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Abstract This paper deals with the Stochastic Non-linear Fractional Equality
Knapsack (NFEK) problem which is a fundamental resource allocation prob-
lem based on incomplete and noisy information [7, 8]. The NFEK problem
arises in many applications such as in web polling under polling constraints,
and in constrained estimation. The primary contribution of this paper is a con-
tinuous Learning Automata (LA)-based, optimal, efficient and yet simple so-
lution to the NFEK problem. Our solution is distinct from the first-reported
optimal solution to the problem due to Granmo and Oommen [7, 8] which
resorts to utilizing multiple two-action discretized LA, organized in a hier-
archical manner which comes with extra implementation and computational
complexity. In this work, we present an optimal solution to the problem us-
ing a continuous LA which does not involve mapping the materials onto a bi-
nary hierarchy. As opposed to the traditional family of Reward-Inaction (R-I)
LA, our scheme is modified in order to accommodate non-absorbing barriers,
thus guaranteeing convergence to the optimal allocation. The experimental
results that we have presented for numerous simulations demonstrate the ef-
ficiency of our scheme and its superiority compared to the state-of-the-art in
terms of peak performance.
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1 Introduction

This paper deals with the Stochastic Non-linear Fractional Equality Knapsack
(NFEK) Problem which is the central underlying problem pertinent to allocat-
ing resources based on incomplete and noisy information. Such situations are
not merely hypothetical — rather, they constitute the vast majority of alloca-
tion problems in the real-world. Resource allocation problems which involve
such incomplete and noisy information are particularly intriguing. They can-
not be solved by traditional optimization techniques, rendering them ineffec-
tive.

The NFEK problem involves n materials, 1 < i < n, where each material
is available in a certain amount z; < b;. Let f;(z;) denote the value of the
amount z; of material 4. The problem is to fill a knapsack of fixed volume ¢
with the material mix x = [z1,...,2,] of maximal value Y 7 f;(z;) [2]. It is
characterized by separable and concave objective functions. The problem can
be stated as follows [12]:

maximize f(x) =7 fi(z:)
subject to > ) x; =cand Vi € {1,...,n},2; > 0.

In the above, the objective function is concave implying that the value func-
tion f;(z;) of each material is also concave, and that the derivatives, 7, of
the material value functions f;(z;) with respect to z;, are not constant but
non-increasing. Thus, the optimization problem becomes:

maximize f(x) = Y7 fi(z:), where fi(z;) = [5 fi(z:)dz;
subject to Y 7 z; = cand Vi € {1,...,n},2; > 0.

The Stochastic NFEK Problem® is a generalization of the above where the
material value per unit volume for any x; is a probability function p;(z;), and
to render the problem non-trivial, the distribution of p;(z;) is assumed to be
unknown. Since the unit volume values are random, the problem is formu-
lated in terms of expected unit volume values rather than the actual unit vol-
umes themselves. From this perspective, the expected value of the amount
z; of material i, 1 < i < n, becomes fi(z;) = fomi p;(uw)du. Accordingly, the
expected value per unit volume? of material i becomes f](z;) = pi(2;). In
this stochastic and non-linear version of the FK problem, the goal is to fill the
knapsack so that the expected value f(x) = Y fi(2;) of the material mix
contained in the knapsack is maximized. Thus, we aim to:

1 This generalization is attributed to Granmo and Oommen [7,8].
2 We hereafter use f!(z;) to denote the derivative of the expected value function f; (z;) with
respect to ;.
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n

maximizef(x) = Z fi(zs),

1

wheref;(z;) = /Owipz‘(u)dua and p;(2;) = f;(2:),

n
subject toZm.i =cand Vi € {1,...,n},z; > 0.
1

With regard to the model of the problem studied in [9], it assumes that
one is provided with a knapsack of fixed volume ¢, to be filled with a mix
of n different materials. However, unlike the NFEK, in the Stochastic NFEK
Problem the unit volume value of a material 3, 1 < i < n, is random, and
assumes the value 1 with probability p;(2;) and the value 0 with probability
1 — p;(;), respectively. As an additional complication, p; (z;) is nonlinear in
the sense that it decreases monotonically with z;, i.e., 2;, < i, © pi(i,) >
Pi(@is)-

The only available solution to the latter problem, which is on-line and in-
cremental, works as follows. At each time instant, an amount «; of material
is placed in the knapsack. The complexity of the problem arises because we
are only allowed to observe an instantiation of pi(x;) at z;, and not p;(x;)
itself. The solution was able to converge to a mixture of the materials of max-
imal expected value, through a series of informed guesses.

Some real-life problems under uncertainty can be modelled as instances
of the Stochastic NFEK Problem. In [7, 8], the web polling problem was ad-
dressed and modelled as Stochastic NFEK. The aim was to maximize the
number of changes detected given limited polling capacity. The frequency
of changes of the web pages are supposed to be unknown. In [7, 8], it was
shown that the probability to uncover an update monotonically decreases as
the polling probability of the web page increases. In [7], Granmo and Oom-
men show an application of Stochastic NFEK Problem to determining the op-
timal size for estimation from different classes where the optimality criterion
is minimizing the aggregated variance. The authors suppose a large number
of classes and a large number of elements per class. The proposed solution
maintains a moving average estimate of each class i called ¢;. The feedback
is “engineered” in a form of a random variable with outcomes reward or
penalty based on a probability function that depends on g;. Under the lat-
ter settings, the probability of observing a reward decreases as the polling
probability of the class increases. In the literature, there is a large class of
multi-armed bandit problems that can be modelled as Stochastic NFEK Prob-
lem where the reward probability decreases as the probability of polling the
arm increases. Examples of those problems include congestion monitoring
under limited bandwidth [1], adaptive link monitoring in software defined
networks [19] and dynamic probing for intrusion detection under resource
constraints [15].
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The cited paper, [9], has two main characterizing facets, namely, that the
unit volume values of each material are stochastic variables with unknown dis-
tributions, and that the expected value of a material could decrease as addi-
tions are made to the knapsack. This optimal solution utilizes a hierarchy of
two-action discretized Learning Automata (LA). Although this solution is el-
egant, its implementation is complex because it involves updates at different
levels of a balanced binary tree.

The absolute majority of the work in LA can be seen as an instance of an
unconstrained optimization problem where the objective is to maximize the
reward over time. Loosely speaking, a possible approach for accommodating
constraints is to redesign the feedback of the LA so that the penalty increases
whenever the constraints are violated. A notable exception is the work due to
Poznyak and Najim [30] that uses regularized Lagrange function for address-
ing constrained repeated games. Another possible avenue of research is to
investigate deploying Adaptive Barrier Lyapunov [10,16,17]. Adaptive Bar-
rier Lyapunov [3] converts a constrained optimization problem to an uncon-
strained one. By definition, a barrier function is a continuous function with
values increasing to infinity in the boundary of the feasible region. Adap-
tive Barrier Lyapunov has been applied in stochastic approximation prob-
lems [10] and in [16,17] for adaptive control of for a class of stochastic non-
linear systems. The work [25] uses Lyapunov-like barrier functions for multi-
agent coordination under different objectives, such as collision avoidance and
maintaining the local laws leading to swarm behavior. As a future work, we
plan to investigate making use of Lyapunov-like barrier functions for solving
constrained reinforcement learning problems including the Stochastic NFEK
problem?®.

2 Fractional Knapsack Problems: State-of-the-Art

Without going back too far into the past, we start discussions by mentioning
that the Fractional Equality Knapsack problem, was studied in its virgin form
in [6]. The problem that these authors studied involved the added complica-
tion that the future availability of the indivisible resources was uncertain due
to the other players in the field. Their solution, on the other hand, invoked an
intelligent agent-based stochastic ruler-based approach. It operated with the
model in which the system had to execute a sequence of resource allocation
decisions over time.

With regard to the stochastic knapsack problem, from a theoretical per-
spective, the authors of [14] studied it in the setting where the system per-
mitted dynamic pricing and switch-over policies. Their solution represented
a general discrete stochastic optimization model and utilized a multi-period
bounded multiple-choice knapsack framework with a nonlinear objective func-
tion.

3 We thank one anonymous reviewer for drawing our attention to the field of Adaptive Barrier
Lyapunov Functions and its possible link to LA.




Title Suppressed Due to Excessive Length 5

A distinct approximate solution was proposed more recently in [4]. In
this paper, the authors presented a greedy non-adaptive algorithm that ap-
proximated the optimal adaptive policy within a factor of 7, demonstrating
that adaptivity provided only a “constant-factor” improvement. They also
designed an adaptive approximate polynomial-time algorithm to resolve the
optimal adaptive policy within a factor of 5 + ¢, for a given e > 0.

With regard to applications, the stochastic knapsack formulation has been
used to distributing layered encoded videos by caching [11]. The authors of
[29] also solved a more practical problem, where they modeled the multi-
period, single resource capacity reservation problem as a dynamic, stochastic,
multiple knapsack problem. Here, the state space grew exponentially with
the number of knapsacks. Since the task of computing the optimal solution
is computationally intractable, their solution was approximate, but fast. In a
similar vein, Sachs [35] enforced a stochastic knapsack model to study the
capacity evaluation of multi-radio access networks. His solution was unique
in that it was able to consider the non-uniform geographic distribution of
both the radio link capacities and their corresponding traffic loads.

The authors of [4,40] considered solution policies for stochastic general-
izations of the NP-hard linear integer knapsack problem. In their works, they
assumed that the value distributions were considered known and constant.
Such an assumption rendered the use of dynamic programming to be a viable
solution. Another variant of the knapsack problem was found in [34] where,
although the problem studied involved a deterministic knapsack, the random-
ization complexity was obtained by having objects arriving to and departing
from the knapsack at random times. The optimization problem that was then
considered involved accepting or blocking the arriving objects so that the av-
erage value of the knapsack was maximized.

In a similar vein, [13], Kosuch and Lisser treated the chance-constrained
model for knapsack problems with random weights. However, their model
assumed a two-stage stochastic program with recourse, i.e., it provided the
scheme the possibility to remove or add items in the second stage, after their
weights were revealed.

To conclude this survey, we mention that although several studies on re-
lated problems were reported earlier, the pioneering proposal and solution to
the stochastic NFEK problem was reported in [9]. Various specific instantia-
tions, particularly within the web monitoring domain, were reported earlier.
In these, the web pages were polled mainly for estimation purposes [26,44],
and the unknown parameters were estimated by means of a tracking phase.
The real drawback of such an approach is that the parameter estimation phase
was done prior to the assignment, and this had the effect that it significantly
delayed the computation of the solution, which was further exasperated in
dynamic environments, because, in such settings, the optimal solution would
be time-varying, introducing the need for additional re-invocations of the pa-
rameter estimation phase [9].

In contrast to the above approaches, we base our work on the principles of
LA [20]. LA are stochastic machines that have been used to model biological
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systems [41]. They have attracted considerable interest in the last few decades
because they are able to learn the optimal actions when operating in (or inter-
acting with) unknown stochastic environments. Furthermore, they combine
rapid and accurate convergence with low computational complexity. The the-
ory of LA has found numerous applications in the field of computer science.
One of the most recent applications of LA include sampling algorithms for
stochastic graphs [31], trust propagation in online social networks [36], al-
location hub location problem [5], selecting caching nodes in delay tolerant
networks [18] and feature subset selection [38] to mention a few. For an up-
dated overview over the theory and applications of LA we refer the reader
to the following book [32] and to a recent special issue [33] dedicated to the
applications of LA.

The novel Learning Automata Knapsack Game (LAKG) scheme that was
proposed in [9] does not rely on estimating parameters, and can be used to
solve the stochastic NFEK problem in both static and dynamic settings.

2.1 The Hierarchy of Twofold Resource Allocation Automaton (H—TRAA)
Solution

The state-of-the-art scheme for hierarchically solving n-material problems [7,
8] involves a primitive module, namely the Twofold Resource Allocation Au-
tomaton (TRAA) for the two-material problem. This module has been proven
to be asymptotically optimal. The authors of [7, 8] then used the primitive
TRAA as a building block, and arranged a set of TRAAs in a hierarchy so as
to solve multi-material Stochastic NFEK Problems.

The hierarchy of TRAAs, referred to as H-TRAA, assumes thatn =27,y €
N+. If the number of materials is less than this, one trivially assumes the ex-
istence of additional materials whose values are “zero”, and which are, thus,
not able to contribute to the final optimal solution. The hierarchy is organized
as a balanced binary tree with depth D = log,(n). Each node in the hierar-
chy can be related to three entities: (1) a set of materials, (2) a partitioning
of the material set into two subsets of equal size, and (3) a dedicated TRAA
that allocates a given amount of resources among the two subsets. At depth
D, then, each individual material can be separately assigned a fraction of the
overall capacity by way of recursion, using a subtle mechanism described, in
detail, in [8]. The principal theorem that guarantees the convergence of the
H-TRAA [7,8] has cleverly shown that if all the individual TRAAs converge
to their local optimum, the overall system attains to the global optimum.

2.2 Contributions of this Paper

The contributions of this paper are the following;:

1. We report an optimal solution to the stochastic NFEK problem based on
the theory of continuous LA. The solution is based on the principles of
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the Linear Reward-Inaction (Lz;) scheme. Through a subtle modifica-
tion of the Lg;, we introduce artificial barriers that have the effect that
they prevent the instantaneous allocation’s probability vector from get-
ting trapped in a unit vector in the R™ space, where n is the number of
materials.

2. The scheme has been shown to converge to the unique optimal solution
even though our scheme is ergodic, as opposed to being absorbing.

3. We provide a formal and rigorous analysis for our solution, termed as the
Continuous Multi-action Learning Automata Solution (CMLS), based on
the theory of small-step learning processes, due to Norman [22].

4. In contrast to the H-TRAA solution [7, 8], our CMLS solution does not
involve a hierarchy, and it is thus easier to implement. This is because,
in fact, TRAAs must be arranged in a hierarchy in order for them to be
able to solve a multi-material Stochastic NFEK Problems. Further, through
empirical experiments, we confirm that the CMLS provides desirable con-
vergence properties that makes it superior to the H-TRAA.

As a result of the above contributions, we believe that the CMLS is a viable
realistic strategy for solving demanding real-world knapsack-like problems
such as the optimal allocation of sampling resources, and other problems re-
lated to the world wide web [9].

2.3 Paper Organization

The paper is organized as follows. In Section 3 we present the CMLS for the n-
material problem, and prove its asymptotic optimality. We proceed in Sections
4 to empirically verify that the CMLS solution provides superior convergence
results to the H-TRAA while being, at the same time, simpler to implement.
Finally, we offer suggestions for further work and conclude the paper in Sec-
tion 5.

3 A CMLS Solution to Resource Allocation
3.1 The Need for a Continuous-Space Solution

One can indeed, raise the question: If the H-TRAA solution is valid, why
should we seek for an alternative. The reason is precisely because unlike
traditional LA, in which discretization is advantageous, within the area of
the knapsack-like problems, this is not the case. Indeed, the disadvantages
of working within a discretized probability space for such problems are the
following;:

— The first optimal solution to the problem due to Granmo and Oommen
[7,8] resorts to the concept of primitive two-action discretized automata
arranged hierarchically. The main shortcoming of the latter solution is its
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complexity as it involves different levels of updates in the hierarchy. It also
demands the splitting of the sets of materials into disjoints sets. The H —
TRAA solution assumes that n = 27,y € N¥, i.e, the number of materials
is a power of 2. If the number of materials is less than this, one assumes
the existence of additional materials whose values are “zero”, and which
are thus not able to contribute to the final optimal solution. We would like
to remove this constraint.

- According to Granmo and Oommen [7, 8], the efficiency of the H-TRAA
is dependent on placing the items that get frequently updated together
in the same branches in order to speed up the convergence. In fact, the
leaf nodes have a resolution of N7 where N is the resolution of each level.
For instance, with a resolution 10 for each TRAA, and a number of levels
v = 6 the leaf nodes will have resolution 108, which would slow down the
convergence of the scheme. Thus, the resolution of the leaf nodes grow at
an exponential rate as the number of levels increase.

- The H — TRAA can potentially have many layers and consequently, a lot
of updates, so as to maintain the integrity of the entire tree. The imple-
mentation of the scheme is thus, complex.

In this perspective, the disadvantage of the H — T'"RAA solution [7,8] is
the fact that it is forced to resort to a hierarchy of LA whenever the number
of actions exceeds 2 which is not a necessity for our scheme. For example, for
3 actions, a tree with 4 leaf nodes needs to be created, while the fourth lead
node is a simply dummy node. Our solution can also be easily generalized
to a hierarchical setting in a similar manner to [7,8] but the main difference
between our solution and the H — TRAA solution is the fact that the tree in
our solution does not need to be binary. According to the literature, it is worth
mentioning that hierarchical LA are suitable for a large number of actions.
Therefore, our CMLS solution can benefit from using a hierarchy, which is
not necessary binary tree, for a large number of materials.

3.2 Overview of the CMLS Solution

Our aim is to find a scheme that optimizes the following NFEK problem in
an on-line manner:

n

maximizef(x) = Z fi(zi),

1

wheref;(z;) = /Omi p;s(u)du, and p;(z;) = fi(2),

n
subject toZmi =cand Vi € {1,...,n},z; > 0.
1
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Note that we allow only instantiations of the material values per unit vol-
ume to be observed. That is, each time an amount z; of material 4 is placed in
the knapsack, an instantiation v; at 2; is observed.

Because of the above intricacies, we approach the problem by relying on
informed material mix guesses, i.e., by experimenting with different material
mixes and learning from the resulting random unit volume value outcomes.
We shall assume that 2; is any number in the interval (0, 1). The question of
generalizing this will be considered later. The crucial issue that we have to
address, then, is that of determining how to change our current guesses on
x;, 1 < i < n. We shall attempt to do this in using continuous Multi-action
LA.

3.3 Details of the CMLS Solution

The family of LA used to develop our solution is akin to the acclaimed Lin-
ear Reward-Inaction (Lg7) scheme. However, this landmark scheme is now
extended to develop the CMLS. It is worth highlighting the distinct way by
which this extension is developed: While the CMLS is, in essence, absorbing,
we have rendered the scheme to be artificially ergodic, and this consequent er-
godicity provides us with the stochastic properties required for any solution
to a knapsack-like problem, like the hierarchical H-TRAA.

3.3.1 Absorbing vs. Ergodic Lry LA

Before we proceed, it is prudent to record our first primary contribution to the
field of LA. The literature reports a few ergodic LA that have been rendered to
be absorbing by artificially introducing absorbing batriers [24]. Our current
scheme is arguably, the first reported algorithm in which the Markov Chain,
that is inherently absorbing, has been rendered ergodic, by removing the
absorbing nature of all its limiting barriers. Although the consequence and
significance of this transformation will be evident presently, the strategy for
achieving this is as follows: Rather than use the actual limits of the probability
space as zero and unity, we work with the constraint that no probability value
can take on a value below a pre-specified lower threshold of @, or a value
above a pre-specified upper threshold of Zq.. The action-choosing probabil-
ity values, which traditionally move proportionally towards zero and unity
for the (Lg;) scheme are now made to move towards the respective values
Of Zypin aNd 2y, respectively. Interestingly enough, this minor modification
renders the scheme to be ergodic, making the analysis also to be correspond-
ingly distinct from that of the Lg;.

To achieve this, we enforce a minimal value ,,,;,, Where 0 < Ty < 1
for each selection probability x;, where 1 < i < 7 and r is the number of
actions. As a result the maximum value any selection probability z;, where
1 < i < 7, can achieve is Zpmae = 1 — (r — 1)@ min. This happens when the
other r — 1 actions take their minimum value 2,,;,, while the action with the
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highest probability takes the value 2 q,. Therefore u;, for 1 <i < r, will take
value in the interval [Zin, Zmae]- The informed reader would remark that in
the classical Lr;, Zmez = 1 while 2,,;, = 0. Therefore our scheme can be
seen as a generalized version of the Lr;. However, if we use classical Lgy,
the instantaneous allocation’s probability vector will get trapped in a unit
vector in the R™ space, which is undesirable in this case as it does not yield
an optimal solution for our problem. The formal scheme for accomplishing
this follows.

3.3.2 The CMLS Solution
The Stochastic Environment for the n materials case can be characterized by:

1. The capacity c of the knapsack;
2. n —materiol unit volume value probability functions [p1 (21), ..., Pn(2n)]-

In brief, if the amount z; of material i is suggested to the Stochastic Environ-
ment, the Environment replies with a unit volume value v; = 1 with prob-
ability p;(z;) and a unit volume value v; = 0 with probability 1 — p;(z;). To
render the problem both interesting and non-trivial, we assume that p;(x;) is
unknown to the LA.

Let a(t) be the index of the chosen action at time instant ¢. Then, the value
of z;(t) is updated as per the following simple rule (the rules for other values
of z;(t),j # i, are similar):

2t +1) < zi() 4+ 0(@mas — (1))

when a(t) =iand v; = 1

zit+1)  — zi(t) + 0(@min — 7 (1))
when a(t) = j,j #iand v; = 1,

where 6 is a user-defined parameter 0 < § < 1, typically close to zero.
We shall first characterize the optimal solution to a Stochastic NFEK Prob-
lem.

Lemma 1 The material mix x = [x1,...,%,] is a solution to a given Stochastic
NFEK Problem if (1) the derivatives of the expected material amount values are all
equal at x, (2) the mix fills the knapsack, and (3) every material amount is positive,
ie.

fi(@1) =+ = falzn)

Tay=candVie {1,...,n},z; > 0.

The above lemma is based on the well-known principle of Lagrange Multi-
pliers, and its proof is therefore omitted here for the sake of brevity [7,8].
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3.4 The Formal Analysis of CMLS

We now analyze the feedback connection of the CMLS and the Stochastic
Environment, and thus prove that the CMLS is asymptotically optimal in the
sense that it can find material allocations arbitrarily close to the solution of
the Stochastic NFEK Problem. But before we embark on such a formal proof,
it is necessary for us to see how the traditional proof for the Ly scheme is
achieved.

3.4.1 Martingale-based Proofs for Absorbing LA

Consider the recorded proof of the convergence accuracy of the Lr; scheme
[20]. If oy, is the best action, the concluding step of the proof of the e-optimality
of the Lry scheme is based on the condition that the sequence of {p, (t)¢>1,
is a submartingale. By invoking the martingale convergence theorem, this
is shown to be equivalent to proving that Pr{p,,(c0) = 1} — lasf — 0,
where 6 is the parameter of the Lr; scheme. To achieve this, one utilizes the
theory of Regular functions. Firstly, the action selecting probabilities are rep-
resented in their vectorial form. One then observes that the goal is to prove
that the convergence probability I3, (P) = Pr{pm(co) = 1} = Pr{P,(c0) =
em} — 1. Secondly, as per the definition of Regular functions and the sub-
martingale convergence theory, one shows that I, (P) = U (®(P)), where
U and & are a functional operator and a clearly-specified function respec-
tively [20]. More precisely, the convergence probability is exactly the function
&(P), upon which, the operation U is applied an infinite number of times.
Further, if @ is a Regular function of P, then I},(P) = U*®($(P)) = &(P).
This implies that the convergence probability can be investigated by means
of a Regular function of P. However, it is not easy to find such a Regular func-
tion, though its existence is guaranteed. Therefore, one resorts to utilizing a
subregular function to bound the unique Regular function, i.e., the conver-
gence probability, from below. We thus prove the result that I,,,(P) — 1 by
showing that this subregular function converges to 1 as 8 — 0.

The above proof would work only for the case when the unit vectors are
the absorbing barriers of the scheme. It would thus be ineffective if the chain
is ergodic. This motivates the need for a proof that invokes a completely dif-
ferent strategy, which is what we embark on now.

3.4.2 Norman'’s Strategy for Analyzing Ergodic LA

Norman theory was used in the field of LA in the case of ergodic LA to proof
the convergence to an optimal point that is different from the convergence to
a unit vector in the space. However, our scheme is the first ergodic scheme
that uses the phenomena associated with the Lr; concept in non-stationary
environments. The most widespread method for similar schemes is the Linear
Reward-¢ Penalty [21,39]. Norman theory was applied in conflict avoidance
algorithms for WDM networks [27,28] and also for project scheduling [42].
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3.4.3 Main theorem

We will first present a theorem due to Norman, who studied distance dimin-
ishing models in probability spaces [22]. This result will be heavily used in our
proof. Indeed, the convergence of 2(t) to * is a consequence of this theorem.

Theorem 1 Let {2°(t)} be a stationary Markov process dependent on a constant
parameter § € [0,1]. Each 2°(t) € I, where I is a subset of the n dimensional space
R™. Let 62%(t) = 2f(t + 1) — 2°(t). We are concerned with the behavior of 52° (t)
as 8 — 0 and t0 — oco. The following assumptions are assumed to hold:

1. E[62°(8)|2°(t) = y] = 6W (y) + O(6?)
2. E[[2°(2) — W (y)]182° () — W ()] |(t) = y] = 0%5(y) + 0(6?)
3. B[] 62°(t) | |2(2) = y] = O(9®) where | 6. | is a norm defined in I and all

orders of magnitude are uniform in y. Here we define: | o |3 | = Y77 | | 2; 2
4. W (y) has bounded Lipschitz derivative in 1.

5. s(y) is Lipschitz 1.

Let ps(0, 2) = E[2° (t)|2%(0) =  and wy (0, z) = [[62°(t) — pe(6, )][62° () —
1:(8, )] 7|29 (0) = ). Let W' (y) denote the jacobian of W (y) and < z,y > denote
an inner product in R™.

If, in addition to Assumptions (i)-(v):

1. Iis compact.
there exist a unique X € I such that W(X) = 0.
3. <z, W'(y)z> < 0forall z€ R" and z # 0.

then the following conclusions are true when 6a° (t) as 6 — 0 and t6 — oco:

1. wy(0,x) = 0(0) uniformally for all x € I and T > 0.
2. For any x € I, the (vector) differential equation

N

f'(r) =W[f(7)] )

has a unique solution f(7), where f(0) = x and

p(0,2) = f(t6) + 0(8) uniformally for x € I and ¢ > 0.

3. The (matrix) differential equation
g'(r) = W[f(1)]g(r) + g(r)W'T[f(7)] + S[f(7)] has a unique solution g(7)
with g(0) = 0 as follows
Z(Z9) ~ N(0,g(1)) as >t < o0
where Z§ = “’gﬂ\;@f#ﬁ)), (E refers to the distribution of x and N (a,b) refers to
the normal distribution with mean a and covariance matrix b) and as 6 — 0,
10 — oo, g(co) is obtained as the unique solution of the system of the linear
equations

W'(6)g(c0) + g(co) W' (8) + S(6) )

Proof The proof of the above theorem is due to Norman and can be found
in [23].
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Using the above, we present the main theorem of our work.

Theorem 2 For sufficiently small 2,;,, approaching 0, the CMLS solution scheme
specified by (1)-(2) is asymptotically optimal.
limg_)() hmt_,,oo E(m(t)) = g*

Proof Without loss of generality, we assume thatc = 1 = ) " . 1;, i.e, that
the z;’s are normalized. The case where ¢ # 1 can also be handled by invok-
ing a normalization phase, and so the materials are accessed according to a
probability vector. The proof is divided into three main parts.

Part 1: In the first part of the proof, the most crucial part is verifying the
conditions (i)-(v) of Theorem 1. We first start by defining 6z;(¢) = x;(t + 1) —

E[6z:(t)|z(t) = 2] = z:pi(2:)[0(@masz — 1))
+ ) wipi(z;)

=1
i

. [e(mmin - IL'i)],
where z = (21, 29, ..., Z,,). Then:
El6z;(t)|z(t) = ] = €))

) =
2ip; (1) 0(1 — Bpnaw + 1 — 25)]

+ Z Z;Pj (:l,_])[g('l»mm - 3’%)]

JFi
= -Tipi(l‘z')
g [6(1 — Tmaa + le)]
j=1
J#i
n
+ > 29 (25)[(@min — 23)]-
=1
i

4)

By taking into account the fact that 1 — @mas = (7 — 1)Zmin, Eq. (4) can be
simplified (after some algebraic manipulations) and written as:
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Efbxi(1)]a(t) = 2] =

0 Z z;z;(piz;) — pji(z5))
G=1

i
n
+ 02min (D 7ip;(2;))
j=1
i

— 0(r — 1)Zminzip;i(2:)

=0 zw;(pi(x:) — pi(z;))
j=1
i

+ 02 min Yy (2505(2;) — wips(23))
g
~ Qw;(x),
where w; () is defined by w;(x) = Y j=1 25z (ps(2:) — p;(2;))-
For small values of 2,5, 1.€, as zm:f 5 0, we can approximate E[6z;(t)|z(t) =

z] by:
Edz;(t)|z(t) = 2] = fw;(x). )

Part 2 Existence and Uniqueness: In the second part of the proof, we will ver-

ify the uniqueness and existence of the root of w(z). We will show that
w(z) = (wi(z), wz(x), ..., w,(2)) has a unique zero in the neighborhood of

a* = (a%,...,2%), where z* is the solution of the Lagrange multipliers’ condi-
tions obtained in Proposition 1. Let us consider w(z) = (w1 (2), w2 (), ..., wn()) =
(0,0,..,0).

This implies that the system of n equations
Yi=12125(p1(21) — pi(z;)) =0
771

S =1 @ (pa(@2) — pi(a;)) =0
£2
Z?:l Tnzi(pn(zn) — pj(z;)) = 0.
J#n
z1 Y j=12;(p1(z1) — pj(z;)) =0
22

3 Y =1 25(pa(22) — pj(z5)) =0
=S J#2

T 3 j=12(Pn(zn) — pj(2;)) = 0.
Jj#n
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The reader should observe that a crucial concept in our approach is that
we are using the barrier ,,;,, which ensures that 2; # 0, 29 # 0..2, # 0. We
can thus confidently divide the first equation by 2, the second equation by
x9 and so on, yielding:

i1 ai(p(en) - p(2) =0
J#1

& { Yim1zi(pa(z2) — pil2;)) =0
J#2

Z;’;l ﬂ)(pn(in) —p;(z;)) =0.
J#n

After invoking some algebraic manipulations, we obtain that:
pi(er) = 25 25p5(25)
& pa(wa) = 25 25p5(25)

pi(zn) = 25 %P5 (25),

which implies that p; (1) = pa2(22) = ... = Pn(2n)

Thus, w(z) = (w1 (z), wa(x), ..., w,(z)) has a zero in the neighborhood of
z* = (2%,...,37), where z* is the solution of the Lagrange multipliers condi-
tions obtained in Proposition 1. The existence of the solution is thus proven.

Now we will show that the solution is unique.

Unigueness: The uniqueness of 2* is proven by contradiction. Suppose there
exists y* = (y¥,y3,...,y;) thatis a zero of w(y) such that 2* # y*.

Without loss of generality since * and y* are two probability vectors such
that 2* # y*, we are guaranteed* that they have at least two components i and
j such that 27 > yf and z} < yj. Intuitively this means, that if we increase
any one component of a probability vector, we should decrease another com-
ponent so as to ensure that the sum of the components is still unity.

Suppose now that 2} > y;. Then, by invoking the monotonicity of the
function p;(.), we obtain that p;(z}) < p;(y;). On the other hand, the condi-
tion % < y} implies that p;(z}) > p;(y;), where this is obtained by virtue
of the monotonicity of p;(.). But since 2* and y* are equilibrium points, we
know that p;(z}) = p;(2}) and that p;(y}) = p;(y;)- This forces a contradic-
tion since it is impossible to simultaneously maintain that : p;(z}) < pi(y;)
which is equivalent to p;(z}) < p;(y}) and p;(z}) > p;(¥;)-

Therefore 2* is unique.

4 Please note that the result is general and applies for any two distinct probability vectors.
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Part 3 Jacobian Properties at x*: Now, we move to the last part of the proof.
Consider the Jacobian at the point z* = (z7,23, ..., 2};), where the matrix A

has the arbitrary element a;; = dw;/dz;

r=z*
We can see that for i # j, a;; = % = z}zk dp’(m )
|
B=mp* r=x*

Similarly, for i = j, a; = %2

=—azr(l- .’Lf) dpi(-”ﬂi)
T=x*

A careful examination of the above matrix A, permits us to re-write it as
the product of two matrices B and D, where, A = BD, and where B and D
are the two matrices defined below.

_””1(1 «7) N zizy,
z33] —z3(1-z3) - 5'321*
B = . . . . .y
il ahay e —wh(i-a})
dpy (21)
png 0 0
—
0 dez(%2) 0
D= sy=c}
0 0 dpéxm(in)
zp=a}
Tt is clear that D is a negative semi-definite matrix since % <0
;
=z}

(it is negative because the function itself is decreasing).

We will show that the matrix B is positive semi-definite. First of all, ob-
serve that B is symmetric. Consider now the term 27 Bz where z is a vector
of dimension n. Then:

TBZ_ 2L~ Z] 17’1/13](Zl_z.7)2 >0

Based on the results in [37], more generally, if D is a diagonal negative def-
inite matrix, and B is a positive definite matrix, we can infer that the product
BD is negative definite.

Rest of the Conditions: 1t is immediately seen that Assumptions (ii)-(v) are sat-
isfied. It can also be proven that s(.) and W’(.) are Lipschitz by showing that
their first derivatives are bounded.

For small values of :n, it can be shown that the zeros of W (z) remain
in the vicinity of 2*. Theorem 1 can now be applied, implying that as § — 0,
and t0 — oo, the normalized random vector ﬂﬂ%@ converges in distribu-
tion. Therefore, z(t) converges in distribution to a normal distribution with
mean 2* independent of the initial allocation vector x(0), which concludes
that E(z(t)) converges to z*.

Following closely the techniques in [23], it is easy to prove that for a suf-
ficiently small 2,,;, approaching 0 and for any & > 0, there exists 0 < §* <1




Title Suppressed Due to Excessive Length 17

such that for all 0 < § < #* < 1 we have:

tli>rr010 |E(z(t)) —a*| <6

4 Empirical Results

The CMLS solutions has been rigorously tested for numerous cases and the
solutions obtained have been, in our opinion, categorically remarkable. It is
superior to the H-TRAA in terms of its simplicity, low computational com-
plexity and peak performance.

4.1 Problem Specification

We have tested our algorithm against some datasets used in the past so that
they can serve as benchmarks. ® These are two parametric objective functions
(referred to as E;(z;) and L;(;)) to be optimized, given below for a material
with index ¢ as:

E; = 9‘,—7(1 — g i) (6)
)
1 .
5
_ ¥ Tfa; > ¥ ®)

To ease the readability, we have used the notation that the profitability of
materials that have a smaller index decreases slower than the profitability of
materials that have higher indices.

The constants in the above functions (Eq. (6-8)) are based on the bound-
ary conditions due the contributions of z; at the boundary values, and are
not crucial in the optimization process. This is because the corresponding
unit value functions are the respective derivatives of the functions, and these
derivatives fall exponentially and linearly as per Eq. (9) and (10) respectively:

El(z;) =0.7- 7% )
L} = Max [0.7 — i - z;,0]. (10)

It is expedient to glean some input about the significance of these unit
value functions. To understand this, consider the functions Ej(z;), where the

5 We have also conducted experiments with a number of other objective functions, including
those reported in [7,8]. But E;(2;) and L;(;) are particularly useful in the sense that they ap-
propriately model a large family of distinct material unit value functions used for these datasets
are representative of the class of concave objective functions addressed here.
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relative profitability of material ¢ decreases with z;, its presence in the mix-
ture, exponentially. Indeed, if 2o = 0.3 (i.e., material 2 fills 30% of the knap-
sack), the marginal profitability of increasing the amount of x5 is =203 =
o—06

Unlike the exponential function, the linear function, Lj(z;) has an interest-
ing peculiarity that the function for material i intersects the X-axis at a finite
point, implying that the function being optimized is quadratic. Thus, it attains
a maximum value at this point, after which it remains constant. Clearly, after
this intersection point, it is futile to add any additional quantity of material i.

From an experimental viewpoint®, our aim is to find x, the amounts of the
materials to be added into the knapsack so as to maximize its value. In the
case of the first function, the goal is to:

n
maximize F(x) = Z E;(z;),
1

where E;(z;) = / p;(u)du, and p;(z;) = E.(z;),
0

subject toZ:ci =cand Vi € {1,...,n},z; > 0,
1

where Ej(z;) is given by Eq. (9).

Further, in the second case we aim to:

n
maximizeL(x) = Z Li(z;),

1
where L;(z;) = / p;(u)du, and p;(z;) = Li(z;),

0
subject toZmi =cand Vi € {1,...,n},z; >0,
1

where Li(x;) is given by Eq. (10).

4.2 Determining the CMLS Solution

To obtain the CMLS solutions to these problems, we formalize the Stochastic
Environments that the LA are to interact with. From what we presented ear-
lier in Section 3, the Stochastic Environments consists of the corresponding
unit volume value functions F' = {f](z1), f3(@2), ..., fi(2n)}, unknown to
CMLS. We can analyze their properties by applying the principle of Lagrange
multipliers to these maximization problems. After some simplification, one

6 In any general application domain, one will not be able to observe f;(z;) directly. Rather,
examining a potential solution may be the only way to reveal the success of the chosen allocation.
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sees that the conditions that characterize the optimal solution for the expo-
nential function of Eq. (9) are:

Ei(z1) = Ej(@2) = -+ = B} (zn)
Y i@ =candVie€ {1,...,n},z; > 0.

Similarly, the conditions that characterize the optimal solution for the linear
function of Eq. (10) are:

L (z1) = Ly(wz) = - = L, (zn)
Sizi=candVie {1,...,n},2; > 0.

4.3 Experimental Set-up

In the interest of completeness, in this section, we report the results of com-
paring our learning scheme with the H-TRAA policy. We consider here the
scenario when the data is synthetic. Although numerous experiments, for
various settings, were conducted we briefly report, the results for a binary,
quaternary and hexadecimal number of primitive materials. These were for
the following environments:

— In the first case, the material unit value function was the exponential func-
tion given by Eq. (9).

— In the second case, the material unit value function was the linear function
given by Eq. (10).

The results of our experiments are conclusive. They confirm the power of
the CMLS.

In sections 4.4 and 4.5, we chose some typical values of the tuning param-
eters. For these values, an ensemble of 1,000 independent replications with
different random number streams were performed to minimize the variance
of the reported results. In the different experiments, we report the different
values of the parameter A = 1 — ¢ for the CMLS and the parameter N of the
H-TRAA. In all the experiments, we assumed that ¢ = 1.

In section 4.6, we rather perform a more thorough comparison by cover-
ing all the range of possible tuning parameters. We ran the experiment for
107 iterations and for every choice of the tuning parameters .

4.4 Two-material Case:

In this set of experiments we focus on the two-material case. We compare the
CMLS with the H-TRAA under different learning parameters and under dif-
ferent environments (dynamic and static) and for the above-mentioned linear
and exponential functions for the two-material case. In the interest of simplic-
ity, we chose 6 typical values of A and 6 typical values of the resolution N.
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4.4.1 Static Environment
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Fig.1 This figure depicts the variation of 1 (t) in a static environment for: (a) The CMLS scheme
with different values of )\ for the exponential function, (b) The H-TRAA for different values of
the resolution N for the exponential function, (c) The CMLS scheme with different values of A
for the linear function, and (d) The H-TRAA for different values of the resolution N for the linear
function.

We first report the simulation results for the exponential function. Figure 1(a)
illustrates the evolution over time of z;(¢) of the ensemble corresponding to
a static environment for the CMLS under different values of A, while Figure
1(b) illustrates the behavior for the H-TRAA. Interestingly enough, the con-
vergence of both schemes exhibit similar properties. Similarly, we report the
simulation results for the linear function in which Figure 1(c) illustrates the
evolution of x1 (%) for the CMLS, while Figure 1(d) illustrates the case of the
H-TRAA. We focus on the rate of convergence by examining the time instant
where the ensemble average of z;(t) exceeds the value 90% of the optimal
value 2% = 0.66 (Where the 90%mz;* values is 0.6) for some chosen values.
These are given in Tables 1 and 2. From the tables, we can conclude that both
the CMLS and the H-TRAA schemes are comparable for different values of A
and N respectively.

Table 2 reports the rates of convergence of the CMLS and the H-TRAA for
the linear function for 90% value of z1*. By examining Table 2, we observe
that both the CMLS and the H-TRAA have comparable rates of convergence
for the different values of X and N respectively. For example, the rate of con-
vergence of the CMLS with A = 0.85 is 36 iterations, which is comparable to
the corresponding H-TRAA's value for N = 10, i.e., 49 iterations. Similarly,
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A Time | N Time
0.85 | 28 10 | 28
09 |32 20 | 55
095 | 67 50 | 143
0.97 | 101 100 | 280
0.99 | 307 200 | 591

Table 1 The rates of convergence of the CMLS and the H-TRAA for the exponential function for
different values of A and N respectively.

A Time | N Time
0.85 | 36 10 | 49
09 |42 20 | 62
0.95 | 97 50 | 147
0.97 | 144 100 | 271
0.99 | 497 200 | 596

Table 2 The rates of convergence of the CMLS and the H-TRAA for the linear function for dif-
ferent values of A and N respectively.

the rate of convergence for the CMLS with A = 0.97 of 144 iterations is com-
parable to the H-TRAA’s for N = 100, namely, 271. Another obvious remark,
is that as we increase N and ), the rates of convergences of the H-TRAA and
the CMLS are increased.

In addition, from Table 1 and Table 2, we observe that for our CMLS
scheme, for the same value of ), the convergence is faster for the linear func-
tion than the exponential function.

Figure 2(a), Figure 2(b), Figure 2(c) and Figure 2(d) depict the evolution
of the variance over time in a static environment for: (a) The CMLS scheme
with different values of A in the case of an exponential function, (b) The H-
TRAA for different values of the resolution N in the case of an exponential
function, (c) The CMLS scheme with different values of )\ in the case of a
linear function, and (d) The H-TRAA for different values of the resolution N
in the case of a linear function.

From both Figures 1(b) and 2(b), we observe that a large value of N yields
a low variance, i.e., the accuracy is high. The problem is that the rate of con-
vergence is slower than when we are using a lower value of N. A low value
of N results in a faster convergence, but it yields a higher variance from the
true underlying parameter. This confirms that the choice of the user-defined
learning parameter, N, reduces to a trade off between the speed and the cor-
responding accuracy.

Similarly, from both Figures 1(a) and 2(a), we observe that a large value of
) yields low variance, i.e., the accuracy is high. The problem is that the rate
of convergence is slower than when we are using a lower value of . A low
value of ) results in a faster convergence, but it yields a higher variance from
the true underlying parameter. Again, the choice of the user-defined learning
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Fig. 2 This figure depicts the evolution of the variance over time in a static environment for:
(a) The CMLS scheme with different values of X in the case of an exponential function, (b) The
H-TRAA for different values of the resolution N in the case of an exponential function, (c) The
CMLS scheme with different values of )\ in the case of a linear function, and (d) The H-TRAA for
different values of the resolution N in the case of a linear function.

parameter, )\, reduces to a trade off between the speed and the corresponding
accuracy.

4.4.2 Dynamic Environment

In this experiment, we investigate the behavior of the H-TRAA and the CMLS
for the two-material case in a dynamic environment. The dynamic environ-
ment was modelled by periodically swapping the rank-index k of the up-
dating probabilities for each fixed period. We report here the results for the
environment that switches after every 500 and 250 iterations in Figures 3 and
4 respectively. In the interest of brevity, we will not comment on the results
of the figures here because the same comments that we present later for the
multi-material case (reported in Section 4.5.2) apply here too.

4.5 Multi-material Case

To consider the multi-material case, we examine the scenario for the conver-
gence for four materials and for the case of the same two test functions. In
the case of the experiments reported, the optimal vector 2* had the following
components: z§ = 12/25, z5 = 6/25, a3 = 4/25, =} = 3/25.

The results for the static and dynamic environments are given in the next
two sub-sections.
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Fig.3 This figure depicts the variation of 21 (t) in a dynamic environment switching every 500t"
iteration for: (a) The CMLS scheme with different values of )\ for the exponential function, (b)
The H-TRAA for different values of the resolution N for the exponential function, (c) The CMLS
scheme with different values of X for the linear function, and (d) The H-TRAA for different

values of the resolution N for the linear function.
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Fig. 4 This figure depicts the variation of z1 (¢) in a dynamic environment switching every 250t"
iteration for: (a) The CMLS scheme with different values of A for the exponential function, (b)
The H-TRAA for different values of the resolution N for the exponential function, (c) The CMLS
scheme with different values of A for the linear function, and (d) The H-TRAA for different

values of the resolution N for the linear function.
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Fig. 5 The ensemble average of ||z — z*(| over time in a multi-material static environment for:
(a) The CMLS scheme with different values of ), in the case of an exponential function, (b) The
H-TRAA for different values of the resolution N in the case of an exponential function, (c) The
CMLS scheme with different values of ) in the case of a linear function, and (d) The H-TRAA for
different values of the resolution N in the case of a linear function.

4.5.1 Static Environment

Figure 5(a), Figure 5(b), Figure 5(c) and Figure 5(d) illustrate the evolution
ensemble average of ||z — z*|| over time in a static environment for: (a) The
CMLS scheme with different values of ), in the case of an exponential func-
tion, (b) The H-TRAA for different values of the resolution N in the case of
an exponential function, (c) The CMLS scheme with different values of X in
the case of a linear function, and (d) The H-TRAA for different values of the
resolution N in the case of a linear function.

Figure 6(a), Figure 6(b), Figure 6(c) and Figure 6(d) depict the evolution
of the variance over time in a static environment for the same four cases.

In the case of the CMLS, we note that a small value for X yields less accu-
racy, but a faster convergence. Similarly, for the H-TRAA, large values of N
yield more accuracy but a slower convergence speed.

4.5.2 Dynamic Environment

To investigate the performance of the schemes for dynamic environments,
we considered the case when the updating probabilities decreased with the
rank-index k. In order to starve the H-TRAA and the CMLS schemes from
this information, we opted to perturb the updating probabilities by permut-
ing them using a circular permutation at each “environment switch”. Thus,
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Fig. 6 The variance over time in a multi-material static environment for: (a) The CMLS scheme
with different values of ), in the case of an exponential function, (b) The H-TRAA for different
values of the resolution N in the case of an exponential function, (c) The CMLS scheme with
different values of \ in the case of a linear function, and (d) The H-TRAA for different values of
the resolution N in the case of a linear function.

in this sense, between time instant 0 and 499, the environment was charac-
terized by 2} = 12/25, 23 = 6/25, a3 = 4/25, z} = 3/25, and after the envi-
ronment switch, between instant 500 and 999, a circular permutation by one
position was invoked yielding #3 = 6/25, 23 = 4/25, 23 = 3/25, ] = 12/25.

We report the evolution of the ensemble average of ||z — 2*|| over time in
a dynamic environment switching each 500 iterations. Figure 7(a) yields the
result of the CMLS in the case of the exponential function, Figure 7(b) yields
the result of the H-TRAA in the case of the exponential function, Figure 7(c)
displays the result of the CMLS in the case of the linear function, and Figure
7(d) shows the results of the H-TRAA in the case of the linear function.

The next figure presents the same results but for increased values of switch-
ing frequency. In fact, both schemes are handicapped and are not able to ac-
curately track the optimal vector * for higher values of N and A.
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Fig.7 This figure depicts the evolution of the ensemble average of ||z —z* || over time in a multi-
material dynamic environment switching that switches each 500 iterations for: (a) The CMLS
scheme with different values of ), in the case of an exponential function, (b) The H-TRAA for
different values of the resolution N in the case of an exponential function, (c) The CMLS scheme
with different values of ) in the case of a linear function, and (d) The H-TRAA for different
values of the resolution N in the case of a linear function.
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Fig. 8 This figure depicts the evolution of the ensemble average of ||z —2* || over time in a multi-
material dynamic environment switching that switches each 250 iterations for: (a) The CMLS
scheme with different values of ), in the case of an exponential function, (b) The H-TRAA for
different values of the resolution N in the case of an exponential function, (c) The CMLS scheme
with different values of ) in the case of a linear function, and (d) The H-TRAA for different

values of the resolution N in the case of a linear function.
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4.6 Comparison of performance for a variety of values of the tuning
parameters

The results above give a good impression of the performance of the H-TRAA
and CMLS algorithms. In this section, we do a more systematic experiment
where the performance of the algorithms are compared for all possible choices
of the tuning parameters. We consider the case of quaternary and hexadeci-
mal number of primitive materials.

We consider the exponential and linear decay objective functions E;(;)
and L;(z;) as given in Eq. (6) and (8). We assume a dynamic system, which
means that the reward probabilities for the different materials vary with time.
More specifically, after a period of T iterations, the reward for the different
materials are randomly switched. For example, let’s assume a four materials
case, and that the rewards for materials 1, 2, 3 and 4 are given by E; (z1),
By(x2), B3(x3) and Ey(xy), respectively. After the period T, we randomly
switch the reward functions such that the rewards for material 1, 2, 3 and 4
are given by e.g. Fs(x1), B1(22), E,(x3) and Ey(x4), respectively. We consider
three different cases for the period T between every switch:

— T = 2000 iterations. We refer to this scenario as SHORT below.

— T = 2-10* iterations which is referred to as LONG below.

— We assume that T'is a stochastic variable with possible outcomes 2000, 8000
and 4 - 10%. The probabilities are P(T = 2000) = 20/26, P(T = 8000) =
5/26 and P(T = 4 - 10%) = 1/26 which means that, in average, the esti-
mation process spends an equal amount of time in each of the states “fast’
(T = 2000), ‘medium’ (T" = 8000) and "slow’ (I' =4 - 10%). We refer to this
scenario as RAND below.

The motivation for the RAND scenario, is that an algorithm should be able
handle environments where the dynamics change arbitrarily with time, i.e.
changing between slowly and rapidly varying. Naturally, the optimal values
of tuning parameters of an algorithm depend on the dynamics of the environ-
ment, but ideally the performance of the algorithm should not be too sensitive
with respect to these dynamics.

We compute estimation error using the root mean squared error (RMSE)

RMSE = - L $ (6 — ) 1
=% L:ZI R 15:21 (@i — wat) (11)
where R refers to the number of iterations while z;; refers the true and op-
timal amount of material i at iteration ¢ and Zj; denotes the estimate. We
compute the RMSE for each material and then take the average. To remove
Monte Carlo error, we ran the experiment for R = 107 iterations for every
case and for every choice of the tuning parameters in the algorithms.

The results are shown in Figures 9 and 10. For both the exponential and
linear decay reward function (Figures 9 and 10, respectively) and for all the
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Fig. 9 Exponential decay reward case (E;(z;)): Estimation error (RMSE) for the H-TRAA and
CMLS algorithms for a wide range of values of the tuning parameters. The tuning parameter
on the z axis refers to the interval width (inverse of the leaf node resolution) for the H-TRAA
algorithm and to 8 for the CMLS algorithm. The top and bottom rows refer to cases with 4 and
16 materials, respectively. The columns from left to right refers to the cases SHORT, LONG and
RAND, respectively.

six cases, we see that the CMLS algorithm outperforms the H-TRAA algo-
rithm with respect to peak performance. For the H-TRAA, the optimal leaf
node interval width seems to be about 0.01 and 0.02 for the exponential and
linear cases, respectively, while for the CMLS, the optimal value of the 0 de-
creases with the dimension 7. For both the CMLS and the H-TRAA, the per-
formance for the RAND case is about the same as for the LONG. This means
that both algorithms perform good for a system where the dynamics change
with time.

At this juncture, we shall draw some final remarks. There is a tradeoff
between the speed of convergence to the optimal action and the accuracy.
To conclude, it seems that in a dynamic environment, our scheme gives best
results for values of the learning rate ¢ in the neighborhood of 0.01, corre-
sponding to A = 1 — 6 in the neighborhood of 0.99. Such values do not only
yield the peak performance in dynamic environments but also correspond to
the fastest convergence rate. From the update equations of the CMLS speci-
fied by (1)~(2), we see that 6 controls how much the probability vector during
each iteration. When it comes to static environment, we observed that a value
as small as 0.001 for @ is able to guarantee high accuracy. Similar conclusions
and range of values are reported too in [43].
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Fig. 10 Linear decay reward case (L;(z;)): Estimation error (RMSE) for the H-TRAA and CMLS
algorithms for a wide range of values of the tuning parameters. The tuning parameter on the
axis refers to the interval width (inverse of the leaf node resolution) for the H-TRAA algorithm
and to 8 for the CMLS algorithm. The top and bottom rows refer to cases with 4 and 16 mate-
rials, respectively. The columns from left to right refers to the cases SHORT, LONG and RAND,
respectively.

5 Conclusions and Further Work

In this paper, we have presented an optimal and efficient solution to Stochas-
tic Non-linear Fractional Equality Knapsack (NFEK) Problem, which is a fun-
damental resource allocation problem based on incomplete and noisy infor-
mation [7,8]. Unlike the existing solutions [7,8], our primary contribution is
a continuous Learning Automata (LA)-based, optimal, efficient and yet simple
solution to the NFEK problem. Our solution is distinct from the one reported
in solutions [7,8] that uses multiple two-action discretized LA, organized in a
hierarchical manner, so as to be able to tackle the case of multi-materials. Our
solution does not need a hierarchical partitioning, and does not require us to
maintain dedicated two-action discretized LA that allocate a given amount
of resources among the two subsets.

Our LA solution is, rather, of a Reward-Inaction (R-I) type. Further, this
has been modified in order to accommodate non-absorbing barriers. The proof
of the convergence is based on Norman’s theory for learning processes char-
acterized by small learning steps [20,22]. Our solution, termed as the Con-
tinuous Multi-action Learning Automata Solution (CMLS) to the Nonlinear
Resource Allocation Problem, is easily implemented, and is, as such, a supe-
rior alternative to the state-of-the-art solution devised in [7, 8].
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The paper also contains numerous experimental results for static and dy-
namic environments that clearly demonstrate the efficiency of the CMLS scheme.
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