
Smooth estimates of multiple quantiles in
dynamically varying data streams

Abstract In this paper, we investigate the problem of estimating multiple 
quantiles when samples are received online (data stream). We assume a dy-
namical system, i.e. the distribution of the samples from the data stream 
changes with time. A major challenge of using incremental quantile estimators 
to track multiple quantiles is that we are not guaranteed that the monotone 
property of quantiles will be satisfied, i.e, an estimate of a lower quantile might 
erroneously overpass that of a higher quantile estimate.

Surprisingly, we have only found two papers in the literature that attempt 
to counter these challenges, namely the works of Cao et al. [3] and Hammer 
and Yazidi [7] where the latter is a preliminary version of the work in this 
paper. Furthermore, the state-of-the-art incremental quantile estimator called 
Deterministic Update based Multiplicative Incremental Quantile Estimator 
(DUMIQE), due to Yazidi and Hammer [16], fails to guarantee the monotone 
property when estimating multiple quantiles.

A challenge with the solutions in [3] and [7], is that even though the esti-
mates satisfy the monotone property of quantiles, the estimates can be highly 
irregular relative to each other which usually is unrealistic from a practical 
point of view. In this paper we suggest to generate the quantile estimates 
by inserting the quantile probabilities (e.g. 0.1, 0.2, . . . , 0.9) into a monotoni-
cally increasing and infinitely smooth function (can be differentiated infinitely 
many times). The function is incrementally updated from the data stream. The 
monotonicity and smoothness of the function ensure that both the monotone 
property and regularity requirement of the quantile estimates are satisfied.

The experimental results show that the method perform very well and 
estimate multiple quantiles more precisely than the original DUMIQE [16] 
and the approaches reported in [7] and [3].
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The final authenticated version is available online at: http://dx.doi.org/10.1007/s10044-019-00794-3.



2

Keywords Dynamically changing data stream · Incremental estimator ·
Multiple quantiles · Smooth quantile estimates

1 Introduction

Suppose that data samples from a probability distribution are arriving sequen-
tially (data stream) and we are interested in estimating a quantile related to
some probability q. The most natural estimator is to use the q quantile of
the sample distribution. Unfortunately, such quantile estimators has a clear
disadvantage as computation time and memory requirement are linear to the
number of samples received from the data stream. Such methods thus are in-
feasible for large data streams. Several algorithms have been proposed to deal
with those challenges. Most of the methods fall in to the category of what
can be called histogram based methods. The methods are based on efficiently
maintaining a histogram estimate of the data stream distribution such that
small storage footprint is required. A representative work in this perspective
is due to Schmeiser and Deutsch [12]. In fact, they proposed to use equidistant
bins where the boundaries are adjusted online. Arandjelovic et al. [1] resort
to a different idea than equidistant bins by attempting to maintain bins in a
manner that maximizes the entropy of the corresponding estimate of the his-
torical data distribution. Thus, the bin boundaries are adjusted in an online
manner.

Q-digest is probably among the most popular histogram based methods
for computing quantile in data stream [13]. Q-digest maintains a binary tree
where nodes in the tree store the frequency of the elements falling in the
range specified by the corresponding subtree. Values whose counter is small are
pushed up in the tree, and thus, Q-digest obtains an acceptable precision for
high frequency values. In [15], Tschumitschew and Klawonn propose a so-called
incremental quantile estimator based on the idea of maintaining an interval
of m values around the target quantile and two counters: L and R where L
points should fall on the left of the interval and R to the right of the interval.
The authors suggest to balance the counters so that qR is approximately equal
to (1 − q)L. The major disadvantage of the approach is the need of change
detection mechanism to deal with changes in the distribution. Furthermore,
the algorithm is not incremental in contrast to DUMIQE and thus is more
computationally involved. Jain and Chlamtac [8] are able to estimate a given
single quantile by maintaining a set of target points using equi-width and equi-
depth histograms from the data distribution and then dynamically updating
their positions using quadratic interpolation.

For a thorough review and comparison of state-of-the-art histogram and
batch methods, we refer the reader to [9] and references therein. It is worth
mentioning that histogram methods, in fact, use less information from the past
than incremental quantile estimators. The histograms only record in which bin
a received sample should be assigned. This is particularly critical if the data
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stream distribution changes with time. The optimal sliding window (in which
the histogram is computed from) may then be short (few observations) and
the resulting optimal histogram will consist of wide bins and a lot of informa-
tion from each received sample is lost when converting the observations to a
histogram. Naturally, again estimating quantiles from such a histogram will be
poor and biased. In comparison, incremental quantile estimators estimate the
needed quantiles directly without going the detour over sliding windows and
histograms. Another fundamental challenge with histogram methods is how
to maintain the bins. It is challenging to decide on the suitable width of the
bins relative to the dynamics of the data stream. Further, if the data stream
distribution changes, observations may fall outside the current bins and new
bins must be created and other bins removed which substantially complicates
the algorithms. Similar to the sliding window approach, histogram methods
are more memory and computationally demanding than incremental quantile
estimators since they are based on an underlying sliding window observations
that need to be stored in the memory.

Another ally of methods are so called incremental update methods. The
latter methods are based on performing small updates of the quantile esti-
mate every time a new sample is received from the data stream. One of the
first and prominent examples of this family of methods is the algorithm of
Tierney (1983) [14] which is based on the stochastic learning theory. A few
modifications of the Tierney method have been suggested, see e.g. [6, 2, 4, 5].

Nevertheless, a main shortcoming of Tierney based methods is the addi-
tional cost of building a local approximation of the distribution in the neigh-
borhood of the quantile. The Frugal type of algorithms have been proposed in
[10] which falls under the family of incremental quantile estimation method.
Nevertheless, Frugal [10] suffers from limited accuracy due mainly to two facts:
discretized search space and randomized updates which further increase the
estimation error.

In [16], Yazidi and Hammer proposed DUMIQE which is an incremen-
tal quantile estimator and its randomized counter-part denoted by RUMIQE.
The appealing property of DUMIQE is that the quantile estimate is updated
by multiplying the current estimate with a suitable factor as seen in Equa-
tion (1) that is greater or less than 1 depending on wether the observation
is bigger or smaller than the estimate. Such a multiplicative estimator thus
will exponentially forget old sale estimates which is known to be the state-
of-the-art strategy for adaptation to dynamically varying data streams, e.g.
like the exponentially weighed average of observation are used to track data
stream expectations. The informed reader would observe that classical incre-
mental quantile estimators possess additive update form which means that
the quantile estimate is updated by adding a positive quantity or a negative
quantity according to wether the observation is bigger or smaller than the
estimate. Through comprehensive simulation results, DUMIQE was shown to
outperform other legacy quantile estimators including Frugal [10].

In data stream applications, a common situation is that the data stream
distribution varies with time, referred to as a dynamical systems. Unfortu-
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nately, histogram based methods, as referred to above, usually perform poorly
in estimating quantiles in such systems and we are left with incremental meth-
ods as typically the only viable lightweight alternatives [3].

From a practical point of view it is often useful to estimate many quantiles
of the dynamic data stream. A simple approach is to estimate the different
quantiles independently of each other by running incremental estimators in
parallel, one for each quantile to be estimated. Unfortunately, all incremental
quantile update methods without any exception [6, 2, 4, 5, 10] face serious
challenges when estimating multiple quantiles. The methods are not able to
preserve the monotone property of quantiles, e.g. the estimate of the 50%
quantile might overpass the estimate of the 70% quantile. The reason is the
limited and local information that is used in the update, namely, current esti-
mate and the last observation. The informed reader can notice that monotone
violation is not an issue in the case of histogram based methods [11] as the
quantile estimator share the same global knowledge, namely, the access to the
histogram. In this paper we investigate the problem of estimating multiple
quantiles from a dynamically changing data stream. The work on this topic is
extremely sparse. To the best of our knowledge, Cao et al. [3] and the prelimi-
nary version of this paper [7] are the only solution found in the literature that
propose a viable method to this problem. The work of Cao et al. [3] resorts to
the idea of interpolation in order to avoid violation of the monotone property.
Nevertheless, the approach of Cao et al. inherits the same disadvantages of
Tierney method, namely, the need to build an approximation of the density in
the neighborhood of the quantile. In [7], Hammer and Yazidi suggest to sort
the quantiles or adjust the incremental step length if the monotone property is
violated. A disadvantage with these methods is that, even though the methods
will satisfy the monotone property of quantiles, the estimates will be highly
irregular relative to each others which is unrealistic for most data stream dis-
tributions. In this paper, we suggest to estimate a monotonically increasing
and infinitely smooth function (can be differentiated infinitely many times)
and generate the quantile estimates as outputs of this function resulting in
smooth, or regular, estimates relative to each others.

2 Estimation of multiple quantiles

Let Xn denote a stochastic variable representing the possible outcomes from a
data stream at time n and let xn denote a random sample of Xn. We assume
that Xn is distributed according to some distribution fn(x) that varies dy-
namically with time n. Further let Qn(q) denote the quantile associated with
probability q, i.e P (Xn ≤ Qn(q)) = FXn

(Qn(q)) = q.

In this paper we focus on simultaneously estimating the quantiles for K
different probabilities q1, q2, . . . , qK at each time step. We assume an increasing
order of the probabilities, i.e. q1 < q2 < · · · < qK . The straight forward
approach to estimate the quantiles would be to simply compute the DUMIQE
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[16] (or some other online estimation procedure) for every probability

Q̂n+1(qk)← (1 + λqk)Q̂n(qk) if Q̂n(qk) < xn

Q̂n+1(qk)← (1− λ(1− qk))Q̂n(qk) if Q̂n(qk) ≥ xn
(1)

for k = 1, 2, . . . ,K. Unfortunately, this may lead to a violation of the monotone
property of quantiles, i.e. we may not satisfy

Q̂n+1(q1) ≤ Q̂n+1(q2) ≤ . . . ≤ Q̂n+1(qK) (2)

This can be explained as follows. Assume at time n that the monotone property
is satisfied and that the sample xn is between Q̂n(qk) and Q̂n(qk+1), i.e.

Q̂n(q1) ≤ · · · ≤ Q̂n(qk) < xn < Q̂n(qk+1) ≤ · · · ≤ Q̂n(qK) (3)

Then according to (1) the estimates are updated as follows

Q̂n+1(qj)← (1 + λqj)Q̂n(qj) for j = 1, 2, . . . , k

Q̂n+1(qj)← (1− λ(1− qj))Q̂n(qj) for j = k + 1, . . . ,K
(4)

which means that the estimates are increased for the quantiles with an esti-
mate below xn and decreased for the estimates above xn. Consequently the
monotone property might be violated. Next we present the two approaches
suggested in [7], namely sorting the quantiles and adjusting the incremental
step length.

2.1 Sorting the quantiles

Every time we receive a new sample xn, the procedure consisted of the three
following steps:

1. Update the quantile estimates according to (1) and get the estimates

Q̂n+1(qk), k = 1, 2, . . . ,K

2. Sort the updated estimates and denote them Q̃n+1(qk), k = 1, 2, . . . ,K.
The estimates after sorting naturally will satisfy the monotone property.

3. Here we have two alternatives. Next time we received a sample (xn+1), we
updated according to Equation (1) using

(a) the estimates from before the sorting, i.e. Q̂n+1(qk), k = 1, 2, . . . ,K

(b) or the estimates after the sorting, i.e. Q̃n+1(qk), k = 1, 2, . . . ,K

Alternative (a) means that we do not feed the information from the sorting
back in to the estimation process, while in (b) we do. Using alternative (a)
means that we only used sorting to “repair” the estimates from the original
estimation process based on Equation (1).
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2.2 Reduce the value of λ

The next strategy was based on reducing the value of λ in a given iteration if
the updates resulted in monotone property violation. Assume that we were in
the situation where the sample xn got a value between Q̂n(qk) and Q̂n(qk+1)
as given by (3). The first observation is that after the update, the monotone
property always will be satisfied on each side of xn, i.e.

Q̂n+1(q1) ≤ Q̂n+1(q2) ≤ · · · ≤ Q̂n+1(qk) and

Q̂n+1(qk+1) ≤ Q̂n+1(qk+2) ≤ · · · ≤ Q̂n+1(qK)

This follows from Equation (4). Therefore a sufficient criterion to satisfy the
monotone property was to make sure to use a sufficiently small λ such that
Q̂n+1(qk) ≤ Q̂n+1(qk+1). We were able to find such a λ, denoted λ̃, by making

sure that the distance between Q̂n+1(qk) and Q̂n+1(qk+1) was some portion,
α, of the distance from the previous iteration, i.e.

Q̂n+1(qk+1)− Q̂n+1(qk) = α
(
Q̂n(qk+1)− Q̂n(qk)

)
(1− λ̃(1− qk+1))Q̂n(qk+1)− (1 + λ̃qk)Q̂n(qk) = α

(
Q̂n(qk+1)− Q̂n(qk)

)
(5)

with α ∈ [0, 1). By solving (5) with respect to λ̃ we got

λ̃ = (1− α)
Q̂n(qk+1)− Q̂n(qk)

(1− qk+1)Q̂n(qk+1) + qkQ̂n(qk)

= (1− α)H
(
Q̂n(qk), Q̂n(qk+1)

) (6)
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We substituted λ with λ̃ in (1) if using the originally chosen λ resulted in a
monotone property violation. We then get the following updates

Q̂n+1(qk)← (1 + λqk)Q̂n(qk) if Q̂n(qk) < xn ∩ Q̂n(qk+1) < xn (7)

Q̂n+1(qk)← (1 + λqk)Q̂n(qk)

if Q̂n(qk) < xn ∩ Q̂n(qk+1) ≥ xn ∩ λ < H
(
Q̂n(qk), Q̂n(qk+1)

) (8)

Q̂n+1(qk)←
(

1 + (1− α)H
(
Q̂n(qk), Q̂n(qk+1)

)
qk

)
Q̂n(qk)

if Q̂n(qk) < xn ∩ Q̂n(qk+1) ≥ xn ∩ λ > H
(
Q̂n(qk), Q̂n(qk+1)

) (9)

Q̂n+1(qk)← (1− λ(1− qk))Q̂n(qk) if Q̂n(qk) ≥ xn ∩ Q̂n(qk−1) ≥ xn (10)

Q̂n+1(qk)← (1− λ(1− qk))Q̂n(qk)

if Q̂n(qk) ≥ xn ∩ Q̂n(qk−1) < xn ∩ λ < H
(
Q̂n(qk−1), Q̂n(qk)

)
(11)

Q̂n+1(qk)←
(

1− (1− α)H
(
Q̂n(qk−1), Q̂n(qk)

)
(1− qk)

)
Q̂n(qk)

if Q̂n(qk) ≥ xn ∩ Q̂n(qk−1) < xn ∩ λ > H
(
Q̂n(qk−1), Q̂n(qk)

)
(12)

for k = 2, . . . ,K − 1. The special cases for k = 1 and k = K are shown
below. Equation (7) shows the case when xn takes a value above Q̂n(qk+1)
and therefore there is no risk of monotone property violation. The update
therefore is as in Equation (1). Equation (8) shows the case when xn takes

a value between Q̂n(qk) and Q̂n(qk+1) and it is a potential risk of violating

the monotone property. But since λ < H
(
Q̂n(qk), Q̂n(qk+1)

)
we do not get

a monotone property violation using λ and thus also this update is as in
(1). Equation (9) shows the case when xn takes a value between Q̂n(qk) and

Q̂n(qk+1) and λ > H
(
Q̂n(qk), Q̂n(qk+1)

)
which results in a monotone property

violation using λ and the update uses λ̃ from Equation (6) instead of λ in this
update. Equations (10) to (12) show the similar updates when xn takes a value

below Q̂n(qk).

For the smallest and largest quantile estimates, we only got potential mono-
tone violations upwards and downwards, respectively resulting in the following
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updates

Q̂n+1(q1)← (1 + λq1)Q̂n(q1) if Q̂n(q1) < xn ∩ Q̂n(q2) < xn (13)

Q̂n+1(q1)← (1 + λq1)Q̂n(q1)

if Q̂n(q1) < xn ∩ Q̂n(q2) ≥ xn ∩ λ < H
(
Q̂n(q1), Q̂n(q2)

) (14)

Q̂n+1(q1)←
(

1 + (1− α)H
(
Q̂n(q1), Q̂n(q2)

)
q1

)
Q̂n(q1)

if Q̂n(q1) < xn ∩ Q̂n(q2) ≥ xn ∩ λ > H
(
Q̂n(q1), Q̂n(q2)

) (15)

Q̂n+1(q1)← (1− λ(1− q1))Q̂n(q1) if Q̂n(q1) ≥ xn (16)

and

Q̂n+1(qK)← (1 + λqK)Q̂n(qK) if Q̂n(qK) < xn (17)

Q̂n+1(qK)← (1− λ(1− qK))Q̂n(qK) if Q̂n(qK) ≥ xn ∩ Q̂n(qK−1) ≥ xn (18)

Q̂n+1(qK)← (1− λ(1− qK))Q̂n(qK)

if Q̂n(qK) ≥ xn ∩ Q̂n(qK−1) < xn ∩ λ < H
(
Q̂n(qK−1), Q̂n(qK)

) (19)

Q̂n+1(qK)←
(

1− (1− α)H
(
Q̂n(qK−1), Q̂n(qK)

)
(1− qK)

)
Q̂n(qK)

if Q̂n(qK) ≥ xn ∩ Q̂n(qK−1) < xn ∩ λ > H
(
Q̂n(qK−1), Q̂n(qK)

) (20)

By estimating the quantiles using the rules in (7) − (20), we ensured that the
monotone property in (2) was satisfied in every iteration n = 1, 2, 3, . . ..

2.3 Distributional assumption

As described in the introduction, the only incremental approaches to simulta-
neously track multiple quantiles are the two approaches described above and
the approach due to Cao et al. [3]. A challenge with all the these approaches
is that even though they satisfy the monotone property of quantiles, they do
not ensure that the estimates are smooth, or regular, relative to each others.
In this section, we suggest a novel approach that both satisfies the monotone
property of quantiles and the smoothness/regularity of the estimates relative
to each other.

Assume that fn(x) is a parametric distribution such that the dynamic vari-
ations over time is determined by some parameter θn, i.e. fn(x) = f(x; θn).
Further let F (x; θn) denote the cumulative distribution, i.e. F (x; θn) = P (Xn ≤



Smooth estimates of multiple quantiles in dynamically varying data streams 9

x). Due to the properties of quantiles we have that F (Qn(q); θn) = q which
means that

F
(
Q̂n(qk); θn

)
≈ qk, k = 1, 2, . . . ,K

and

Q̂n(qk) ≈ F−1 (qk; θn) , k = 1, 2, . . . ,K

We can now estimate the unknown parameters of the distribution to get a
good fit to the estimates in the current iteration, e.g. using least squares

θ̃n = arg min
θn

{
K∑
k=1

(
Q̂n(qk)− F−1 (qk; θn)

)2}
(21)

Finally we can update the estimates Q̂n(qk) with output from the inverse
cumulative distribution

Q̃n(qk) = F−1(qk; θ̃n) (22)

where Q̃n(qk) denote updated estimate of the estimate Q̂n(qk). The appeal-
ing part of this procedure is that since F−1(q; θ) is a monotonically increas-
ing function in q for every θ, we are guaranteed that the updated estimates
Q̃n(q1), Q̃n(q2), . . . , Q̃n(qK) satisfy the monotone property. In addition, if F−1(q; θ)

is smooth as a function of q, the quantile estimates Q̃n(q1), Q̃n(q2), . . . , Q̃n(qK)
will be smooth, or regular, relative to each others.

An example for the normal distribution is as follows. Let Φ(·) denote the cu-
mulative distribution function for the standard normal distribution. Assuming
that Xn is normally distributed with expectation µn and standard deviation
σn, it is well known that

Φ

(
Qn(q)− µn

σn

)
= q

and therefore that

Φ

(
Q̂n(qk)− µn

σn

)
≈ qk, k = 1, 2, . . . ,K

Solving with respect to Q̂n(qk) we get

Q̂n(qk) = µn + σnΦ
−1(qk), k = 1, 2, . . . ,K

which is in fact a simple linear regression problem with unknown parameters
µn and σn (with the constraint that σn > 0). The least squares estimates of
µn and σn (Equation (21) can be computed analytically in O(K) time which
is of the same order as initially updating the quantiles when a new sample
arrives.

The procedure is then as follows.

For(n = 1,2,3,. . . )
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1. After receiving xn, update the quantile estimates using (1) to get Q̂n+1(qk), k =
1, 2, . . . ,K.

2. Estimate θ̃n+1 using (21).

3. Compute Q̃n+1(qk), k = 1, 2, . . . ,K using (22) to satisfy the monotone
property.

4. Similar to step 3. of the sorting approach in Section 2.1, this approach can
be run in two different ways as well. We can continue to next iteration using
Q̂n+1(qk), k = 1, 2, . . . ,K or using the updated quantiles Q̃n+1(qk), k =
1, 2, . . . ,K.

3 Experiments

We evaluate the suggested method for both synthetic and real-life data exam-
ples.

3.1 Synthetic data experiments

It is possible to prove that the DUMIQE approach in (1) converges to the true
quantiles [16]. For the suggested method in this paper (Section 2.3), we know

that if we use Q̂n(qk), k = 1, 2, . . . ,K as input to the next iteration, the under-
lying quantile estimates will converge to the true quantiles. Intuitively it makes
sense to use Q̃n(qk), k = 1, 2, . . . ,K as input to the next iteration, but makes
it intrinsically hard to formally prove convergence. Proofs of convergence are
hard (or impossible) for the methods in Cao et al. [3] and Hammer and Yazidi
[7] as well. We thus resort to simulations to compare the performance of the
different approaches.

The experiments focus on the ability of the methods to track quantile
estimates when the distribution of the data stream changes with time. We
consider the two different cases were we assume that the data are outcomes
from a normal distribution or a χ2 distribution. For the normal distribution
case we assume that the expectation of the distribution varies with time

µn = a sin

(
2π

T
n

)
, n = 1, 2, 3, . . .

which is the sinus function with period T . Further, we assume that the stan-
dard deviation of the distribution does not vary with time but is equal to one.
For the χ2 distribution case we assume that the number of degrees of freedom
varies with time as follows:

νn = a sin

(
2π

T
n

)
+ b, n = 1, 2, 3, . . .

where b > a such that νn > 0 for all n. In the results below we used a = 2 and
b = 6.
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Figure 1 shows a small section of the estimation processes using DUMIQE
as given by (1) and the methods in Section 2. The light gray dots show the
samples from the data stream and is the same in all the four panels. The data
are generated from the normal distribution above with T = 800. The gray and
the black curves show estimates of the 0.4 and the 0.6 quantiles of the data,
respectively. The text bring = TRUE above the upper right panel, means that
we fed the sorted quantiles back into the estimation procedure. Similarly for
lower right panel, bring = TRUE means that the updated estimates Q̃n(qk)
were fed back in to the estimation procedure. We can observe that in the case
of DUMIQE, the monotone property is violated in several iterations (upper
left panel). For the other methods, the monotone property is, as expected,
satisfied in every iteration.

Assume the χ2 distribution case given above with T = 800. Figure 2 shows
quantile estimates for the probabilities q1 = 0.1, . . . , q9 = 0.9 for an arbitrary
iteration. In the figure (and the figures below), the abbreviations SORT, PREV
and GAUSS refer to the estimation approaches presented in Sections 2.1, 2.2
and 2.3, respectively. We see that the DUMIQE (gray dotted line) represent
the most irregular estimates. The slope of the curve changes dramatically as a
function of the quantile probabilities. The slope is even negative at some parts
showing that DUMIQE do not satisfy the monotone property of quantiles.
Further, we see that the methods suggested in this paper (blue curve) is far
smoother than the other approaches (gray curves) and thus give more realistic
estimates.

Now we turn to doing a thorough analysis of how well the proposed methods
in Section 2 estimate quantiles of data streams. We estimated quantiles of
both the normally and χ2 distributed data streams above using two different
periods, namely T = 800 (rapid variation) and T = 8000 (slow variation),
i.e. in total four different data streams. In addition, for each of the four data
streams we estimated quantiles that were centred around the median or in the
tail of the distribution, i.e. eight different cases. We chose the quantiles close
enough to get a fair amount of monotone property violations. Naturally, if we
chose the quantiles far from each other we rarely or never got any violations.
In more detail, we estimated the following quantiles for the different cases.

– For the normal distribution and the quantiles around the median, we es-
timated the quantiles related to the following probabilities qk = Φ(−0.8 +
0.2(k−1)), k = 1, 2, . . . , 9 where Φ(·) refers to the cumulative distribution
function of the standard normal distribution. Recall that in dynamical sys-
tems, as in these experiments, the value of a quantile related to a specific
probability varies with time.

– For the normal distribution and the quantiles in the tail of the distribution,
we use qk = Φ(0.8 + 0.2(k − 1)), k = 1, 2, . . . , 9.

– For the χ2 distribution and the quantiles around the median, we estimated
the quantiles related to the following probabilities qk = F (4.2 + 0.3(k −
1); ν = 6), k = 1, 2, . . . , 9 where F (·; ν) refers to the cumulative distribu-
tion function of the χ2 distribution with ν degrees of freedom.
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Fig. 1 Estimation processes using DUMIQE and the methods in Section 2. The light gray
dots show that samples from the distribution (the data stream) and the black and the gray
curves show estimates of the 0.4 and the 0.6 quantiles of the data, respectively.

– Finally, for the χ2 distribution and the quantiles in the tail of the distri-
bution, we estimated the quantiles related to the following probabilities
qk = F (12 + 0.4(k − 1); ν = 6), k = 1, 2, . . . , 9.

The probabilities related to quantiles in the median and around the tail of the
distribution are centred around the probabilities 0.5 and 0.95, respectively.
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Fig. 2 Quantile estimate for the probabilities q1 = 0.1, . . . , q9 = 0.9 for an arbitrary it-
eration using the methods presented in this paper. The abbreviations SORT, PREV and
GAUSS refer to the estimation approaches presented in Sections 2.1, 2.2 and 2.3, respectively

The choices above resulted in a monotone property violation in about every
third iteration using a typical value λ = 0.05 in (1).

To measure estimation error, we use the average of the root mean squares
error (RMSE) for each quantile

RMSE =
1

K

K∑
k=1

√√√√ 1

N

N∑
n=1

(
Qn(qk)− Q̂n(qk)

)2
where N is the total number of samples in the data stream. We investigate
the estimation error for a large set of different values of the parameter λ. In
the experiments we used N = 107 which efficiently removed any Monte Carlo
errors in the experimental results.
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The results for the normal and χ2 cases are shown in Figures 3 and 4,
respectively. For the suggested method in this paper (Section 2.3), we assume

Fig. 3 Estimation error for data from the normal distribution.

that the outcomes from the data stream are normally distributed and thus
denote the approach GAUSS. For the SORT approach (Section 2.1), bring
= TRUE means that we fed the sorted quantiles back into the estimation
procedure. Similarly for the GAUSS approach, bring = TRUE means that
the updated estimates Q̃n(qk) were fed back in to the estimation procedure.
DUMIQE refers to updating the quantiles using (1) and ignoring that the
monotone property may get violated.

We start by discussing the normal distribution cases. For all the estimation
methods, we see that the estimation error increases when the period decreases
or when estimating further into the tail of the distribution. Further we see
that the approach suggested in this paper (GAUSS) outperforms the other

approaches. It seems also that feeding the updated estimates Q̃n(qk) back into
the estimation process further improves the estimation compared to not doing
it. For the approach in Section 2.2 (PREV) we observe that using α = 0.5
(making small updates) performs poor in all the experiments. Using α = 0
means that we update as much as possible without violating the monotone
property. The latter case performs about equally well to sorting the quantiles
(Section 2.1). For the sorting approach, feeding the sorted estimates back in
the estimation process or not affects the estimation results minimally. A nice
observation is that almost all the approaches performs better than updating
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Fig. 4 Estimation error for data from the χ2 distribution.

without caring about satisfying the monotone property (DUMIQE). In other
words, we are able to both satisfy the monotone property and improve estima-
tion precision and since the different approaches are computationally efficient
this is achieved with minimal extra computational costs. In fact, the approach
suggested in this paper may be appealing even when we only want to estimate
one quantile. We can simply track several other (auxiliary) quantiles and use
the approaches to improve the estimation of the quantile of interest. Please
note that this comes with an additional computational cost compared to just
using DUMIQE since several quantiles need to be tracked.

We now turn to the χ2 distribution experiments. Also for these experi-
ments, we see that the suggested method in this paper (Section 2.3) outper-
forms the other methods. Also here we assume that the outcomes from the
data stream are from a normal distribution even though they in reality are
from a χ2 distribution. It is a quite interesting and counter-intuitive result
that this approach still performs the best. The normal and the χ2 distribution
are quite different which means that the approach seems robust to erroneous
assumptions about the distribution of the data stream. Similar to the normal
distribution cases, PREV with α = 0.5 performs poor (Section 2.2) and SORT
(Section 2.1) and PREV with α = 0 perform about equally well. Again we see
that, except for PREV with α = 0.5, all the approaches outperform DUMIQE.

For comparison we also tested the method in [3] for the eight estimation
tasks described above. This is the only incremental estimation method we
have found in the literature that attempts to estimate multiple quantiles in a
dynamical system. The method has two tuning parameters, a weight parameter
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Distrib. T = 800, Med T = 800, Tail T = 8000, Med T = 8000, Tail
Normal 0.312 0.630 0.259 0.370

T = 800, Med T = 800, Tail T = 8000, Med T = 8000, Tail
χ2 0.79 2.40 0.445 1.611

Table 1 Estimation error using the method in Cao et al. (2009) [3].

similar to λ in the methods in this paper, and a parameter that controls the
width of intervals to estimate the distribution of the data stream around a
quantile. To achieve as good results as possible, we ran the method for a
large set of values for the two parameters. The best estimation results are
shown in Table 1. We see that for the normal distribution and T = 800 Cao
et al. performs well, but poorer than the method suggested in this paper
(gray curves). For the normal distribution and T = 8000, the method in this
paper outperforms Cao et al. (2009) [3]. For all the cases related to the χ2

distribution, the methods in this paper outperforms Cao et al. (2009) [3] with
a clear margin. Not only does the methods in this paper outperform Cao et al.
(2009) [3], they are also far simpler to implement and only contain only one
tuning parameters which makes it easier to tune the method to perform well.
The experiments also showed that the methods in this paper is less sensitive
to the choice of the tuning parameter compared to Cao et al. (2009) [3].

3.2 Real-life data example

It is difficult to do a systematic evaluation of the performance of the algorithms
for real-life data since we do not know the values of the true quantiles, i.e, the
ground truth. If we were in a static system we could compare with state-of-the
art offline estimators using all the data, but offline estimators do not cope
with the case of dynamically changing data streams considered in this paper.
Therefore we show the usefulness of the suggested algorithms by visualizing
how well they are able to track a dynamically changing real-life data stream.

We consider the problem of tracking the number of tweets posted on Twit-
ter. Figures 5 to 7 shows the results. The gray circles in the figures show the
number of tweets posted by Norwegian Twitter users every minute in the time
period before and after the Oslo bombing and Utøya massacre in Norway July
22 2011. The terror attach started by a bomb going off in Oslo at July 22 3:25
p.m, and as expected, we see a rapid increase in the number of posted tweets
after that time.

For each of the suggested methods we tracked quantiles related to the
K = 9 probabilities q1 = 0.1, q2 = 0.2, . . . , q9 = 0.9. The black, blue and red
curves show the tracking of the quantiles related to the probabilities q2, q5 and
q8 of the distribution of the number of tweets posted. We see that the methods
efficiently track the quantiles of the time-varying distribution. We also see that
the monotone property of quantiles is satisfied in every iteration. Inspecting
the figures more carefully we see that the GAUSS method suggested in this



Smooth estimates of multiple quantiles in dynamically varying data streams 17

Fig. 5 Using the SORT method: The gray circles show the number of tweets posted by
Norwegian Twitter users every minute from July 21 2011 to July 24 2011. The black, blue
and red curves show running estimates of the 20, 50 and 80% quantiles of the distribution
of the number of tweets posted.

paper is more efficient at tracking the quantiles in the time periods where
the distribution changed rapidly and seems to be the method that in total
performs the best. This is in accordance with our findings in the synthetic
experiments (Figures 3 and 4).
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Fig. 6 Using the PREV method with α = 0.5: The gray circles show the number of tweets
posted by Norwegian Twitter users every minute from July 21 2011 to July 24 2011. The
black, blue and red curves show running estimates of the 20, 50 and 80% quantiles of the
distribution of the number of tweets posted.

4 Closing remarks

In this paper we have investigated the problem of estimating multiple quan-
tiles from a data stream when the distribution of the data varies with time.
Unfortunately, so called histogram methods do not perform well for such data
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Fig. 7 Using the GAUSS method: The gray circles show the number of tweets posted by
Norwegian Twitter users every minute from July 21 2011 to July 24 2011. The black, blue
and red curves show running estimates of the 20, 50 and 80% quantiles of the distribution
of the number of tweets posted.

streams and incremental estimators typically are the only viable alternative [3].
Incremental estimators that estimate multiple quantiles is surprisingly sparse.
In fact, we have only found two papers in the literature that try to counter
these challenges, namely the works of Cao et al. [3] and Hammer and Yazidi
[7] where the latter is a preliminary version of the work in this paper.
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A challenge when applying incremental methods to estimate multiple quan-
tiles, is that we are not guaranteed that the quantile estimates satisfy the
monotone property of quantiles. The methods in [3] and [7] satisfy this re-
quirement, but the estimates often become highly irregular compared to each
other. In addition to satisfying the monotone property of quantiles, the sug-
gested method in this paper generates realistic quantile estimates in the sense
that the estimates become smooth, or regular, relative to each other.

In addition to generating smooth and realistic estimates, the suggested
method in this paper documents higher estimation precision than both [3] and
[7]. Computationally, the suggested method is of the same order of computa-
tional complexity as DUMIQE. In other words, we are able to both satisfy the
monotone property and generate smooth estimates with minimal extra com-
putational costs. Furthermore, the approaches suggested in this paper may
be appealing even when we only want to estimate a single quantile. In this
perspective, we can simply track several other (auxiliary) quantiles and use
the approach proposed in this paper to improve the estimation of the single
quantile of interest. Obviously, this comes with an additional computational
cost compared to using DUMIQE since several quantiles need to be tracked
compared to just one.

As shown in Figure 4 the performance of the smoothing approach is ro-
bust to the differences between the chosen smoothing function and the data
stream distribution. However, improved results could probably be achieved by
equipping the algorithm with a handful of smoothing functions based on some
well-known distributions like the normal, chi square, gamma, Cauchy etc. The
final quantile estimates are based on the smoothing function that best fits
to the individual quantile estimates. Thus is a possible direction for future
research.
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