
jumps should be initiated to rapidly get the estimator back
on track. The suggested estimator is as follows

Qni1(@) & Qn(@) + Aen— o o = Qufa)
if 2, > Qn(q)
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Qny1(q) < Qnlq) — /\Cnﬁ Tn — QH(Q)‘
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if 2, < Qn(q)

where 11} = E(X,|X, > Qu(q)) and i, = E(X,|X,, <
@n(q)). The constants ¢,, can be any sequence positive and
bounded values. The estimator performed well, when the
fractions in (2) were “normalizied”, i.e. we chose

e = ( a4 _ 1—gq >_1
pt = Qulq)  Qnlq) — pn

Finally note that the conditinal expectations must be on each
side of the current estimate, i.e. u, < Qn(q) < .

Now we will present a theorem that catalogs the properties
of the estimator @, (¢q) in (2) for a stationary data stream,
ie. X, =X~F(zx), n=1,2,....

Theorem 1: Let Q(q) = F~'(q) be the true quantile to
be estimated. Applying the updating rule (2), we obtain:

lim  Qn(q) = Q(q)

niA—o0o,A—0
The theorem can be prooved using the theory of stochastic

learning due to Norman [20], but is omitted for the sake of
brevity.

A. Quantile Estimation Algorithms

The update rules (2) and Theorem 1 constitute some
intriguing results. However, the estimator cannot be used
directly since the conditional expectations j; and pu,, are
unknown. The natural solution is to track the conditinal
expectations as well from the data stream observations. The
quantile estimation algorithm is then as follows:

We start with some initial values Qo(q). pd and pg
satisfying 115 < Qo(q) < pg. Every time we receive a
new observation from the data stream, we do the following

updates
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We see that (4) and (5) are updated using a exponen-
tially weighted moving average, but with the additional part
Qn+1(9) — Qn(q)- The part @, 41(q) — Qn(q) is included to
ensure that 7, < Q,(g) < /i, in every iteration. The tuning
parameter, 7y, makes sure that the conditional expectations
A8 41 and [z, are estimated correctly relative to the current
quantile estimate @n+1(q). In other words, (3) tracks the
overall trends of the dynamical data stream while (4) and
(5) are responsible of estimating the conditional expectations
relative to the quantile estimate. We thus expect that for most
dynamical data streams, it is reasonable to use a value of ~
that is on a smaller scale than A. This is verified in our
experiments.

IV. SIMULATION EXPERIMENTS

In this section we evaluate the performance of the sug-
gested algorithm against four state-of-the-art quantile esti-
mators namely the DUMIQE and RUMIQE by Yazidi and
Hammer [28], the estimator due to Cao et al. [4] and the
Frugal approach by Ma et al. [17]. The estimator in this
paper is designed to perform well for dynamically changing
data streams and the experiments will focus on such streams.
It would have be interesting to evaluate the performance of
the different methods for real life data, but this is challenging
to do in a systematic way for dynamical data streams as the
ground truth generally is missing.

We assume a data stream where the outcomes are from a
normal distribution and where the expectation jumps between
values a and —a.

a
:u’n:{ —a

if nmodT < T/2
else

(6)



We assume that the standard deviation of the normal distri-
bution does not vary with time and is equal to one.

We estimated quantiles two different periods, namely 7" =
100 (rapid variation) and 7' = 500 (slow variation). For
each data stream we estimated the 50, 70 and 90% quantiles
ending up with a total of six different estimation tasks.

To measure estimation error, we used the root mean
squares error (RMSE) for each quantile given as:

N

RMSE = | -3 (@u() ~ Qula))”

n=1

)

where N is the total number of samples in the data stream. In
the experiments, we used N = 10° which efficiently removes
any Monte Carlo errors in the experimental results. In order
to get a good overview of the performance of the algorithms,
we measure the estimation error for a large set of different
values of the tuning parameters of the algorithms.

Figure 1 illustrate the results of our experiments. We see
that the suggested algorithm (blue color) outperforms the
state-of-the-art algorithms with a clear margin. Interestingly,
the suggested algorithm performs the best with a small value
of the ratio v/ as small as 1/100. This is in accordance with
what we expected in Section III-A. The Cao et al. algorithm
struggled with numerical problems for some choices of the
tuning parameters and therefore some of the curves are short.

Figure 2 illustrates why the suggested algorithm performs
so well. The expectation changes as given in (6) with period
T = 500 and the estimators track the quantile related to
the probability ¢ = 0.7. The true quantiel is given as the
dashed black line. We compare the suggested algorithm
against DUMIQE since it performed well in the experiments
(Figure 1). The tuning parameters are adjusted such that
the estimation error in the stationary parts after convergence
is the same for the two algorithms. Still we see that the
suggested algorithm track the true quantile more efficiently
after a switch than the DUMIQE. The explanation is the
step size of the suggested algorithm is proportional to the
difference between the observations and the quantile estimate
(recall (2)). After a switch, these differences are large, and
the suggested algorithm makes large steps to get back on
track. The DUMIQE, and the other state of the incremental
algorithms, use the same step size independent of the these
difference, resulting in poorer tracking.

V. CLOSING REMARKS

In this paper we suggest a new algorithm where the
update step size is proportional to the difference between the
received observation and the current estimate. The current
state-of-the-art quantile estimators merely relying on the
sign of the difference between the quantile estimate and the
current observation which seems like a waste of information
from the data stream.

In the future we will evaluate the performance of the
algorithm in more experiments and apply the estimator to
real-life problems.
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