
Recurrent Neural Network-based Prediction of TCP
Transmission States from Passive Measurements

Desta Haileselassie Hagos∗, Paal E.Engelstad†, Anis Yazidi‡, Øivind Kure§
∗†§University of Oslo, Department of Technology Systems, Kjeller, Norway

∗†‡Oslo Metropolitan University, Department of Computer Science, Oslo, Norway
§Norwegian University of Science and Technology, Department of Telematics, Trondheim, Norway

Email: ∗destahh@ifi.uio.no, {∗desta.hagos, †paal.engelstad, ‡anis.yazidi}@oslomet.no, §okure@item.ntnu.no

Abstract—Long Short-Term Memory (LSTM) neural
networks are a state-of-the-art techniques when it comes to
sequence learning and time series prediction models. In this
paper, we have used LSTM-based Recurrent Neural Networks
(RNN) for building a generic prediction model for Transmission
Control Protocol (TCP) connection characteristics from passive
measurements. To the best of our knowledge, this is the first
work that attempts to apply LSTM for demonstrating how a
network operator can identify the most important system-wide
TCP per-connection states of a TCP client that determine a
network condition (e.g., cwnd) from passive traffic measured
at an intermediate node of the network without having access
to the sender. We found out that LSTM learners outperform
the state-of-the-art classical machine learning prediction models.
Through an extensive experimental evaluation on multiple
scenarios, we demonstrate the scalability and robustness of our
approach and its potential for monitoring TCP transmission
states related to network congestion from passive measurements.
Our results based on emulated and realistic settings suggest that
Deep Learning is a promising tool for monitoring system-wide
TCP states from passive measurements and we believe that the
methodology presented in our paper may strengthen future
research work in the computer networking community.

Keywords—Long Short-Term Memory, TCP Congestion
Control, Passive Measurement, Recurrent Neural Networks

I. INTRODUCTION

Deep Neural Networks (DNN) [20, 28] are a deep
learning architecture trained using new machine learning
methods that have shown advancements in a wide range
of supervised and unsupervised machine intelligence tasks.
In recent years, RNN have become popular focus of
research topic in the areas of DNN as diverse as, for
example, speech recognition [8], music generation [4], text
generation [30], sentiment classification [31], and other areas
of major advancements. RNNs use input sequences to solve
both for prediction [5] as well as classification [2, 19, 21]
problems. LSTM [14] is a special kind of RNN state-of-the-art
architecture designed for a wide range of sequence modeling
tasks and time series prediction models. The LSTM unit [14] is
a powerful and flexible RNN tool that has a memory cell which
gives previous hidden state containing connection information
through the hidden layer activations from the past for a long
period of time. LSTM in its recurrent hidden layer has a special
unit called memory blocks consisting of memory cell units that
are responsible for remembering the temporal states of the
network for an arbitrary time intervals [14]. In each layer of the
LSTM architecture [14], there is a forward propagation step
with is a corresponding backward propagation through time
step. In addition to this, there is a cache that passes information

from one layer to another. This ability of LSTM [14] allows
us to solve the vanishing gradient problem by dynamically
controlling the information flow within the layers and capture
the long-term dependencies of the connections in a sequence
effectively. LSTM [14] is used to address difficult sequence
learning and prediction problems in machine learning and have
achieved state-of-the-art results. One of the main benefits of
using an LSTM model for challenges that involve time series
data is to avoid the vanishing gradient problem. RNN model
scans through the training data from left to right and the
parameters it uses to govern the connection in the hidden
layer for each time-step, learned features during the training
are shared and this significantly improves the prediction. An
LSTM model computes a mapping from an input feature
vector x = (x(1), x(2), x(3), ..., x(n)) where xi ∈ Rn to an
output sequence y = (y(1), y(2), y(3), ..., y(n)) where yi ∈ Rn
by calculating the network unit activations of a weighted sum
using the Equations 1-6 iteratively from t = 1 to n. As it
is shown in Equations 1, 2, and 4, LSTM [14] uses three
adaptive, an input, forget and output, gates shared by all cells
in the LSTM block in order to learn long-term dependencies
and control the flow of information. The output of these gates
multiplicatively influences connections within the memory
units. The input gate determines the flow of input activations
into the memory cell whereas the output gate determines the
output flow of cell activations into the rest of the network.
The forget gate determines the extent to which the current
value remains in the memory cell of the LSTM unit before it
gets gradually discarded when its data is no longer needed.

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (1)
ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf) (2)
ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (3)
ot = σ(Woxxt +Wommt−1 +Wocct + bo) (4)
mt = ot � h(ct) (5)
yt = φ(Wymmt + by) (6)

Where the i, f, c, o are input, forget, memory state, and
output gate activation vectors respectively at each time step
t. σ is the logistic sigmoid non-linearity while �, g and h are
element-wise product of the vectors, the cell input and output
non-linearity activation functions of the entire neural network,
ReLU in our case, applied to each layer of the deep network
respectively. W and b represents a vector of weighted recurrent
connections and the bias vector. mt is the hidden state output
of the LSTM layer. Finally, φ is the activation function in the
hidden layer applied to the network output. Figure 1 describes
the basic unit of an LSTM network where the input sequence
to the LSTM cell is carried over each time step of t+1, t and

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

t-1. As shown in Figure 1, the hidden state, at time step t, is a
function of the current input sequence xt at the same time step.
Ct and Ct−1 are the memory cell state activation vectors from
the current and previous block at time t and t-1 respectively.

tanh σ
+ x

tanhσσ

x

+x

tanhσ

x

A A

xt-1

ht-1 ht ht+1

xt xt+1

Yt-1 Yt Yt+1

ReLUσσ

x

+x

ReLUσ

x

xt-1 xt xt+1

ReLUσσ

x

+x

ReLUσ

x

ReLUσσ

x

+x

ReLUσ

x

tanhσσ

x

+x

tanhσ

x

A A

xt-1

ht-1 ht ht+1

xt xt+1

ft
it

C̃t

Ct-1

Ct

ot

x

σ σ

+

x

tanh

x

1-

x

σ σ

+

x

tanh

x

1-

x

σ σ

+

x

tanh

x

1-

xt-1 xt xt+1

ht-1 ht ht+1

x

σ σ

+

x

tanh

x

1-

x

σ σ

+

x

tanh

x

1-

x

σ σ

+

x

tanh

x

1-

xt-1 xt xt+1

ht-1 ht ht+1

σ

x

σ

x

tanh

x1-

+

x

σ σ

x

tanh

x1-

+ x

σ σ

x

tanh

x1-

+ x

σ σ

x

tanh

x1-

+

xt-1 xt xt+1

ht-1 ht ht+1

x

σ σ

x

tanh

x1-

+

xt

ht

r z

ht-1 ht

h̃t

GRU

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

x

tanhσ

x

+x

tanh

σ

x1-

tanhσσ

x

+x

tanh

σ

x

+
+

x
x

x
x

tanh

σtanhσσ

x
x

x
x

x
x

+
+

tanh
tanh

σtanhσσ

x
x

x
x

x
x

+
+

tanh

tanhσσ

x

+x

tanhσ

x

A A

xt-1

ht-1 ht ht+1

xt xt+1

ft
it

C̃t

Ct-1

Ct

ot

σ

x

ft

tanhσσ

x

+x

tanhσ

x

A A

xt-1

ht-1 ht ht+1

xt xt+1

ft
it

C̃t

Ct-1

Ct

ot

tanhσ

x

+

it
C̃t

tanhσσ

x

+x

tanhσ

x

A A

xt-1

ht-1 ht ht+1

xt xt+1

ft
it

C̃t

Ct-1

Ct

ot

+x
Ct-1

Ct

tanhσσ

x

+x

tanhσ

x

A A

xt-1

ht-1 ht ht+1

xt xt+1

ft
it

C̃t

Ct-1

Ct

ot

tanhσ

x

Ct

ot

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xA A

Ct-1 Ct

ht-1

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xotft it
C̃tA A

ht

Ct-1 Ct

ht-1

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xotft it
C̃tA A

ht

Ct-1 Ct

ht-1

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xotft it
C̃tA A

ht

Ct-1 Ct

ht-1

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xotft it
C̃tA A

ht

Ct-1 Ct

ht-1

xt-1

ht-1

tanhσσ

x

+x

tanh

σ

x

xt

ht

xt+1

ht+1

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xotft it
C̃tA A

ht

σ

x

ft

tanhσ

x

+

it
C̃t

Ct-1 Ct

x

+x

ft it
C̃t

tanh

σ

xot

ht

tanhσσ

x

+x

tanh

σ

x

LSTMs May Seem Intimidating...

tanhσσ

x

+x

tanh

σ

x

σ

tanhσσ

x

+x

tanh

σ

x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

xx

+x

tanhσ

x

+x

tanh

σ

x1-

σ

x

x

1-

tanhσσ

x

+x

tanh

σ

x

tanhσσ

x

+x

tanh

σ

x

+x

tanhσσ

x

+x

tanh

σ

x

Neural Network
Layer

Pointwise
Operation

Vector
Transfer

Concatenate Copy

σ

x

tanhσσ

x

+x

tanh

σ

x

tanhσ

x

+x

tanh

σ

x1-1-

tanhσ

x

+x

tanh

σ

x1-1-

x

σ σ

x

tanh

x1-

+

A

ht

xt

A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt...

=

A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt...

A

ht+1

xt+1

A

ht+2

xt+2

A

h0

x0

A

h1

x1

A

h2

x2

A

h3

x3

A

h4

x4

A

ht

xt

x

σ σ

x

tanh

x
1-

+
tanhσσ

x

+x

tanh

σ

x

tanhσ

�� it

O� O� O�

�� �� ��it ����
ct-1

��
it

��

Fig. 1: LSTM Networks. For more thorough details, refer [23]

In this paper, we are interested in the capability of
RNN model based on emulated and realistic networks for
estimating TCP cwnd, as well as the underlying TCP
variants within a flow. Hence, we have explored an LSTM
architecture for RNN-based prediction approaches to monitor
the most important TCP per-connection states from passive
measurements related to network congestion. In our paper,
we have demonstrated that LSTM can use its memory blocks
and a series of gates to effectively capture the patterns
of a TCP cwnd from passive measurements. Congestion
control is a fundamental problem in computer networks. The
TCP congestion control algorithms that are widely deployed
today perform the most important functionalities related to
congestion control such as handling the cwnd from the
sender-side. In this paper, we investigate and explore questions
quantitatively as they apply to problems of network congestion
that include: (i) How well can we infer the most important TCP
per-connection transmission states that determine a network
condition from a passive traffic collected at an intermediate
node of the network? (ii) How can we uniquely track the
underlying TCP variant that the TCP client is using from
passive measurements? (iii) What is the motivation why we
need to know which algorithm the TCP sender is using? (iv)
Is there some action that we would take based on knowing
the information of the underlying TCP variant of the sender?
(v) Which user is responsible for the majority of heavy flow
traffic in the network? etc.?

The work in [16] presented an approach to estimate TCP
parameters at the sender-side based on packets captured at the
monitoring point using a finite state machine. The authors have
pointed out that the estimation of cwnd may have potential
errors primarily due to an over-estimation of the Round-trip
Time (RTT) and estimation of incorrect window sizes [16].
Another limitation of this work, given the many existing
variants of TCP, is that the use of a separate state machine for
each TCP variant is unscalable and we also believe that the
constructed replica may not manage to reverse or backtrack
the transitions taking the tremendous amount of data into
consideration. In addition to this, the replica may also not
observe the same sequence of packets as the sender and ACKs
observed at the intermediate node may not also reach the
sender. Within the computer networking research community,
RNN techniques are potentially useful. After we extensively
survey the existing works for monitoring of TCP transmission
states from passive measurements, we believe there is not

much work on a scalable method of predicting the cwnd
and uniquely identifying the type of the underlying TCP
control algorithm from a passive traffic without the knowledge
of the sender’s cwnd for most of the widely used TCP
variants using RNN-based techniques. Hence, in this paper,
we demonstrate how an intermediate node (e.g., a network
operator) can identify the transmission states of the TCP client
associated with a TCP flow related to network congestion
from a traffic passively measured at an intermediate node
using LSTM [14]. Our experimental results demonstrate the
feasibility of our prediction model. We believe that our study
will be potentially useful to network operators, researchers and
scientists in the networking community from both academia
and industry who want to assess the characteristics of TCP
transmission states related to network congestion from passive
measurements. To the best of our knowledge, this is the first
work that attempts to apply LSTM [14] for inferring the most
important TCP per-connection states that determine a network
condition from a passive traffic collected at an intermediate
node of the network without having access to the sender. Our
prediction model has several benefits over other approaches as
we demonstrate in our experimental results.

Our Contributions: The main contributions of our paper are
the following:

• We demonstrate how the intermediate node (e.g., a
network operator) can identify the transmission state of
the TCP client associated with a TCP flow and predict
the Congestion Window (cwnd) size of the sender from
passive measurements using an LSTM recurrent model.

• We explore the applicability of our LSTM-based
prediction model by presenting a robust and scalable
methodology to uniquely identify the widely deployed
underlying TCP variants that the TCP client is using.

• We show that the learned prediction model performs
reasonably well by leveraging a trained knowledge from
the emulated network when it is applied and transferred
on a real-life scenario setting. Thus our prediction model
is general bearing similarity to the concept of transfer
learning in the machine learning community [26].

• We validate the robustness and scalability approach
of our prediction model extensively through several
controlled experiments and experimentally verified across
an emulated, realistic and combined scenario settings.

II. MOTIVATION

Our work is mainly motivated by the questions presented
on Section I. Congestion control algorithms have a critical role
in improving the performance of TCP on the Internet [6].
However, when different variants of TCP algorithms coexist
on a network, they can potentially influence the performance
of each other. One approach to solve this issue is to control the
TCP flows individually by predicting the cwnd and uniquely
identifying the underlying TCP variant.

Benefits: From an operational perspective, this information
is useful for network operators to monitor if major content
providers (e.g., Google, Facebook, Netflix, Akamai etc.) are
manipulating their congestion windows in their servers to
achieve more than their fair share of available bandwidth.
Another scenario where operators might find this information
useful is if they have a path that they know is congested

due to customer complaints, but the links using that path
are not especially over-subscribed. In that case, details about
the congestion window behavior of all the users on that path
might be helpful in trying to diagnose the cause. From an ISP
perspective, we believe knowledge about the TCP stack in use
in the endpoints is useful for operators of big ISP networks
that do much traffic engineering and anomaly detection [12].

Methodological Challenges: In practice; however, predicting
TCP per-connection states from passive measurement has
a number of difficulties. One of the challenges is, for
example, TCP packets can be lost between the sender and the
intermediate monitor, or between the monitor and the receiver.
If a TCP packet is lost before it reaches the intermediate node
and is somehow retransmitted in order, there is no way we can
determine whether a packet loss has occurred or not. Therefore,
what the intermediate monitor sees may not be exactly what
the sender or the receiver sees. The set of methodological
challenges we identify involved in performing inference of
TCP per-connection states related to network congestion from
passive measurements are presented more in detail in [10]. In
this paper, we advocate that LSTM-based approaches can give
a better prediction accuracy of TCP sender connection states
from passive measurements collected at an intermediate node
by addressing the aforementioned practical challenges.

Roadmap: The rest of the paper is organized as follows: In
Section III, we review and give a detailed overview of the
closely related research works of TCP passive measurements
considered as a state-of-the-art. In Section IV, we describe
our experimental setup for the evaluation. Section V gives
an overview of our methodology highlighting the machine
learning techniques, performance measurement metrics used
in our paper. Section VI presents detailed experimental
results and the multiple scenario settings used to validate our
prediction model. Finally, Section VII concludes the paper and
outlines directions of research for future extensions.

III. RELATED WORK

This section briefly discusses closely related research
works on inferring TCP per-connection states related
to network congestion from passive measurements. The
techniques to monitor TCP per-connection characteristics are
divided into two categories: active and passive measurements.

Active Measurement: Many existing research works that have
been proposed rely on an active approach to measuring the
characteristics of TCP. This technique actively measures the
TCP behaviors of Internet flows by injecting an artificial traffic
into the network between at least two endpoints [22, 25]. It
focuses mainly on active network monitoring and relies on the
capability to inject specific traffic which is then monitored so
as to measure service obtained from the network.

Passive Measurement: In a passive measurement, passively
collected packet traces are examined to measure TCP behaviors
of Internet flows [16]. Passive measurement, unlike an active
measurement, doesn’t inject an artificial traffic into the
network. It only measures the network without creating or
modifying any real traffic on the network. Passive monitoring
measurements are increasingly used by network operators
and researchers in the networking community. A work of
interest that is most closely related to our work is [16] which

provides a passive measurement methodology to infer and
keep track of the values of the sender variables: end-to-end
RTT and cwnd. Their idea is to emulate a state transition by
detecting Retransmission Timeout (RTO) events at the sender
and observing the ACKs which cause the sender to change
the value of the cwnd. This work [16] considers only the
predominant implementations of TCP and the basic idea is
it constructs a replica of the TCP sender’s state for each TCP
connection observed at the intermediate node. The replica takes
the form of a finite state machine. However, the use of a
separate state machine for each variant is unscalable taking the
many existing TCP variants into consideration. We also believe
that the constructed replica [16] cannot manage to reverse or
backtrack the transitions taking the tremendous amount of data
into consideration. Another limitation is that the replica may
not observe the same sequence of packets as the sender and
ACKs observed at the intermediate node may not also reach the
sender. The authors of the study [27] developed a tool, called
tcpflows that attempts to passively estimate the value of cwnd
and identify TCP congestion control algorithms by analyzing
the ACK stream to detect the occurrence of TCP congestion
events. However, the state machine implemented with tcpflows
is limited to old TCP variants and hence it cannot uniquely
identify new TCP congestion control algorithms.

Our work mainly differs from the previous works in
that our main goal is more fundamentally to develop a
scalable LSTM-based prediction model for inferring TCP
per-connection states for the most widely used loss-based
congestion algorithms. Different TCP stacks come with a
variety of features that will violate the assumptions we might
make if we only look at one or two TCP variants. Hence,
a list of the most widely used loss-based variations of TCP
algorithms we consider in our work so as to cover the whole
scope of the problem are BIC [32], CUBIC [9] and Reno [15].

IV. EXPERIMENTAL SETUP AND DISCUSSION

In this section, we provide a detailed overview of our
experimental testbed.

A. Experimental Testbed

Figure 2 shows the experimental setup that we use for
all of our experiments in this paper. In order to introduce
congestion, we first created an emulated network and put a
communication tunnel across the network and simultaneously
push TCP cross-traffic to the network using an iperf traffic
generator [7]. We carried out the experiment by capturing
all sessions on the network when the client and server are
sending TCP packets. During a single TCP flow of our
experiment, the parameters bandwidth, and delay are constant
with a uniform distribution. However, since we have the jitter
given as an average, its distribution is normal. We created an
identical regular tcpdump of the TCP packets on the client
node including information about the per-connection states so
that we can match the tcpdump with the TCP states. As shown
in Figure 2, we used the measured TCP data as an input to
our methodology for a prediction of the TCP per-connection
states. Finally, we verified the predicted TCP states with the
actual TCP kernel states directly logged from the Linux kernel
used only for training and generate a new data for the learning
model to predict on. Once we finish with the verification, we
run our learning model and get the predictions.

10.0.0.11 10.0.12.12

Sender Passive Monitor Receiver

10.0.2.15

LSTM
Prediction

LSTM
Methodology

Internet

NetEm

loss

bandwidth

delay jitter

Network
Emulator

Measured TCP DataActual
TCP State

Verification
TCP State

Fig. 2: Experimental Setup

B. Testbed Hardware

We have carried out our experiments using a cluster of
HPC machines based upon the GNU/Linux operating system
running a modified version of the 4.4.0-75-generic kernel
release. The prediction model is performed on an NVIDIA
Tesla K80 GPU accelerator computing with the following
characteristics: Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz,
64 CPU processors, 128GB RAM, 12 CPU cores running
under Linux 64-bit. All nodes in the cluster are connected to
a low latency 56 Gbit/s Infiniband, gigabit Ethernet and have
access to 600 TiB of BeeGFS parallel file system storage.

C. Network Emulation and Verification of the emulator

For the network emulation, we used the popular
Linux-based network emulator, Network Emulator
(NetEm) [13] on a separate node, that supports an end-to-end
variability of bandwidth, delay, jitter, packet loss, and other
parameters which the cwnd is highly influenced by to an
outgoing packets of a selected network interface. Given
that the software emulator is not precise, can we trust the
network emulator for all the variations of bandwidth, delay,
jitter and packet loss parameters that we change for our
evaluation irrespective of the measurement we get from TCP
stream? In order to use the network emulator with great
care in an extremely well-contained environment for all the
variations of the parameters, we created a filter that sets the
parameter variation of each packet. As the precision of the
emulator cannot be measured from TCP streams, we set up a
different experiment using UDP to evaluate and measure the
precision where both the emulator and traffic generator create
variations. We verified the raw performance by measuring the
bandwidth, delay, jitter and packet loss variations created by
the traffic generator and network emulator at the receiver side.

D. Impact of Cross-traffic Variability

We ran NetEm [13] with variations in the data rate and the
emulation parameters between the client and the server. We
have carefully studied and validated the impact of cross-traffic
variability from the same TCP congestion protocol on our
results by emulating other UDP traffic and we found out that
each variation run by the emulator doesn’t affect our results.
We believe that the variability of the cross-traffic in our current

setup will not impact our analysis. In general, when it comes
to the cwnd variability, it will depend on the particular TCP
congestion control in use. We also believe the emulator may be
impacted by network elements outside of its scope e.g., CPU
load, network card buffers, hardware architectural factors etc.

E. Network Traces

To evaluate our prediction model on both the emulated
and realistic network conditions, we have generated our
own dataset using tcptrace [24]. The data traces for all our
experiments are generated using the iperf [7] traffic generator
on an emulated LAN link where we run each TCP variant
with variation of the parameters bandwidth, delay, jitter and
packet loss as shown below in Table I where the cwnd is
highly influenced by. However, the kernel might keep the TCP
per-connection states of the packets in the buffer and waits for
enough amount of packets before sending the TCP states to the
userspace. TCP per-connection states might also get lost due to
a slow process of TCP by the userspace process. Therefore, the
first thing we did as a sanity check is to capture the packets
at both the sender and the receiver for it helps us to know
whether a packet was lost or just never sent as the ACKs from
receiver to sender are just as important as the data packets
for inferring packet loss. This way, it is possible to verify
if the traffic captures are identical and there are no missing
per-connection TCP states. The second thing we carried out in
order to avoid missing of packets and capture exactly the same
number of packets on the sender and the monitor is tuning the
buffer size and flush the buffer to the userspace. We carried
out our experiment over a path that is jumbo-frame clean by
disabling TCP segmentation offloading so that we can avoid
packet sizes way over the regular legitimate size.

F. Network Emulation Parameters

TCP congestion control is set to operate on the variability
of bandwidth, different cross-traffic, RTT, etc. Therefore, in
order to create a realistic scenario, we have emulated the
network in our setup as it is shown in Figure 2 by adding
variability within a flow to the important network emulation
parameters presented in Table I.

TABLE I: Network Emulation Parameters

Bandwidth (in mbit) Delay (in ms) Jitter (in ms) Packet Loss (%)
1 10 1 0.001 0.01
2 100 2 0.1 0.05
3 300 3 0.2 0.1
4 500 5 0.5 1
5 700 7 1 1.5
6 1000 10 2 2

[×6] [×6] [×6]

G. Assumptions

In TCP, the cwnd is one of the main factors that determine
the number of bytes that can be outstanding at any time. Hence,
we assume that using the observed outstanding sequence of
unacknowledged bytes on the network seen at any point in time
in the lifetime of the connection as an estimate of the sending
TCP's cwnd from tcptrace [24] when there is variability of
bandwidth, delay, loss and RTT is a better approach to estimate
the cwnd and how fast the recovery is. Firstly, since we are
estimating cwnd from bytes in flight, we have also considered
that cwnd must be the limiting factor for the sender and it
has to be less than the receiver side window. Secondly, we

assume that we don't know what TCP variant is running in the
network and the per-connection state within the variant. Lastly,
the results we present in this paper assume that the endpoints
have the same receiver window set by the operating system
independent of the underlying TCP variant.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

cw
n
d

 [
S

e
g

m
e
n
ts

]

Time [Seconds]

Outstanding Bytes
Actual cwnd

Fig. 3: Outstanding bytes calculated from the monitor before
applying LSTM technique vs. the actual cwnd from the sender

V. METHODOLOGY

This section explains the general methodology we
have used to experimentally infer both the cwnd and
uniquely identifying the underlying TCP variant from passive
measurement using RNN-based techniques.

Passive Traffic Recurrent Neural
Networks

Bytes in
Flight

Predicted cwnd

Fig. 4: Methodology for cwnd prediction

TCP

Predicted cwnd Back-off Factor TCP Variants

Fig. 5: Methodology for TCP Variant prediction

A. Passive Monitoring of bytes in flight

TCP congestion control algorithms govern the TCP
sender's sending rate by employing the cwnd that limits the
number of cumulatively unacknowledged bytes that are allowed
at any given time. The measured passive TCP data collected
at the intermediate node as shown in Figure 2 is used for
a training experiment of our model. The TCP implementation
details and use of TCP options are not visible at the monitoring
point. The TCP sender also keeps track of outstanding bytes
by two variables in the kernel: snd nxt (the sequence number
of the next packet to be sent) and snd una (the smallest
unacknowledged sequence number).

B. Prediction of TCP cwnd from Passive Traffic

The cwnd is a TCP per-connection state internal variable
that represents the maximum amount of data a sender can
potentially transmit at any given point in time based on the
sender's network capacity and conditions. TCP [15] uses cwnd
that determine the maximum number of bytes that can be

outstanding without being acknowledged at any given time
maintained independently by the sender to do congestion
avoidance. Figure 3 shows the comparison between the number
of outstanding bytes from the intermediate node before running
the neural model and applying the LSTM techniques versus
the actual cwnd tracked from the kernel of the sender-side with
respect to time. Taking the nature of TCP, accurately inferring
cwnd of the sender by examining each cross-traffic of TCP
flows of the endpoints passively collected at an intermediate
node is a challenging task as it is not advertised. One initial
approach we tried to estimate the cwnd was to process the
packet headers of the flows in the tcpdump and calculate an
aggregate TCP cross-traffic from the trace sets and add that as
a feature. We, however, found out during our experiment that
turns out to be an insufficient detail for an accurate prediction.
In this paper, we argue that training a classifier and prediction
model utilizing RNN-based algorithms to predict the cwnd
from passive measurements is very important.

Learning Context: We built and trained a highly robust and
scalable RNN-based prediction model in Python using the
Keras deep learning framework with a TensorFlow backend [1]
where we apply an LSTM-based architecture to estimate
the cwnd trained over multiple epochs with a batch size
of 32. As shown in Figure 1, at each time-step of t, the
LSTM model takes an entire array of outstanding bytes in
flight as an input feature vector (x) indexed by time stamp
obtained from the kernel. We propagate the input to the
model through a multilayer LSTM cell followed by a dense
layer of 15-dimensional hidden states with ReLU activation
that generates an output of a sequence dimensional vector of
predicted cwnd (y) of the same size indexed by time stamp.

Our LSTM network is trained using the Truncated Back
Propagation Through Time (TBPTT) training algorithm for
modern RNNs applied to sequence prediction problems [29].
We used this training algorithm to minimize LSTM’s total
prediction error between the expected output and the predicted
output for a given input of the bytes in flight. We trained our
LSTM-based learning algorithm without the knowledge of the
input features from the sender-side during the learning phase.
We validated our methodology using the experimental testbed
shown in Figure 2 over a LAN link. In order to train and test
our prediction model, we employed a single trained network
that adapts to all experiments with variations of bandwidth,
delay, jitter and packet loss into one learning model. We
have trained our recurrent model on a GPU using the
Adam stochastic optimization algorithm [18] with the default
learning rate of 0.001. We optimize the hyper-parameters (e.g.,
Number of epochs, batch size, the number of time steps to
unroll the LSTM during training, cell hidden state size and the
number of LSTM layers) related to the neural network topology
so as to improve the performance of our prediction model. In
order to boost our neural network implementation, we used
the ReLU activation function for the hidden layer. We learn
the model from the training data and then finally predict the
test labels from the testing instances on all variations of the
emulation parameters. Finally, in order to evaluate and measure
how well our LSTM-based prediction model performs in terms
of capturing the cwnd pattern, all neural networks are trained,
as it is shown in Section VI, by employing both the Root
Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE) loss functions.

C. Prediction of TCP Variants

Our methodology for uniquely identifying the underlying
TCP variant from passive measurements by inferring the
multiplicative decrease parameter, denoted by (β), from the
predicted TCP cwnd is shown in Figure 5. The standard
TCP congestion algorithm employs an Additive Increase and
Multiplicative Decrease (AIMD) scheme that backs off in
response to a single congestion indication [3]. The AIMD has
a linear growth function for increasing the cwnd at the receipt
of an ACK packet and β on encountering a TCP packet loss at
the receipt of triple duplicate ACKs. This scheme adjusts the
cwnd by the increase-by-one decrease-to-half strategy. The
aspect of the AIMD algorithm is generalized and controlled
by adding two variables, α and β. α indicates the increase
in the window size if there is no packet loss in round-trip
time and β indicates the fraction of the window size that it is
decreased to when packet loss is detected [3]. Let f(t) be the
sending rate (e.g., the congestion window) during time slot t,
α(α>0), be the additive increase parameter, and β(0<β<1)
be the multiplicative decrease factor.

f(t+ 1) =

{
f(t) + α, If congestion is detected
f(t)× β, If congestion is not detected

(7)

For the underlying TCP variant prediction task, we consider
only loss-based TCP congestion control algorithms (e.g.,
CUBIC [9] BIC [32], and Reno [15]) [11] that consider
packet loss as an implicit indication of congestion by the
network for a proof of concept. Congestion control in any
IP stack doesn’t have much information available to drive
its algorithm. It has to infer congestion from the history of
packet loss and RTT. The β value especially for loss-based
congestion control algorithms is one of the most important
TCP characteristics which determines important conditions of
a network congestion like the cwnd and ssthresh [33]. There
are two approaches to measure the β value of a TCP congestion
control algorithm: (i) using a packet loss event, and (ii) using a
timeout event. In the presence of a packet loss event, TCP sets
both its ssthresh and the cwnd size to β × cwnd loss where
cwnd loss is the cwnd size before a packet loss event or a
timeout occurs. When timeout occurs, TCP sets its ssthresh
to β × cwnd loss and its cwnd size to its initial congestion
window (init cwnd) size. The back-off parameter along with
other TCP characteristics can be used to predict the underlying
TCP congestion control algorithms. Hence, here we use the β
value so as to uniquely predict the underlying TCP variant
of the selected loss-based TCP congestion control algorithms
summarized in Table II.

TABLE II: β Values of Loss-based TCP Variants

TCP Congestion Control Algorithm β Value
BIC 0.8

CUBIC 0.7
Reno 0.5

VI. EXPERIMENTS AND RESULTS

In this section, we summarize in detail the several
experimental results that illustrate our main contributions under
multiple scenarios using an LSTM-based RNN architecture.
In the experimental evaluations, we choose a testing scenario
configurations and present CUBIC [9], BIC [32] and Reno [15]

in order to make our obtained evaluation results easily
readable. We have experimented with several variations (36
configurations for each TCP variant, 216 in total as presented
in Table I). Due to space limitation in this paper, we cannot
present all the evaluation plots for a total of 216 configurations.
Hence, the results reported in this paper for all the scenario
settings are for a subset of the selected configurations for a
proof of concept as shown in Figures 6, 7, 8, and 9 to verify
the accuracy of our LSTM RNN-based prediction model.

The TCP cwnd pattern prediction model is evaluated under
different configurations of training and testing sample size
ratios. As it is shown in the plots below, we found out the
RNN-based model we built for predicting cwnd captures the
ratio of the cwnd drop very accurately. Figures 6(a) and
(b) don’t share the same bandwidth, delay, loss and jitter
configurations which cause the difference on the maximum
number of segments over the course of the connection. For
example, if we see on Figures 6(b), it has a Bandwidth-Delay
Product (BDP) [17] of 700mb*0.01s = 875,000 bytes. At
1500 byte segments, that’s 583 segments and our emulation
shows a maximum of 500-600 segments for cwnd. In all the
plots shown below we can see, once the timeout occurs, all
the packet losses are handled with fast recovery in response
to 3 duplicate ACKs. This is because the cwnd does not
drop below half of its previous peak. In the results, there
is a linear-increase phase followed by a packet loss event
where the cwnd increases with new arriving ACK. This
also demonstrates how the TCP congestion control algorithm
responds to congestion events. We can see that the pattern
of the predicted cwnd generally matches the actual cwnd
quite well with a small prediction error. We matched both the
increasing and decreasing parts of the sawtooth pattern using
the precise timestamp obtained from the kernel.

A. Emulated Network Setup

In Figure 6, the comparison of the predicted TCP cwnd and
the actual cwnd of the sender in an emulated setup is presented.
We found out our prediction model captures the ratio of
the cwnd drop very accurately. We evaluate our TCP cwnd
prediction model and the performance results with different
configurations are presented in Table III. For the TCP variant
prediction, we analyzed the β value by averaging out the
window size of AIMD algorithm every time we have a peak so
that we don’t do the computation of the multiplicative decrease
factor only on a slow start phase. The accuracy of uniquely
identifying the underlying TCP variant prediction result in the
emulated environment as shown in Table V is 97.22%.

TABLE III: Prediction of cwnd on an emulated network

Congestion Algorithms Sample Configurations RMSE MAPE (%)

TCP CUBIC Predicted cwnd - C1 2.181 2.846%
Predicted cwnd - C2 2.855 3.103%

TCP Reno Predicted cwnd - R1 2.013 2.815%

TABLE IV: TCP Variant Prediction of an emulated network
setting: Confusion Matrix

Predicted
Actual BIC CUBIC Reno
BIC 34 0 0
CUBIC 1 35 0
Reno 1 1 36

(a) (b) (c)

Fig. 6: TCP cwnd prediction with different configurations in an emulated network setting. (a) CUBIC [9] Configuration C1, (b)
CUBIC [9] Configuration C2, (c) Reno [15] Configuration R1

(a) (b) (c)

(d) (e) (f)

Fig. 7: TCP cwnd prediction from a realistic scenario setting on different zones of Google Cloud platform (East coast USA
(North Carolina) and Northeast Asia (Tokyo, Japan) sites). (a) CUBIC [9], USA site. (b) CUBIC [9], Japan site. (c) BIC [32],
USA site. (d) BIC [32], Japan site. (e) Reno [15], USA site. (f) Reno [15], Japan site.

TABLE V: TCP Variant Prediction of an emulated network
setting: Performance metrics

Precision Recall F1-Score Support
BIC 0.94 1.00 0.97 34
CUBIC 0.97 0.97 0.97 36
Reno 1.00 0.95 0.97 38
Average/Total 0.97 0.97 0.97 108
Accuracy 0.9722

B. Realistic Scenario Setup

In order to demonstrate the transferability [26] approach
of our proposed machine learning-based prediction model
and further validate our results presented in Section VI by

conducting a series of controlled experiments against other
scenarios, we believe it is necessary to carefully test how
well our model using an emulated network works with
realistic scenarios by leveraging the knowledge of the emulated
network. This guarantees that our prediction model is able to
discern the results to unforeseen scenarios. In this experimental
scenario, the prediction model is trained where the passive
monitor is placed between the sender and the receiver. From an
experimental viewpoint, this helps us to justify and guarantee
how our model could predict the development of a cwnd and
the underlying TCP variant with other realistic network traffic
scenarios captured from the Internet. To this end, we created
a realistic testbed where we experiment from Google Cloud
platform nodes by running our resources on the East coast

(a) (b) (c)

Fig. 8: TCP cwnd prediction with different configurations in a combined network setting. (a) CUBIC [9] Configuration C1, (b)
BIC [32] Configuration B1, (c) Reno [15] Configuration R1

(a) (b) (c)

Fig. 9: TCP cwnd prediction across different Google Cloud settings where the passive monitor is closer to the receiver. (a)
CUBIC [9] USA Zone, CReceiver, (b) BIC [32] USA Zone BReceiver, (c) Reno [15] USA Zone, RReceiver

of the USA and Japan as shown in Figure 7. In order to
create a realistic TCP session, we uploaded a big Ubuntu
image to Google Cloud platform sites so that we have a
full control of the underlying TCP variant on the sender-side
and at the same time run a tcpdump in the background
and capture the whole TCP traffic flow for testing on the
source node. We filtered out the host where we send the TCP
traffic to. Finally, we calculated the number of outstanding
bytes from the captured network traffic and run it through
our learning model to predict the development of the TCP
cwnd and variant. As it is shown in Figure 7, we confirm
that our prediction model operates correctly and accurately
recognizes the sawtooth pattern for realistic scenario settings
across different Google Cloud zones. This shows that our
prediction model is general bearing similarity to the concept of
transfer learning in the machine learning community. The cwnd
prediction performance result of the realistic scenario setting
across the Google Cloud platforms is presented in Table VI.
As it is shown in Table VIII, the accuracy of the TCP variant
prediction for this scenario setting is 96.66%.

TABLE VI: Prediction of cwnd on a realistic scenario

Congestion Algorithm Google Cloud Zone RMSE MAPE (%)

TCP CUBIC
USA Zone 1.752 2.517%

Japan Zone 1.964 2.852%

TCP BIC
USA Zone 2.219 2.979%

Japan Zone 2.527 3.097%

TCP Reno USA Zone 2.057 3.143%
Japan Zone 2.975 2.861%

TABLE VII: TCP Variant Prediction of a realistic scenario
setting: Confusion Matrix

Predicted
Actual BIC CUBIC Reno
BIC 20 0 0
CUBIC 0 19 1
Reno 0 1 19

TABLE VIII: TCP Variant Prediction of a realistic scenario
setting: Performance metrics

Precision Recall F1-Score Support
BIC 1.00 1.00 1.00 20
CUBIC 0.95 0.95 0.95 20
Reno 0.95 0.95 0.95 20
Average/Total 0.97 0.97 0.97 60
Accuracy 0.9666

C. Intermediate Node Closer to the Receiver Scenario

Our experimental setup for this scenario setting across
different Google Cloud zones is presented in Figure 10. It is
fundamentally difficult to infer the sender’s cwnd accurately
from passive measurements collected close to the receiver. If
we try to measure the cwnd for the end-to-end path between
the sender and the receiver basing our inference on the total
amount of outstanding bytes, the further away from sender
that our passive monitor is, the less likely it is that the packets
that our monitor observes will match the packets that are used
by the sending host to adjust its cwnd. For example, more

hops between the sender and our passive monitor create more
opportunities for packets to be lost, reordered or delayed. This
means that the information we are using to infer congestion
behavior is less reliable and may introduce more opportunities
for prediction algorithms to make false inferences. In this
scenario, the number of hops are 18 with an average RTT of
137ms whereas in the emulated scenario, the number hops are
3 with an average RTT of 1.8ms. We believe the data wouldn’t
reveal what additional packets are in flight from the sender, or
which ACKs from the receiver have been received. Because
placing the monitor close to the receiver means, we will be
seeing the ACKs before the sender does and so we may have
more trouble estimating which of the data packets we capture
were liberated by which of the ACKs we see. As it is shown
in Figure 9, we can see that our prediction model correctly
recognizes the sawtooth pattern of the cwnd. However, as
shown in Table IX, the prediction error is relatively higher
as compared to the other scenario settings. This is because of
the cases mentioned earlier. For predicting the underlying TCP
variant, we can use the same evaluation methodology, applied
on the other presented scenario settings, based on measuring
the change in cwnd size.

128.39.74.10

Receiver Passive
Monitor

Sender

192.168.1.1

Internet

NetEm

loss

bandwidth

delay jitter

Network
Emulator

128.39.74.9

Data Center

35.190.138.173

Google Cloud Platform

Fig. 10: Intermediate node closer to the receiver scenario setup

TABLE IX: Prediction of cwnd across different Google Cloud
Zones when the monitor is closer to the receiver

Congestion Algorithms Google Cloud Zones RMSE MAPE (%)
TCP CUBIC USA Zone, CReceiver 6.341 9.057%
TCP BIC USA Zone, BReceiver 5.185 8.680%
TCP Reno USA Zone, RReceiver 6.937 9.238%

D. Combined Scenario Setting

Real networks behave in a more complex manner than
emulated networks. The TCP control loop affects the loss and
delay of packets. We believe, there are queue dynamics in
the network which cause packet trains and other behaviors
which software emulators like NetEm [13] can’t reproduce well
enough. In Section VI-B, we performed a realistic experiment
when the random packet loss comes from the dynamics of
multiple TCP connections sharing a link (congestion) rather
than an injected packet loss. In this section, we address the
scalability approach by conducting an experiment of our model
under a broader range by combining the realistic and emulated
scenario settings to justify the applicability and robustness of
our prediction model. Our experimental setup for this scenario
setting is presented in Figure 11.

192.168.1.2 128.39.74.10

Sender Passive Monitor Receiver

192.168.1.1

Internet

NetEm

loss

bandwidth

delay jitter

Network
Emulator

128.39.74.9

Data Center

Fig. 11: Combined scenario setup

In this experiment, we combine the two scenario settings
(one with an emulator and one with no emulator but Internet)
where our intermediate node acts as a router. We get the traffic
to the intermediate node, wrap and forward it to the network
so that we can add more delay and the number of hops in
the network on both sides. In this scenario, as it is shown in
Figure 8, both the increasing and decreasing portions of the
sawtooth pattern across different TCP variants is potentially
accurate. The TCP variant prediction accuracy of the combined
scenario setting, as it is presented in Table XII, is 94.44% and
this justifies that our prediction model can handle multiple
scenario settings.

TABLE X: Prediction of cwnd on a combined setting

Congestion Algorithms Per Configuration RMSE MAPE (%)
TCP CUBIC Sample Configuration C1 2.072 3.262%
TCP BIC Sample Configuration B1 3.506 4.846%
TCP Reno Sample Configuration R1 2.096 3.829%

TABLE XI: TCP Variant Prediction of a combined scenario
setting: Confusion Matrix

Predicted
Actual BIC CUBIC Reno
BIC 33 0 0
CUBIC 2 33 0
Reno 1 3 36

TABLE XII: TCP Variant Prediction of a combined scenario
setting: Performance metrics

Precision Recall F1-Score Support
BIC 0.92 1.00 0.96 33
CUBIC 0.92 0.94 0.93 35
Reno 1.00 0.90 0.95 40
Average/Total 0.95 0.94 0.94 108
Accuracy 0.9444

Transfer Learning: In our work, we are able to train in
one scenario setting and apply it as a pre-training in another
scenario setting. Therefore, we are able to show that the
learned prediction model by leveraging a trained knowledge
from the emulated network performs reasonably well as it is
shown above when it is applied and transferred to a realistic
scenario setting bearing similarity to the concept of transfer
learning in the machine learning community [26].

Optimality: As it is shown in Tables XIII and XIV, the
experimental results show that our LSTM-based prediction
model is able to outperform our previous approach using
machine learning techniques [10]. Our LSTM-based TCP
variant prediction model achieves accuracies of 97.22%,
96.66% and 94.44% on the emulated, realistic and combined
scenario settings, outperforming the standard ML-based which
yields accuracies of 93.51%, 95% and 91.66% respectively.

TABLE XIII: TCP cwnd prediction comparison

Scenario
Settings

TCP
Algorithms Configuration

Techniques
Machine Learning LSTM
RMSE MAPE RMSE MAPE

Emulated CUBIC C1 5.839 6.953% 2.181 2.846%
C2 3.075 3.725% 2.855 3.103%

Reno R1 3.511 3.140% 2.013 2.815%

Realistic

CUBIC USA 4.265 5.134% 1.752 2.517%
Japan 3.522 4.738% 1.964 2.852%

BIC USA 2.952 3.809% 2.219 2.979%
Japan 2.694 3.761% 2.527 3.097%

Reno USA 3.170 5.068% 2.057 3.143%
Japan 3.396 5.197% 2.975 2.861%

TABLE XIV: TCP variant prediction accuracy comparison

Scenario Settings
Techniques Accuracy Emulated Realistic Combined
Machine Learning-based 93.51% 95% 91.66%
LSTM-based 97.22% 96.66% 94.44%

VII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the capability of a
deep neural network architecture based on a learning LSTM
recurrent predictive models to capture the pattern of a TCP
cwnd with small prediction errors from passive traffic collected
at an intermediate node. We have also uniquely identified the
underlying TCP variants based on the multiplicative decrease
window of the cwnd and the per-connection states within
the variant from passive measurements. Our goal in this
work was to implement a learning predictive model that
generates the pattern of cwnd from passive measurements
using an LSTM architecture and finally justify if our
previous machine learning based-based experiments are valid.
The experimental results show the effectiveness of our
LSTM-based prediction approach. We found out that our
LSTM-based model outperforms our previous work carried out
using the state-of-the-art machine learning-based prediction
models by a reasonably significant margin. We show that
the learned prediction model by leveraging knowledge from
the emulated network performs reasonably well when it is
applied on a real-life scenario setting bearing similarity to
the concept of transfer learning in the machine learning
community. Finally, we believe that our work can open up
the path to a number of future research work directions in the
computer networking community.

In this work, we consider only loss-based TCP congestion
control algorithms that consider packet loss as an implicit
indication of congestion by the network for a proof
of concept. By design, unlike loss-based algorithms, the
multiplicative decrease parameter of delay-based congestion
control algorithms is not fixed which makes it fundamentally
challenging to predict the TCP variant from a passive traffic
when there is variability in delay. As a future work, it would
be interesting to develop a delay-based model using both
machine learning and deep learning techniques so as to verify
how delay changes and look into how the TCP variants of
delay-based congestion control algorithms can be predicted
both from passively measured traffic and real measurements
over the Internet. We plan to investigate these issues further
and extend the approaches in our future work.

ACKNOWLEDGMENT

We greatly acknowledge the anonymous reviewers for their
helpful feedback and detailed comments on our paper.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow:
A System for Large-Scale Machine Learning. In OSDI, 2016.

[2] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu.
Recurrent neural networks for multivariate time series with
missing values. Scientific reports, 8(1):6085, 2018.

[3] D.-M. Chiu and R. Jain. Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks.
Computer Networks and ISDN systems, 1989.

[4] K. Choi, G. Fazekas, M. Sandler, and K. Cho. Convolutional
recurrent neural networks for music classification. IEEE, 2017.

[5] J. T. Connor, R. D. Martin, and L. E. Atlas. Recurrent neural
networks and robust time series prediction. IEEE, 1994.

[6] N. Dukkipati, Y. Cheng, and A. Vahdat. Research Impacting the
Practice of Congestion Control, 2016.

[7] ESnet. iperf3. https://iperf.fr/iperf-servers.php, 2017.
[8] A. Graves and N. Jaitly. Towards end-to-end speech recognition

with recurrent neural networks. In Machine Learning, 2014.
[9] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly

high-speed TCP variant. ACM SIGOPS, 2008.
[10] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. A

Machine Learning Approach to TCP State Monitoring from
Passive Measurements. In Wireless Days (WD). IEEE, 2018.

[11] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. Towards a
Robust and Scalable TCP Flavors Prediction Model from Passive
Traffic. In to apppear in ICCCN 2018. IEEE, 2018.

[12] D. H. Hagos, A. Yazidi, Ø. Kure, and P. E. Engelstad. Enhancing
Security Attacks Analysis Using Regularized Machine Learning
Techniques. In AINA 2017. IEEE, 2017.

[13] S. Hemminger et al. Network emulation with NetEm. 2005.
[14] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.
[15] V. Jacobson. Congestion avoidance and control. In ACM

SIGCOMM. ACM, 1988.
[16] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.

Inferring TCP connection characteristics through passive
measurements. In INFOCOM. IEEE, 2004.

[17] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. ACM SIGCOMM
computer communication review, 32(4):89–102, 2002.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional
neural networks for text classification. In AAAI, 2015.

[20] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015.

[21] P. Liu, X. Qiu, and X. Huang. Recurrent neural network
for text classification with multi-task learning. arXiv preprint
arXiv:1605.05101, 2016.

[22] A. Medina, M. Allman, and S. Floyd. Measuring the evolution
of transport protocols in the internet. ACM SIGCOMM, 2005.

[23] C. Olah. Understanding LSTM Networks. https://colah.github.
io/posts/2015-08-Understanding-LSTMs, 2015.

[24] S. Ostermann. Tcptrace. http://www.tcptrace.org, 2000.
[25] J. Pahdye and S. Floyd. On inferring TCP behavior. ACM

SIGCOMM Computer Comm. Review, 31(4):287–298, 2001.
[26] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE

Transactions, 2010.
[27] S. Rewaskar, J. Kaur, and D. Smith. A Passive State-Machine

Based Approach for Reliable Estimation of TCP Losses. 2006.
[28] J. Schmidhuber. Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.
[29] I. Sutskever. Training recurrent neural networks. University of

Toronto, Toronto, Ont., Canada, 2013.
[30] I. Sutskever, J. Martens, and G. E. Hinton. Generating text with

recurrent neural networks. In Machine Learning, 2011.
[31] D. Tang, B. Qin, and T. Liu. Document modeling with

gated recurrent neural network for sentiment classification. In
Proceedings of the 2015 conference on empirical methods in
natural language processing, pages 1422–1432, 2015.

[32] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion
control (BIC) for fast long-distance networks. IEEE, 2004.

[33] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP
congestion avoidance algorithm identification. IEEE, 2014.

https://iperf.fr/iperf-servers.php
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs
http://www. tcptrace. org

