
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards a standardized identity federation for
Internet of Things in 5G Networks

Bernardo Santos
OsloMet – Oslo Metropolitan

University
Oslo, Norway

bersan@oslomet.no

Van Thuan Do
Wolffia AS

Fornebu, Norway
vt.do@wolffia.no

Boning Feng
OsloMet – Oslo Metropolitan

University
Oslo, Norway

boning.feng@oslomet.no

Thanh van Do
Telenor Research & OsloMet

– Oslo Metropolitan
University

Fornebu, Norway
thanh-van.do@telenor.com

Abstract—With the upcoming introduction of 5G networks

for our daily usage and convenience and with the purpose of
accommodating a countless amount of Internet of Things (IoT)
devices and applications alongside the billion devices that already
use the network (e.g. mobile phones), one of the key aspects for its
success is to ensure to these upcoming devices enhanced but
affordable security. With this paper, we present a solution that
introduces an Identity Federation mechanism that reuses the SIM
authentication for cellular IoT devices, enabling single sign-on
features. This solution aims to relieve the responsibility of IoT
providers for developing (proprietary) device identity
management mechanisms while allowing to reduce operation
costs overall.

Keywords—mobile identity management, cross layer identity
federation, mobile network security, IoT security, cyber security,
cross layer security

I. INTRODUCTION

The term Internet of Things (IoT) was coined by Kevin
Ashton of Procter & Gamble and later on in MIT’s Auto-ID
Center in 1999, however only in past few years the term has
become widely used since its growth is at an incredible rate
with both the number and variety of devices connected to the
Internet are increasing at a very accelerating pace. To meet
these devices’ demands, the mobile industry applies
tremendous effort towards the application of IoT technologies
such as Extended Coverage GSM for Internet of Things (EC-
GSM-IoT), Long Term Evolution Machine Type
Communications Category M1 (LTE MTC Cat M1, also
referred to as LTE-M) and Narrowband IoT (NB-IoT) [1],
which provides ubiquitous and mobile connectivity to low cost
and low power devices while improving both outdoor and
indoor penetration coverage.

To ensure the success of the usage of IoT devices in the
network, it is not only sufficient to provide efficient and low-
cost connections, but also, it is necessary to be able to provide
secure connectivity which is realized through strong
authentication and encryption using the Subscriber Identity
Module (SIM) card [2][3]. Unfortunately, the mentioned
security mechanism is limited only towards the authentication,
access control and encryption in the mobile network, since the

exchanged messages are delivered to the IoT platform in clear
text by the network.

In order to avoid this predicament, that means, to prevent
the lack of security during the message exchange and to have
adequate protection in the IoT platform overall, the platform
must have its own encryption scheme as well the provisioning
of authentication and access control mechanisms just as the
SIM provides albeit it can be technic and economically
challenging. To be able to overcome this limitation, leading to
the purpose of this paper, is to introduce a cross layered
Identity Federation, which offers single sign-on mechanisms
and confidential/private access to the network to the IoT
vertical sectors (e.g. health, transport, logistics, among others)
using SIM authentication. This solution is developed within the
scope of the H2020 SCOTT project [4] which is aiming at
building trust in the Internet of Things.

This paper starts with a brief review of related work
relevant for the background of this proposal, where within a
review of identity management and its current standards is
made. A brief description of the state-of-the-art on cellular IoT
identity and access management is given, leading to our
proposed solution with a usage scenario explained. It concludes
with upcoming steps on our behalf as well as some suggestions
for further works.

II. RELATED WORK

A. SIM Authentication
Even today, the usage of a SIM for authentication and

access control in the mobile network has proven to be both
affordable and trustable as a security measure, considering that
there are several initiatives that want to extend its feasibility
towards applications that connect with the Internet (browsing,
e-mail, social networks, among others). For that purpose, the
Generic Bootstrapping Architecture (GBA) [5][6] standard was
introduced, specified by the 3rd Generation Partnership Project
(3GPP), in which introduces a new element to the network –
Bootstrapping Server Function (BSF) - responsible to retrieve
an authentication vector from the Home Subscriber Server
(HSS) and carrying out a mutual authentication of the mobile
phone also known as User Equipment (UE). The BSF also

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

provides to a mobile Internet application, also known as a
Network Application Function (NAF), an encryption key,
𝐾"_$%& , for the session between itself and the UE. Although it
fulfills the mentioned purpose, this solution is hindered by the
demand of a GBA client in every mobile phone, and there is no
incentive for Original Equipment Manufacturers (OEM) to
implement it. To avoid this, the Eureka Mobicome project
proposed some solutions regarding SIM strong authentication,
in which strong authentication is provided from a regular
browser to a mobile phone that carries a SIM/USIM [7][8].

ETSI did promote the usage of the GBA in their Machine-
to-Machine (M2M) functional architecture [9], but despite its
feasibility, it does not address IoT devices, in which the
communication is done without the intervention of humans. So
as of now, there isn’t a comprehensive and flexible cellular IoT
identity and access management system, enabling the inclusion
of this type of device in the network with strong authentication
and confidential/private access.

B. Identitity Federation & Management
In order to allow an IoT application or any digital service to

use the network and its resources, the user must authenticate
itself towards the service/application respective provider.
Usually and nowadays, a set of user credentials (namely a user
name and a password) allow the user to prove its authenticity
towards set provider. However, the vastly increasing number of
available services and the necessity of increased security
obliged the user to make various different combinations with
strict rules causing a burden to remember it all, not to mention
that, for the service providers, it can also be an ordeal to ensure
the security towards all threats out there, leading to an
exhaustion of resources to address the matter.

To address this situation, so it can alleviate both users and
service providers, mechanisms called identity federations were
introduced, providing Single Sign-On (SSO) [10] solutions,
which allow to simplify the registration and login processes for
the user as well as reducing the costs for service providers
while handling with their Identity Management Systems
(IDmS).

1. OAuth 2.0

 OAuth 2.0 [11] is an identity federation standard that
allows the user to prove its authenticity towards a service
by resorting to familiar third-party clients (e.g. Google,
Facebook, among others), which means that is doesn’t act
as an Identity Provider (IdP) – notion first established by
the Liberty Alliance Project [12], as an actor that permits
the user and its accounts to authenticate itself towards a
service provider – but solely as an Authentication Server,
since it authenticates the user with its credentials from a
third-party client, providing an authorization token to the
application [13]. This mechanism ensures that a user will
remain authenticated towards a service/application without
going to the same sign-in/login process until the token is
either revoked or expired.

2. OpenID Connect

 The OpenID Connect [14] standard comes not only as
an extension to OAuth for the authorization framework, but
also goes one step further by offering SSO and identity
provision mechanism on the internet. Nowadays, it is the
most used solution even by popular identity providers such
as Google, Facebook, among others, as well as mobile
operators in their Mobile Connect solution, which provides
a secure log-in mechanism for mobile phones. It is worth
mentioning that it doesn’t use identity federation but
promotes the usage of the identity provider towards the
service provider.

 It is specified by a RESTful HTTP API and uses
JSON as a data format with the purpose of enabling client
applications to verify a user’s identity due to the
authentication process provided by an OpenID Provider
and, at the end, such identity is given to the applications in
an encoded JSON web token (JWT) known as ID Token.

 As for its authorization flow, the service provider,
hereby known as Relying Party (RP) initiates the process
by redirecting the user to the OpenID Provider (OP) to
access its identity, providing an open id value for each
scope that it is requested. To ensure this, the provider will
check if there is an active session, but in the case that there
isn’t, it will prompt the user for its consent to use its
identity through the RP. Once allowed, an authorization
code is provided, being stored for future utilizations,
keeping in mind that the provided code will only sense once
checked by the OP server and the RP can’t use it on its
own.

III. STATE OF THE ART
It is possible to consider the co-existing but independent

behaviors and components an IoT has device in the network,
mainly in the Network and the Application layers, as shown in
Figure 1.

Fig. 1. Current Authentication and Access Control for IoT devices -
Architecture

A. Network Layer

In the network, an IoT device can be identified by its
International Mobile Equipment Identity (IMEI), the identity
of the device, and the International Mobile Subscriber Identity
(IMSI), that is associated to a SIM card, allowing a subscriber
to have a unique identity. Upon power up, a mutual agreement
process, using the Authentication and Key Agreement (AKA)
[15] protocol, between the device and the network’s Home
Subscriber System (HSS) occurs and, once it is completed
successfully, the device is allowed to be connected to the
network and access its subscribed services. Also, to ensure the
connection’s integrity and confidentiality, encryption is applied
in the radio access link using the cypher key that was
exchanged during the authentication process and since it is a
data connection, the Packet Data Protocol (PDP) is allocated
that includes the mobile device’s IP address.

B. Application Layer

After the network connection is established,
communications through the application layer between an IoT
device and an IoT platform can now occur. To prevent
malicious attacks in these communications, authentication must
be made between those two entities, as well as the usage of
end-to-end encryption is recommended to ensure
confidentiality. The device has a unique identity, 𝐼𝑜𝑇*+,_-. ,
solely recognizable by the IoT platform, which must be
equipped with a suitable IdMS capable of performing strong
authentication functions.

 Alas, in order to satisfy these requirements, mobile
operators would be obliged to make several and expensive
investments towards their infrastructure, as well as hire expert
technicians from the IoT provider to ensure support to the
platform and the implemented management system. In order to
alleviate this, the following proposal was conceived, which will
be described in more detail.

IV. PROPOSED SOLUTION

For our solution, we introduce a new entity in the network –
Identity Provider (IdP) – whose mission is to bridge the gap
between the Application and Network layers towards enabling

a SSO mechanism for IoT devices. A Subscriber Information
Retrieval Application Programming Interface (SIR API) is
implemented on the HSS, whose interface is the standard
Diameter-based S6m [16].

By establishing our own IdP, we are able to define which
parameters or scopes shall constitute a user’s identity in the
network, i.e. an identity can be formed (through a set of key-
value pair entries) by providing basic information such as a
username and a password or it can become more complex when
details about the user are provided to strengthen it. Once the
user’s identity is defined, the IdMS will store this information
in a secure way, meaning that the system will have an
independent database which can also be considered as a
extension to the information stored at the network’s HSS. This
is where the SIR API will be applied since it has to prepare the
user’s identity, e.g. to gather the necessary data that the HSS
can interpret .

Upon successful response from the HSS – ensuring that the
SIM card used is in fact registered in the network - and
registration in the IdMS, the user can be considered registered
as well as the device he/she uses has become trustworthy. For
further utilizations of the network, due to the SSO mechanism
earlier mentioned, the authorization token that is generated
using the identity provided by the system will be automatically
renewed, providing a seamless experience, since the user does
not have to provide his/her credentials any longer unless a
logout, an expired session, a faulty operation or a blacklisted
device has occurred.

To illustrate the procedure that our solution intents to
provide, let us consider a small “smart home” IoT system
composed by three cameras, one smoke detector and three
contact sensors:

A. Configuration and Federation

Fig. 3. IoT Registration and Authentication example

Fig. 2. Proposed Solution for Authentication and Access Control for
IoT devices - Architecture

 As mentioned earlier, this IoT system has seven devices, so
it is necessary to acquire seven SIM cards - subscriptions -
from a mobile operator. Each device gets a card assigned which
contains an IMSI, in collusion with the its IMEI and an
identity that corresponds its location. With these data, the IoT
platform will carry out an identity federation so they are
recognized in the network and the platform.

B. Authentication and Authorization

When all the devices have the SIM cards inserted and get
properly installed at their location, the power is turned on,
which will initiate the registration process. At the network
layer, a mutual authentication process is carried out between
the SIM card of the IoT device and the mobile network’s
HSS. Upon successful authentication, the IoT device is
authorized to access the mobile network and it is granted with
a data connection.

To perform its registration, each device sends a registration

request to the security platform and gets redirected to the IdP.
Afterwards, the IdP performs a SIR request at the HSS and
receives the respective response, which contains information
about whether the UE is registered to any serving node. If that
is the case, the device has been successfully authenticated and
the IdP can redirect the device with an authorization code
back to the security platform, which will grant access in the
network, in which an encrypted channel can be established
between the device and the platform. In the case that the UE is
not registered to any serving server one must consider that an
anomaly has occurred, which could be an attack or simply a
fault situation. To prevent any further damage the IdP will end
the session with the device and send an error message to the
security platform. Further actions should be carried out to find
out what has happened to the device, mainly to verify if it was
compromised.

V. IMPLEMENTATION

 To test the feasibility of the proposed solution, a 4G Long
Term Evolution (LTE) network was constructed at the Secure
5G4IoT Laboratory at Oslo Metropolitan University using open
source software such as OpenAirInterface, developed by
EURECOM [17].

A. Used Components

1. eNodeB

To provide a eNodeB (eNB), we utilize a generic PC
running Kali Linux and OpenAirInterface connected to a
Universal Software Radio Peripheral (USRP) N200,
which software-defined and radios are designed and sold
by Ettus Research [18].

2. Evolved Packet Core

To provide an Evolved Packet Core (EPC), we utilize a
generic PC running Ubuntu and OpenAirInterface, which
includes a HSS and a SIR API.

3. Identity Provider

The Identity Provider is established by using a generic
PC running Ubuntu Server with Gluu Server 3.1.2 [19] – an
open source identity provider and management system as a
server software bundle.

4. IoT Platform

The IoT platform is provided by using a generic PC
running Ubuntu Server with Gluu Server 3.1.2 and also a
lightweight M2M open source server – Eclipse Leshan [20].

To simulate devices, due to lack of resources for the time

being, we use Android devices with applications that use the
AppAuth [21] Software Development Kit (SDK), as well as the
full client provided by Gluu – SuperGluu [22], but also Eclipse
Leshan clients. Since the developed work is still in an early
stage, these clients can provide sufficient conclusions.

B. Tests

Our testing scenario which provides a solid proof of concept

for the proposed solution and the beginning of further
development at this stage of our research and development,
consists of the following:

- Integration of the GluuServer in the mentioned

network;

- Simple User Registration and Login;

- Managing authorization requests and tokens
through the usage of the AppAuth library;

The integration of the server was ensured by fellow

members of the Secure 5G4IoT Laboratory at Oslo
Metropolitan University, where a firewall is established with
proper forwarding rules, making it only reachable through the
constructed network. The installation of the platform can be
done following the documented procedures. It is recommended
to have a dedicated computer for this server so there is no risk
of conflicting with similar processes of other services, such as
the Apache [24] project. Also, to ensure the minimum
requirements of a well-scaled system, it is recommended to
have a computer with a sizable amount of memory and storage.
It is also relevant to mention that for our scenario, as it will be
described later on, we have implemented native mobile
applications to act as clients so that we’re able to simulate the
scenario in which a user interacts with its mobile device for
various activities. This means that it is not recommended to use
self-signed certificates in the server, since it does not comply
with the standard practices of mobile application development
when dealing with client/server communications [25].

Due to the flexibility of configuration that GluuServer
provides, we are able to determine the definition of a user, i.e.
its identity – as mentioned earlier; access methods - in this
case, the definition of which applications/modules are allowed
to act as clients in order to make requests to the system, as
well as the types of authentication that can be used, such as
basic authentication, two factor authentication (2FA), among
others.

In our scenario, we’ve defined a user with the following
scopes: username, first name, last name and email, and for this
stage we have only considered basic authentication, so a user
has to define a minimum eight characters password in order to
authenticate itself in the system, but strong authentication
methods will be used as we continue to develop our work.
Following the premise of the mentioned network – a 5th
generation cellular network, targeted for mobile and IoT
devices, it made sense that one of the clients to be first
considered was a native mobile application. With that, a
simple Android app that uses the AppAuth library was used
(and our own implementation is in the works), so that we can
emulate the common scenario, in which a user, once
confronted with an authentication process, whether it is a first
time on a specific device or a first time usage which implies a
registration in the system – to be issued with an identity by our
IdP - or a further use of an already registered and
authenticated device, the user can use its mobile device to
verify the procedure.

In order to make this mobile application to be able to act as

a client for our server, there is an initial configuration that
needs to be done – mainly this is due to the fact that the
application needs to obtain the discovery configuration of the
server [26], which means it needs to know the location (in the
network) of our IdP. With this configuration, we are now able
to request authorization to access a certain service that exists
in the network. Relying the identity to such services is under
the scope of our future work.

The server must also be aware of the existence of this client.

Even if the configuration above described is fully deployed,
the server must issue a client id in order to make it trustworthy
and be allowed to make requests. To do so, it is necessary to
create a client entry of the server and configure it for our
needs, such as define our own personalized authentication
page, target application and most importantly the
authentication flow that the client will use. It is also necessary
to provide a Unified Resource Locator (URL) that allows to
redirect the response from the server to the client. In this case
the URL to use is what is commonly known as the App
Identifier. At the end, these steps will determine all the
necessary links between the parties involved in this
authentication process. This configuration is not restricted to a
user, but to a client which in this case is the mobile
application. So, regardless of the number of the users that will
use the network, the client (mobile application) needs only this
unique configuration and can be deployed to multiple devices.

Once this client/server configuration is handled, which is

recommended to do simultaneously to ensure that all
parameters are linked between the parties, we are able to test
this communication. At this stage, the user registration has
handled separately, which means that it wasn’t contemplated
in this version of the app application, so a mobile browser was
used to do so. GluuServer provides well defined endpoints for
these procedures, such as:

- Register User URL: https://{idp-

hostname}/identity/register

- Login User URL: https://{idp-
hostname}/identity/login

In our version of the application we will allow both

procedures to be handled in a more native format, but it is
important to mention that the existence of this application is
more a commodity for the user than an actual necessity, since
the user can handle all these cases (registration, login,
authentication/authorization) using solely the mobile browser.

Having a registered user, we are now able to test the app by

making a request to the IdMS in order to authorize the usage
of this new device and linking the user profile to it. Thus, the
authorization flow initiates. The user will be redirected
through the app to the server where it is asked to give is
consent of the usage of his identity in order to deem the device
trustworthy, allowing to use the network and its services.

Fig. 4. AppAuth Application with authorization token obtained

In the Fig. 4 we have an example of a success use case in
which a user requests authorization in the network by using its
identity that was created in our IdP. As mentioned in II. and as
it is perceived in the figure, the outcome of the authentication
is an authorization token. In the app that we used, since we are
in still in development stage, we see the content of the token as
plaintext, but in a real scenario this information is not
accessible and/or perceivable by the user at any point, in order
to prevent inappropriate usage of such sensitive data.

VI. FUTURE WORK

As mentioned before, the proposed solution is in an early

stage of implementation and, although it already shows promise
as shown by provided scenario, more tests will be needed in
order to be prepared for all kinds of scenarios. Also, those tests
most consider real IoT devices in order to further study their
behavior in the network, since considering their purpose - there
is no need for an always-on connection, but once the device has
data to provide to the platform, the exchange of data has to
occur seamlessly, since the SSO mechanism is active and the
device is recognized by the network and its services. Another
field of work to consider is the design and implementation of a
cross layer security solution aiming towards improving
security of IoT systems by combining security measures
deployed at both the mobile network layer and the IoT
application layer.

VII. CONCLUSION

In this paper, an Identity Federation solution that allows the

reuse of the SIM authentication carried out on the network
layer for IoT applications and hence providing single sign on
is presented. The proposed solution is proven to be feasible by
making use of state-of-the-art open source software such as
OpenAirInterface, OpenID Connect and Eclipse IoT [23].
With the proposed solution, IoT security will be enhanced
while operational costs will be considerably reduced. The
solution will pave the way for support of billions of IoT
devices and application with the coming 5G mobile networks.

ACKNOWLEDGMENT

This paper is a result of the SCOTT project (www.scott-
project.eu) which has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422. This Joint
undertaking receives support from the European Union’s
Horizon 2020 research and innovation program and several
countries such as Austria, Spain, Finland, Ireland, Sweden,
Germany, Poland, Portugal, Netherlands, Belgium and
Norway.

REFERENCES

[1] GSMA: 3GPP Low Power Wide Area Technologies: White paper 2.0,

2017
[2] 3GPP: TS 11.11 Specification of the Subscriber Identity Module -

Mobile Equipment (SIM-ME) Interface, ver 8.14.0, 12-06-2007
[3] 3GPP: TS 31.102 Characteristics of the Universal Subscriber Identity

Module (USIM) application ver 16-06-2017
[4] SCOTT: Secure Connected Trustable Things- https://scottproject.eu
[5] 3rd Generation Partnership Project: 3GPP TS 33.220 V8.2.0 (2007-12)

Technical Specification Group Services and System Aspects; Generic
Authentication Architecture (GAA) Generic bootstrapping architecture
(Release 8)

[6] Timo Olkkonen: Generic Authentication Architecture, Helsinki
University of Technology -
http://www.tml.tkk.fi/Publications/C/22/papers/Olkkonen_final.pdf

[7] Do Van Thanh, Tore Jønvik, Do Van Thuan & Ivar Jørstad: Enhancing
Internet service security using GSM SIM authentication, Proceedings of
the IEEE Globecom2006 conference – ISBN 1-4244-0357-X – San
Francisco, USA, Nov 27 - Dec 1, 2006

[8] Do van Thanh, Tore Jønvik, Boning Feng, Do van Thuan & Ivar Jørstad:
Simple Strong Authentication for Internet Applications using mobile
phones, Proceedings of IEEE Global Communications Conference
(IEEE GLOBECOM 2008), ISBN 978-1-4244-2324-8, New Orleans,
LA, USA, Nov 30 – Dec 4, 2008

[9] ETSI: TS 102 921 Machine-to-Machine communications (M2M); mIa,
dIa and mId interfaces, V2.1.1 (2013-12)

[10] Telektronikk 3/4 2007: Identity Management – Guest Editorial Do van
Thanh – ISSN 0085-7130 - https://www.telenor.com/wp-
content/uploads/2012/05/T07_3-4.pdf

[11] IETF Request for Comments: 6749: The OAuth 2.0 Authorization
Framework, October 2012

[12] Liberty Alliance: ID-FF Architecture Overview – vers. 1.2-errata-v1.0.
[13] Anicas Mitchell: An Introduction to OAuth 2, posted Jul 21, 2014 -

https://www.digitalocean.com/community/tutorials/an-introduction-to-
oauth-2

[14] OpenID Connect: http://openid.net/connect/
[15] ETSI: TS 133 102 v3.6.0 (2000-10) Universal Mobile

Telecommunications System (UMTS); 3G Security; Security
Architecture

[16] 3GPP: TS 29.336 V15.0.0 (2017-09) Technical Specification 3rd
Generation Partnership Project; Technical Specification Group Core
Network and Terminals; Home Subscriber Server (HSS) diameter
interfaces for interworking with packet data networks and applications
(Release 15)

[17] The OpenAirInterfaceTM Software Alliance (OSA)
http://www.openairinterface.org/

[18] Ettus Research: https://www.ettus.com/
[19] Gluu Server: https://www.gluu.org/
[20] Eclipse Leshan: https://eclipse.org/leshan/
[21] AppAuth: https://appauth.io/
[22] Super Gluu: https://super.gluu.org/
[23] Open Source for IoT: https://iot.eclipse.org/
[24] Apache: https://httpd.apache.org/
[25] Android – Security with HTTPS and SSL:

https://developer.android.com/training/articles/security-
ssl.html#SelfSigned

[25] Open ID Connect Discovery : http://openid.net/specs/openid-connect-
discovery-1_0-21.html

