
Building virtualized 5G networks
using open source software

Bruno Dzogovic
Oslo Metropolitan

University
Norway

bruno.dzogovic@hioa.no

Van Thuan Do
Wolffia AS

Norway
 Vt.do@wolffia.no

Boning Feng
Oslo Metropolitan University

Norway
boning.feng@hioa.no

Thanh van Do
Telenor and Oslo

Metropolitan University
Norway

 thanh-van.do@telenor.com

Abstract— The upcoming 5G mobile networks will not only
bring high data rates but also deliver flexibility and adaptability,
which is conveyed by the virtualization of the mobile network.
Unfortunately, virtualization of mobile networks is not well
understood, and the work described in this paper aims at
investigating and elucidating the particular matter. As a starting
point, OpenAirInterface, an open source mobile communication
software is selected for first virtualization and then
cloudification. In addition to the descriptions of the virtualization
and cloudification, the paper also provides key findings and
lessons learned of the experiments.

Keywords—Cellular networks, Mobile networks, Virtual
network function, Virtualized mobile networks, Software mobile
communication, Open source mobile communication

I. INTRODUCTION

Since the emergence of GSM [1] in 1991 the popularity of
mobile communication keeps increasing. The number of
mobile subscriptions is currently over 7.6 billion
corresponding to the world population and still increasing. To
meet the demands on performance, coverage and quality of
service the mobile community puts a lot of effort to constantly
improve mobile communication both in terms of connectivity
and services by introducing new technologies. 2G/GSM was
replaced by 3G/UMTS [2], which in addition to voice and
short message provides data connections. With rising demand
on higher bit rates 3G was replaced by 4G/LTE [3], which
offers sufficiently high data rate for the access to popular
Internet services such as social networks, mail, instant
messaging, maps, etc. Again, 4G will be soon taken over by
5G [4] which is aiming at responding to widest range of
services and applications, ranging from enhanced mobile
broadband (eMBB) to massive machine-type communications
(mMTC) and ultra-reliable and low-latency communications
(URLLC).

In addition to advanced wireless access technologies, the
two fundamental technology enablers of 5G are
softwareization and virtualization of network functions, [5]
and software-defined [6][7][8], programmable network
functions as well as infrastructure resources. However, the
virtualization of the mobile network is still in very early

phases and the current acquired experience is sparse. Indeed,
the feasibility is fully proven. This paper presents the work
done at the Secure 5G4IoT Lab at the Oslo & Akershus
University College within the scope of the H2020 SCOTT
project which is aiming at acquiring knowledge and
experiences on the network virtualization, while paving the
way for 5G. To achieve its objectives, the project decides to
adopt an open source software approach. In fact, to build an
earlier 5G mobile network in a lab environment, an open
source 4G/LTE is selected first for softwareization and then
for virtualization. The paper starts with a brief review of open
source mobile communication software and follows with the
description of the current open source software 4G/LTE
OpenAirInterface integration. One of the major step of the
project will be the virtualization of OpenAirInterface. The
main target of the paper is clarification of the mobile network
cloudification. The findings and lessons learnt will also be
conferred in a comprehensive way. The paper concludes with
a conclusion which also encompasses suggestions for further
works.

II. BRIEF REVIEW OF OPEN SOURCE MOBILE COMMUNICATION

SOFTWARE

A. 2G/GSM open source software

Figure 1 The GSM network architecture

Founded in 1998 the open source initiative quickly became
popular and was spreading to a large variety of application
areas such as browser, big data, cloud infrastructure, financial,
business process management, CAD, billing, accounting, etc.
it reached mobile communication by 2007 and in 2010 the

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

development of OpenBTS [10], an open source GSM was
completed and a pilot took place in Burning Man, USA. The
second GSM open source software is OpenBSC, which had
the first public demonstration in 2008. In 2014,
OpenAirInterface, an open source LTE software from
EURECOM was demonstrated at the Mobile World Congress
in Barcelona. Short introductions will be successively
provided for each of the open-source software.
The traditional GSM (Global System for Mobile
Communications, originally Groupe Spécial Mobile) network
is made of components called network elements such as Base
Transceiver Station (BTS), Base Station Controller (BSC),
Mobile Switching Center (MSC), Home Location Register
(HLR), Visitor Location Register (VLR), etc. as shown Figure
1. These network elements are manageable dedicated logical
entities including hardware and software components, which
are built and delivered by telecommunication manufacturers.
With open source software, these network elements are
realized by software components installed on generic personal
computers or enterprise-grade servers. Open source
communication software enables various research projects as
the one described in [11], where a fake base station aka “IMSI
catcher” was built.

OpenBTS
In this approach, a smallest GSM network is obtained by the
provision of the air interface between the mobile phone and
the base station, done by an open-source Base Transceiver
Station software running on a commodity processor.

OpenBSC
This approach implements a software base station controller
(BSC) [12], running on a commodity Linux PC which can be
combined with off-the-shelf BTS hardware to establish a GSM
network.

B. 4G/LTE open source software

OpenAirInterface
It is a software standard-compliant implementation of a subset
of Release 10 LTE for UE, eNB, MME, HSS, SGw and PGw
[13], on standard Linux-based computing equipment (Intel
x86 PC/ARM architectures), which is freely distributed by the
OpenAirInterface Software Alliance under the terms stipulated
by the OSA license model.

III. CURRENT STANDARD 4G/LTE OPENAIRINTERFACE

INSTALLATION

As shown in Figure 2, a current validated OpenAirInterface
network installation consists of three nodes as follows:

 A commercial LTE enabled mobile equipment
(COTS UE)

 An LTE base station, realized by an OAI soft eNB
running on a low latency Linux commodity computer

 An LTE core network, realized by an OAI soft EPC
running a Linus commodity community computer.

 Undoubtedly, the dedicated hardware network
elements are now replaced by software network
functions such as soft eNB and soft EPC.

Figure 2 Standard OAI architecture (source: OSA [13])

IV. VIRTUALIZATION OF OPENAIRINTERFACE

To establish an early 5G network, we carried out the
virtualization of the OAI software stack of network functions,
mentioned in the previous sections.

A. Virtualization

Virtualization refers to the process of abstracting computing
resources such that multiple applications can share a single
physical hardware. Quite often, virtualization relates to server
virtualization, where a particular physical server is abstracted
and decomposed into virtual entities. The virtual constituents
are assembled into a hypervisor, which makes up the
virtualization software like KVM (Kernel-based Virtual
Machine) [14], VirtualBox [15] or VMware [16]. A virtual
constituent can be a virtual CPU, virtual RAM or virtual NIC
(Network interface controller) etc. Even storage can also be
virtualized, and this allows alleviated sharing of resources
between users. Furthermore, a network can be virtualized as
well by creating virtual links, subnetworks, gateways and
layer-2 bridges, etc.

The major obstacle of the virtualization is the introduced
overhead, as well as complexity. In fact, the OAI network
functions are high-performance applications that require low
latency and near real-time response. When running within a
Virtual Machine (VM), a network function may perform some
I/O calls or other operations involving system calls. The
system calls go through additional layers of abstraction,
introduced by virtualization, which incurs overhead resulting
to slower responses.

B. Containerization

To circumvent the issue of overhead we choose to use
containers instead of virtual machines.

Containerization [17] also called container-based
virtualization and application containerization is an operating
system level virtualization method for deploying and running
distributed applications without launching an entire VM for
each application. Multiple isolated systems, called containers,
are instead run on a single control host, accessing a single
kernel. As shown in Figure 3, containers include the
components necessary to run the software, such as files,
environment variables and libraries. Since containers run on

the same operating system as the host computer, they are more
efficient than VMs that are running different operating
systems. In fact, the key benefits of containers are efficiency
gains for memory, CPU and storage. Another major advantage
is the fact that containers can be created much faster than
hypervisor-bases instances.

Figure 3 Virtualization versus Containerization

C. Containerized OAI deployment at the Secure 5G4IoT

Figure 4 Deployment of OpenAirInterface core network
and eNB in Docker containers

The deployment of OpenAirInterface in containers can be

performed in several ways. The easiest and simplest approach
is to run the OpenAirInterface core network in a single
container, i.e. both EPC (Evolved Packet Core) including HSS
(Home Subscriber Server) and eNB. The advantage of such
deployment is that the core network can be pre-configured and
run automatically instantaneously. Therefore, everything can
be initiated within matter of seconds. To ensure scalability, the
OpenAirInterface core network can entitle a separate container

to deploy the HSS in few replicas, supporting database load-
balancing and installing the other core network functions in a
separate container(s) on the same or even different physical
hosts, while eNB is running on a third container remotely
(from a distributed cloud edge network).

At the Secure 5G4IoT lab, we adopt a configuration which
uses a separate container to deploy the entire EPC, as well as
another one for the eNB, as shown in Figure 4.

There are few container implementation possibilities, but in
the particular testbed, Docker [17] is used for the
containerization of the OpenAirInterface. Docker is a very
powerful tool for software containerization, which introduces
containers that can wrap a piece of software in a complete
filesystem that contains everything needed to run: code,
runtime, system tools, and system libraries. Factually,
anything that can be installed on a server. This guarantees that
the software will always be executed in the exact form,
disregarding the environment. Containers running on a single
machine share the same OS kernel; they start instantly and use
less RAM. Images are constructed from layered filesystems
and share common files, making disk usage and image
downloads much more efficient.

Comparatively to virtual machines, a container is a
virtualization instance in which the kernel of an operating
system enables multiple isolated user-space instances.
Moreover, containers do not need to run a complete operating
system (OS) image for each instance. Instead, containers are
able to run separate instances of an application within a single
shared OS. This new feature provides the flexibility to build
instantaneously and move applications without the need to
rewrite or redeploy their code, which makes up for faster
integration and access to analytics, big data and services. It
also enables advanced techniques of deployment and
orchestration in form of clusters and stacked services.

As shown in Figure 4 the testbed consists of the following
nodes:

 EPC: 192.168.10.3; PC running Ubuntu 16.04
 eNB: 192.168.10.4; PC running Kali Linux

connected through USB 3.0 interface with a USRP
B210 [18] and through Ethernet with a USRP N200
[19] Error! Reference source not found.

 Two smartphones Huawei P9 lite, equipped with self-
programmed Milenage algorithm SIM cards

 Blutronics BluDrive II SIM card programming
device

 Cisco 2800 router and Cisco 2960 switch, separated
in two VLANs

The testbed is situated at Oslo Metropolitan University,
where a dedicated cloud infrastructure is built in a datacenter.
As shown on Figure 4, the host running the EPC reaches the
eNB through the routing plane in two possible ways: one is
through layer-3 networking and L2TP tunneling
encapsulation, consequently. Due to different performance
metrics, the separate solutions differ with regard to the
scenario that they are appointed to. For example, the usage of
network overlay introduces additional latency and therefore, it
would only be suitable for scenarios where the communication

does not require low latency, i.e. the case of some Internet of
Things devices for home appliances.

For a complete Layer-3 networking solution, the SDN
Calico [20] is used for formulating a Network Function
Virtualization. Calico is simplified SDN (Software-defined
Networking) solution that can enable various features of
networking, including unparalleled scalability, security via
policy-based networking and routing in cloud networks, as
well as physical server-based networking. Calico provides
secure network connectivity for containers and virtual
machine workloads. It creates and manages a flat layer 3
network, assigning each workload a fully routable IP address.
Workloads can communicate without IP encapsulation or
network address translation for bare metal performance, easier
troubleshooting, and better interoperability. In environments
that require an overlay, Calico uses IP-in-IP tunneling or can
work with other overlay networking such as Flannel or OvS.
Calico also adds dynamic implementation of network security
rules. Using simple policy language, it is possible to achieve
fine-grained control over communications between containers,
virtual machine workloads, and bare metal host endpoints.
This allows extensive security resolution for IoT verticals,
since the current are not regulated due to lack of research and
solutions [21].

Proven in production at scale, Calico features integration
with Kubernetes, OpenShift, Docker, Mesos, DC/OS, and
OpenStack. To integrate Calico with OpenStack, Etcd is
installed as a provider of a distributed key/value database that
is accessible from all compute hosts and Neutron networking
servers. The next entity being installed is the Felix (Calico
agent), which runs on each compute host and reads
information from Etcd that stipulates the workloads and their
properties. Consequently, the BIRD routing daemon [22] runs
on each compute host, propagating local workload routes to
other compute hosts and infrastructure routers. To successfully
integrate Calico in the Neutron networking of OpenStack, the
Calico driver is installed and executed on each machine where
the Neutron server runs i.e. the three servers that are
constructed to provide high availability. The driver helps Etcd
and Felix to comprehend the Neutron networking operations
in OpenStack e.g. instance, security, subnet operations etc.
The last agent required is the Calico DHCP for dynamic
address assignment, which also runs on each compute host,
providing DHCP service for the locally-hosted workloads. At
this point, Calico enables a policy for connection between the
particular containerized OpenAirInterface network core
instances and the outside world, including the remote eNB that
is set at the network edge.

The L2TP encapsulation for lower-security IoT applications
is resolved with Open Virtual Switch (OvS) network overlay.
The traffic is thus unencrypted, without implementation of
IPSec encryption. Open vSwitch is a production quality,
multilayer virtual switch licensed under the open source
Apache 2.0 license that can enable interconnection between
containers or virtual machines. It is designed to enable
massive network automation through programmatic extension,
while still supporting standard management interfaces and

protocols e.g. NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP,
802.1ag. It has also been integrated into many virtual
management systems including OpenStack, openQRM,
OpenNebula and oVirt. In addition, it is designed to support
distribution across multiple physical servers similar to
VMware's vNetwork distributed vSwitch or Cisco's Nexus
1000V [23]. A script is built to automate the initialization
process of the tunnel between the two remote containers on
each start of the operating system, which enables reachability
to remote locations for particular IoT network verticals, as
shown in Figure 5.

Figure 5 Interconnection between remote containers using

network overlay with Open VSwitch

V. CLOUDIFICATION OF OPENAIRINTERFACE

The Oslo Metropolitan University has its own cloud
infrastructure based on OpenStack. The cloud consists of 10
compute nodes, 3 controller nodes and 6 Ceph-OSD storage
servers. It is also equipped with a complete monitoring
solution, based on Prometheus and Grafana. There is also an
infrastructure alerting system, comprised of Elasticsearch
Kibana, InfluxDB and Grafana.

Figure 6 OpenStack deployment of OpenAirInterface core

network

As depicted on Figure 6, the OpenStack cloud is built on top
of Kubernetes clusters and is managed remotely. Kubernetes
[24] is a powerful system, developed by Google, for managing
containerized applications in a clustered environment. It aims

at providing better ways of managing related, distributed
components across varied infrastructure. Kubernetes, at its
basic level, is an orchestration system for managing
containerized applications across a cluster of nodes. Therefore,
the OAI pre-built images can be instantiated in a remote cloud
automatically, with a simple creation of a YAML template
that is very practical for the deployment of remote eNB
components.

To integrate the OpenAirInterface network core in the
OpenStack Neutron networking component, without network
overlay but using a network underlay, OpenStack Heat
templates are used. The templates (HoTs) are pre-created to
manage multiple composite cloud applications and organize
them as a stack of virtualized entities i.e. containers. The Heat
orchestration component enables service for managing the
entire lifecycle of infrastructure and applications within
OpenStack clouds [25]. Creating multiple templates, it can
provide different network slices for different tenacities,
merging the underlying operation of the OvS network in the
OpenStack’s Neutron networking component. This way, the
procedure allows automation of the deployment within the
disposition of the Continuous Integration/Delivery (CI/CD)
paradigm.

One addressed issue is the support for SCTP (Stream
Control Transmission Protocol) in OpenStack, which is the
protocol through which the eNB communicates with the MME
in the core network. The virtual machine in which the
OpenAirInterface core is running, needs to have the SCTP
module enabled, which is integrated into the Linux kernel. As
the module is loaded, it is possible then to create SCTP
sockets inside containers with standard Linux tools. A Linux
Ubuntu image is pre-built with all the modules required for the
core network to run. Moreover, the OpenStack cloud needs a
special SCTP security group rule that enables the traffic over
floating IPs. On the main controller node, a security group rule
is thus created with the following command executed at the
main controller node: openstack security group rule
create ‐‐protocol sctp

The --protocol flag allows the creation of a security rule
based on the protocol type employed, in this case SCTP. Also,
this feature allows avoiding the tunneling of traffic with a
network overlay, which can add a significant network latency
and traffic incongruity. On the other hand, the S1 traffic
between the eNB and the MME/SPGW can also be encrypted
using IPSec at the tunnel, and the viability of implementing
OvS tunnel is still possible. However, this combination may
be appropriated for applications that are not restricted in terms
of low-latency or real-time operation. To successfully deploy
the core network in OpenStack using Heat orchestration
templates, the OpenStack version should at least be “Kilo”
from 30 April 2015. However, the particular version of
OpenStack is “Ocata” from 22 February 2017, which has
added support for multiple other OpenStack components [25],
as well as full support for SCTP. As the Ubuntu 16.04 image
is configured to support Heat templates, exported to QCOW2
format, it is imported to the OpenStack cloud using the
OpenStack “Glance” component for image creation. Because

the OpenAirInterface core is a demanding deployment, it
requires dedication of more available resources to the tenant
that runs the process. For that purpose, an instance with extra-
large flavor is assigned, namely: 8 vCPUs, 16 GB of RAM
and 160GB disk space.

The 5G4IoT network edge is simulated as a physical server
on a distinct network, which is connecting from Trondheim to
Oslo via optical link and provides direct connection to the
University network via different routing domains (as indicated
on Figure 7).

Figure 7 Cloudification of the OpenAirInterface EPC

The EPC is running in the cloud, which currently
communicates to the remotely connected eNB through
multiple routing domains. The end-to-end latency is measured
via the hops required for the physical routing plane to reach
the Calico virtual routing plane in the OpenStack Neutron.
The OvS and Docker bridges are eliminating the additional
latency overhead due to the direct bridging with the physical
interface of the host at which they are running.

Figure 8 Customizing the TCP header due to
encapsulation

Consequently, the encapsulation of multiple protocols yields
a bigger packet size and the IP header is thus modified. The
TCP transmission window is also slightly increased to
accommodate the requirements for bigger IP fragments. As
depicted on Figure 8, the L2TP protocol requires increased
MTU size to acclimatize larger packet transmission,
particularly of at least 1648 octets. Also, the SCTP protocol
can be categorized subsequently in this class, which adds
supplementary size to the header because of its encapsulation
in the UDP protocol. Additionally, the UDP also has the GTP-
U protocol encapsulated in its header and they altogether form
the complete packet size required to establish a successful
connection between the eNB and EPC.

VI. KEY FINDINGS AND LESSONS LEARNED

Through the experiments, a few interesting important
findings and deductions were acquired as follows:

Meticulous planning is essential
The installation of OpenAirInterface core network in a

Docker container is a process that demands detailed
groundwork. The aim behind packing a software into a
container is to enable immutability and consistency, which is
to allow the software to run on any OS platform and/or kernel,
as well as virtualized environment. Therefore, establishment
of a basic underlying image for the container is crucial.
Particularly, OpenAirInterface is heavily tested by the open-
source community on Ubuntu 14.04 and 16.04, with kernel
versions 3.4, 4.7.x to 4.8.x. Hence, building a Docker image
out of those specific Linux versions will yield stability for the
core network operation, as well as the eNB container running
on a separate machine.

Hardware performance tuning
In addition to the operating system demands, there are

various constraints and requirements that must be met before
proceeding with the core network deployment, as follows:
 The Linux kernel must be low-latency, because the

application deployed works in real-time and any
discrepancies of such character are unacceptable.

 The underlying hardware must be perfected to support
real-time applications. This fathom securing consistent
CPU speed without any fluctuations, which can
implicate overclocking. The CPU is configured by
default to work in power-saving modes, that when not
fully utilized, downclocks the unit in order to save
power. These modes are known as C-states and P-states
[26], which must be disabled in the BIOS of the
underlying motherboard. As for best operation, the
contemporary Intel CPU employs 4 cores. The units
support hyperthreading, which can disturb the real-time
operation of the network core, while balancing the
workload from core to core in dependence of the
threads used by particular processes in the operating
system. However, if the CPU is overclocked and set to
work on a single frequency, in this case 3.0 GHz, the
fluctuations of the speed will unlikely occur, despite the

usage of hyperthreading. Also, hyperthreading is
desirable if multiple containers are run and scaled in a
cluster for automatic deployment using an orchestrator
(i.e. Kubernetes), and if the OpenAirInterface eNB is
replicated into multiple instances for different network
slices.

 The RAM memory needs a consistent timing control,
which has a CAS latency set to as minimal as possible,
without disturbing the motherboard’s north-bridge-to-
RAM frequency ratio. If the read and write speeds of
the RAM are slow, then the real-time function of the
network core is distraught and will cause failures or
unpredictable behavior. Derisory read/write RAM
timings also cause bottlenecking of the eNB radio
access, especially at the uplink (UL) channel.

Appropriate LTE frequency band must be selected
Due to the hardware limitations, the LTE frequency band

selection can play a crucial role in successful deployment of a
stable environment. The band 7 (2500-2570 MHz uplink and
2620-2690 MHz downlink, with 120 MHz duplex spacing)
offers channel bandwidths of 5, 10, 15 and 20 MHz. However,
the increasing of the bandwidth requires much more powerful
CPU, and the only bandwidth that can be used with the current
hardware configuration is the minimal 5 MHz. Despite that,
the particular PC does not provide the required resources to
run the eNB base station at 2.6 GHz, which cancels operation
after irrelevantly short period. Lowering the frequency, as well
as the channel bandwidth, can enable the PC to stabilize the
operation of the eNB instance. Therefore, the band 3 is more
appropriate, which does not require as much computing
resources as the higher bands. With the range from 1710-1785
MHz for uplink and 1805-1880 MHz uplink, the band 3 offers
more channel bandwidths, namely: 1, 3, 4, 5, 10, 15 and 20
MHz. The both tested bands work with FDD duplex mode,
with the difference that a better stability is achieved within the
lower frequencies because of the diminished utilization of
computing resources.

Increasing the MTU of transmitted packets on all
interfaces is obligatory

As previously stated, the default MTU of 1500 octets will
yield the UE unable to utilize the HTTP protocol for browsing
the Internet. With slight increase of the MTU (around 1648
octets), the desirable results are achieved within satisfactory
levels of operation. However, if the MTU is increased more,
the risk of fragmentation attack vulnerability increases in
straight-proportional relations to the packet size, and thus it
should be set to the lowest possible suitable levels. The
process of creation of virtual interfaces for the OvS and Calico
SDN is automated within a script that also sets the adequate
MTU size to 1648 octets.

VII. CONCLUSION

This paper describes a successful attempt to build an earlier
5G mobile network using OpenAirInterface, a 4G/LTE open
source. However, instead of virtualization a containerization
of the OpenAirInterface was carried out in a satisfactory way,
although a few challenges have been encountered and

considerable efforts were requested to surmount them. The
cloudification was also performed successfully and
automation scripts are generated for further redeployment. The
next step will be to explore the flexibility and dynamicity
brought by the virtualization and cloudification of the mobile
network, as well as migration of the network core and the eNB
to the cloud and network edge for improved performance and
decreased latency. The concept of network slicing, i.e. to set
up multiple logical mobile networks on the same hardware
network infrastructure will be experimented and guidelines for
network slice configuration will be elaborated. The
dynamicity of the network slice establishment and termination
will also be tested and verified. The generic orchestration
process is a central topic that calls for more research.

REFERENCES

[1] Mouly, M. & Pautet, M-B: The GSM System for Mobile

Communications, ISBN-13: 978-0945592150 ISBN-10: 0945592159

[2] Hillebrand, F: GSM and UMTS: The Creation of Global Mobile
Communication, ISBN: 978-0-470-84322-2, Wiley, Oct 2001

[3] Cox, C.: An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G
Mobile Communications, ISBN: 978-1-119-94353-2, Wiley, Mar 2012

[4] 5G Infrastructure Public Private Partnership (5G PPP): View on 5G
Architecture (Version 2.0), 5G PPP Architecture Working Group - 2017-
07-18

[5] ETSI: GS NFV 002 Network Functions Virtualization (NFV);
Architectural Framework, v.1.1.1, 10-2013

[6] Open Network Foundation (ONF): SDN architecture, Issue 1 June, 2014
ONF TR-502

[7] Open Network Foundation (ONF): SDN architecture, Issue 1 June, 2014
ONF TR-521

[8] Open Network Foundation (ONF): Applying SDN Architecture to 5G
Slicing, Issue 1 April 2016 ONF TR-526

[9] H2020 SCOTT project: https://scottproject.eu/

[10] Iedema, M: Getting Started with OpenBTS, ISBN 978 1 491 91065 8,
published by O’Reilly Media, Inc, Copyright 2015 Range Networks

[11] Do, Thanh van, Nguyen, Hai Thanh Nguyen, Nikolov Momchil and Do,
Van Thuan: Detecting IMSI-Catcher Using Soft Computing in
Communications in Computer and Information Science, ISSN 1865-
0929 ISSN 1865-0937 (electronic)

[12] Osmocom, OpenBSC. [Online]

Available at: https://osmocom.org/projects/openbsc/wiki/OpenBSC

[Accessed December 2017]

[13] OpenAirInterface Software Alliance, OpenAirInterface. [Online]

Available at: www.openairinterface.org/

 [Accessed December 2017]

[14] Redhat, Inc., KVM – Kernel Based Virtual Machine, Copyright. [Online]

Available at: http://www.redhat.com

[Accessed November 2017]

[15] Oracle Corporation, Oracle VM VirtualBox User Manual, Version 5.2.2.
[Online]

Available at: http://www.virtualbox.org

[Accessed December 2017]

[16] VMware: Enterprise Java Applications on VMware - Best Practices
Guide, 2011

[17] Docker: Docker for the Virtualization Admin, 2016; htttp:
www.docker.com

[18] Ettus Research, Inc., USRP B200. [Online]

Available at: https://www.ettus.com/product/details/USRP-B200mini-i

[Accessed November 2017]

[19] Ettus Research, Inc., USRP N200 [Online]

Available at: https://www.ettus.com/product/details/UN200-KIT

[Accessed November 2017]

[20] Tigera Inc., 2017. Calico. [Online]

Available at: https://projectcalico.org/

[Accessed November 2017]

[21] Siddiqui, M. S., Escalona, E., Policy Based Virtualised Security
Architecture for SDN/NFV enabled 5G Access Networks, IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2016

[22] Kyuongha, K., Yanggon, K., The Security Appliance to BIRD software
router, ICUIMC '14 Proceedings of the 8th International Conference on
Ubiquitous Information Management and Communication, Article No.
37 , Siem Reap, Cambodia — January 09 - 11, 2014

[23] Linux Foundation Collaborative Project, 2016. Open VSwitch [Online]
Available at: http://www.openvswitch.org

[Accessed December 2017]

[24] Kubernetes, 2017. Kubernetes. [Online]

Available at: https://kubernetes.io

[Accessed 20 November 2017]

[25] OpenStack, 2017. OpenStack. [Online]

Available at: http://www.openstack.org

[Accessed December 2017]

[26] Sistla, K. V., Rowland, M., Varma, A., Steiner, I. M., Bace, M.,
Borkowski, D., Garg, V., Akturan, C. & Ananthakrishnan, A. N.,
Dynamically Modifying a Power/Performance Tradeoff Based on
Processor Utilization, U.S. Patent US9760409B2, issued 12 September,
2017

ACKNOWLEDGEMENT:

This paper is a result of the SCOTT project (www.scott-
project.eu) which has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422. This Joint
Undertaking receives support from the European Union’s
Horizon 2020 research and innovation programme and
Austria, Spain, Finland, Ireland, Sweden, Germany, Poland,
Portugal, Netherlands, Belgium, Norway.

