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Abstract

In this paper, we present an optimal, efficient and yet simple solution to a class
of the deterministic non-linear fractional equality knapsack (NEFK) problem —
a substantial resource allocation problem. The solution is shown to be superior
to the state-of-the-art in terms of convergence speed.

We provide a rigorous analysis that proves the optimality of our scheme
under general conditions. Our solution resorts to a subtle aggregation procedure
that drives the system towards equalizing the derivatives of the material value
functions in a similar manner to the Homo Egualis theory. Furthermore, we
report experimental results that catalogue the applicability of our solution to the
problem of rate limiting in cloud computing, which falls under the deterministic
NEFK problem.
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1. Introduction

The self-optimization aspect of Autonomic Computing (AC) systems (Kephart
and Chess, 2003) envisages dynamic allocation of a shared resource pool between
applications in order to yield optimal resource usage. In more formal terms, the
allocation is viewed as a vector p, where each component pi represents the share
of resources of a consumer i (Loureiro et al., 2012). Thus, the problem reduces
to an optimization problem with constraint on the resource capacity. The aim is
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to find an optimal allocation vector p∗ that maximizes a performance function
f that depends on p. We will show that the latter problem is an instance of
the deterministic non-linear fractional equality (Granmo and Oommen, 2011;
Granmo et al., 2007; Granmo and Oommen, 2010b,a). While there are myr-
iad solutions to different classes of knapsack problems (He et al., 2016), most
of them are static and are based on the worst case or average case scenarios.
Unlike the realm of convex optimization, NEFK uses a monotonicity assump-
tion, which is common in many real-life problems, including resource allocation
problems. In this paper, we will show that, by appropriately defining f , we are
able to deal with two distinct problems, namely: a utility optimization prob-
lem (Stanojevic and Shorten, 2010, 2009b) and a fairness problem (Stanojevic
and Shorten, 2009b, 2008) with constraint on the resource capacity. In order
to put our work in the right perspective, we emphasize that the deterministic
NEFK problem (Granmo and Oommen, 2011, 2010b,a) allows for a large set of
applications, including:

• A typical application is the problem of distributed rate limiting for cloud-
based services investigated in Stanejevic et al. (Stanojevic and Shorten,
2008, 2009a) where the resource to be shared among traffic limiters is the
bandwidth capacity. An optimal solution in this case aspires to achieve
a fairness postulate that states that: “the performance levels at different
servers should be (approximately) equal” (Stanojevic and Shorten, 2009a).

• Dynamic speed scaling of processes in cloud computing based on demand
and performance constraints in order to minimize energy consumption
(Stanojevic and Shorten, 2010).

• A class of utility maximization problems (Loureiro et al., 2012) for resource
allocation.

Our model for efficiently solving the NEFK problem is based on the theory
of dynamical systems. The model is simple and can be easily implemented in a
centralized or decentralized manner thanks to a“dissemination” property of our
devised algorithm. Our solution uses a subtle aggregation procedure to drive
the system towards equalizing the derivatives of the material value functions in
a similar manner to the Homo Egualis theory (De Jong et al., 2008a).

The rest of this paper is structured as follows. Section 2 provides the pre-
liminaries needed for the rest of the paper. Section 3 describes the details of
our solution as well as the main theoretical results of the paper. In Section
4, we provide some experimental results that catalogue the convergence of our
approach, its conformance to the theoretical findings, and its superiority to the
state of the art.

2. Background

The problem we address in this paper is referred to as a non-linear fractional
equality knapsack (NEFK) problem (Granmo and Oommen, 2011; Granmo et al.,
2007; Granmo and Oommen, 2010b,a).
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Deterministic non-linear equality fractional knapsack (NEFK) prob-
lem: involves n materials pi, 1 ≤ i ≤ n, where each material pi is available in
a certain amount 0 ≤ pi ≤ bi. Let fi(pi) denote the value of the amount pi of
material i. The problem is to fill a knapsack of fixed volume c > 0 with the
material mix ~p = [p1, . . . , pn] of maximal value

∑n
1 fi(pi) (Black, 2004).

The nonlinear equality FK problem is characterized by a separable objective
function. The problem can be stated as follows (Kellerer et al., 2004):

maximize f(~p) =
∑n
i=1 fi(pi)

subject to
∑n
i=1 pi = c and pi ≥ 0 for i ∈ {1, . . . , n}.

We suppose that the derivatives of the material value functions fi(pi) with
respect to pi, (hereafter denoted f ′i), are non-increasing. In other words, the
material value per unit volume is no longer constant as in the linear case, but
decreases with the material amount, and so the optimization problem becomes:

maximize f(~p) =
∑n
i=1 fi(pi), where fi(pi) =

∫ pi
0
f ′i(ξi)dξi

subject to
∑n
i=1 pi = c and pi ≥ 0 for i ∈ {1, . . . , n}.

Efficient solutions have been devised to the latter problem based on the
principle of Lagrange multipliers. In short, the optimal value occurs when the
derivatives f ′i of the material value functions are equal, subject to the knapsack
constraints (Bretthauer and Shetty, 2002):

f ′1(p1) = · · · = f ′n(pn)∑n
i=1 pi = c and pi ≥ 0 for i ∈ {1, . . . , n}.

2.1. State-of-the-art for deterministic NEFK and its applications to resource
allocation

Palomar and Chiang introduced the concept of decomposition for utility
maximization (Palomar and Chiang, 2006). Their approach relies on a dis-
tributed algorithm, where the optimization is performed over separable func-
tions that can be regarded as a distributed version of gradient ascent algorithm
(Mosk-Aoyama et al., 2010). Other approaches resort to a form of hierarchy,
where the decomposition methods used by Palomar and Chiang (Palomar and
Chiang, 2006) are a representative example. The essence of these methods is
to decompose an optimization problem into smaller ones, where each of them
can be further decomposed in a hierarchical manner. In order to place our pa-
per within the larger body of scientific research, we briefly present here some
representative studies on resource allocation in autonomic systems. Utility is
a relatively recent concept in computer science that has been borrowed from
the field of economics. Utility originally describes a measure of preferences over
some set of goods. Traditionally, Quality of Service (QoS) was defined in a bi-
nary manner, i.e., either met or unmet. Thus, many different allocations can be
“optimal” in that framework as long as the constraints of the system in terms
of QoS are satisfied. By introducing utility functions (Bennani et al., 2005;
Fulp et al., 1998), an allocation fitness can be measured in a non-binary manner
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in order to better quantify the satisfaction of a consumer with his share of a
resource.

In many real-life problems, utilities are usually related in a monotonic man-
ner to the amount of allocation. This monotonic property of the utility reflects
the fact that the performance of a system improves as more resources are allo-
cated to it. For instance, when it comes to a web service, the QoS measured
in terms of response time degrades monotonically as less CPU and memory re-
sources are allocated to the web server. Menasce and his collaborators (Bennani
et al., 2005) have advocated using performance-dependent utility functions in
resource allocation problems in distributed computing environments. Despite
the fact that the utility function is usually monotonic when it comes to resource
allocation, most of the available optimization paradigms have been developed
for convex functions. To the best of our knowledge, the only available work
in the literature that operates under the same assumption as our proposed ap-
proach is by Stanojevic and colleagues (Stanojevic and Shorten, 2008, 2009a).
However, the latter work (Stanojevic and Shorten, 2008, 2009a) requires mes-
sage exchange between pairs of the components of the allocation vector. In
contrast to this, our algorithm is less computationally complex since it does
not assume any pairwise message exchange. We will provide some experimental
results that show the superiority of our scheme to the approach of Stanojevic
et al. (Stanojevic and Shorten, 2008, 2009a).

Wang et al. (2008) employed a constrained non-linear optimization tech-
nique, combining both deterministic and stochastic optimization algorithms, to
dynamically allocate server capacity with the help of analytical models. An-
other body of methods for resource allocation that are radically different from
the approach presented in this paper include reinforcement learning (Dutreilh
et al., 2011) and negotiations between distributed agents (Boutilier et al., 2002).
In the realm of resource allocation problems, many combinatorial methods have
been used such as simulated annealing, and genetic algorithms. However, these
approaches do not fall under the scope of this article. Furthermore, it is worth
mentioning that myriad nature-inspired approaches can be found in the litera-
ture (Gao and Pan, 2016), but they are also outside the scope of this article. An
interesting concept in resource allocation, which emanates from the field of mi-
croeconomics, and more particularly from regulation in competitive markets, is
tâtonnement (Subramoniam et al., 2002). Tâtonnement aims to balance demand
and consumption using smart pricing techniques. The idea behind tâtonnement
is simply to increase the price of the resource whenever the demand is less than
consumption, in order to encourage consumption, while decreasing the price in
the opposite case. This concept was applied in computer systems by assigning
fictive budgets to the different applications competing for the shared resources.

Our devised solution in this article tries to equalize the derivatives of the
material value functions. The solution is similar to the Homo Egualis theory
(De Jong et al., 2008a). An agent in a Homo Egualis society compares his
payoff to the payoff of the rest of the agents. Each agent will tend to increase
his payoff in proportion to the payoff of agents that have a better payoff than
him, and decrease his payoff in proportion to the payoff of agents that have
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lower payoffs than him (De Jong et al., 2008a; Xing and Chandramouli, 2008;
De Jong et al., 2008b; de Jong and Tuyls, 2011). Instead, our solution equalizes
the derivatives of the material value functions by comparing the derivative of
the agent in question to the “mean” of the derivatives of all agents. This simple
and subtle principle allows the system to converge towards an optimal solution.

The novel contributions of this paper are listed below:

• We devise an optimal and yet efficient solution to the deterministic NEFK
problem under general conditions.

• We provide sound theoretical results that demonstrate the optimality of
our solution based on analyzing the resulting dynamical system and re-
sorting to a subtle perturbation argument. Unlike the mainstream litera-
ture, which deals with optimizing convex objective functions, the NEFK
problem involves monotonic functions.

• Experimental results show that our solution is significantly superior to the
state-of-the-art solution by Stanojevic (Stanojevic and Shorten, 2009b,
2008; Loureiro et al., 2012; Stanojevic and Shorten, 2009a) in terms of
convergence speed. Moreover, our solution is less computationally com-
plex since we do not require any message exchange as in Stanojevic et al.
(Stanojevic and Shorten, 2009b, 2008, 2009a).

3. A New Method for Solving the deterministic NEFK problem

Our aim is to find a scheme that moves towards optimizing the following
NEFK problem online:

maximize f(~p) =
∑n
i=1 fi(pi),where fi(pi) =

∫ pi
0
di(ξ)dξ

and di(pi) = f ′i(pi).
subject to

∑n
i=1 pi = c and pi ≥ 0 for i ∈ {1, . . . , n}.

We shall characterize the optimal solution to the identified deterministic
NEFK problem (Granmo and Oommen, 2011, 2010b,a).

Theorem 1. The material mix ~p = [p1, . . . , pn] is a solution to a given NEFK
if (1) the derivatives of the expected material amount values are all equal at ~p,
(2) the mix fills the knapsack, and (3) every material amount is positive, i.e.:

f ′1(p1) = · · · = f ′n(pn)∑n
1 pi = c and ∀i ∈ {1, . . . , n}, pi ≥ 0.

The above theorem is based on the well-known principle of Lagrange Multi-
pliers, and its proof is therefore omitted here for the sake of brevity.

At this juncture, we will provide an algorithm for solving the deterministic
NEFK problem.
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3.1. Algorithm for solving the deterministic NEFK problem

Consider a system F in the form of F (P (t)) = P (t+ 1) = P (t)− θD(P (t)),
where P = (p1, p2, . . . , pn), t ∈ N and 0 < θ < 1 as given below.

Primarily, we want F to be a system on the unit n-cube, that is

F : [0, 1]n −→ [0, 1]n

Let the functions di : [0, 1] −→ [0, 1] be continuously differentiable (at least C1)
and strictly decreasing, that is x < y implies di(x) > di(y).

Consider F : Rn −→ Rn given by

p1(t+ 1) = p1(t)− θ

(
1

n

n∑
i=1

di(pi(t))− d1(p1(t))

)

p2(t+ 1) = p2(t)− θ

(
1

n

n∑
i=1

di(pi(t))− d2(p2(t))

)
...

pn(t+ 1) = pn(t)− θ

(
1

n

n∑
i=1

di(pi(t))− dn(pn(t))

)
(1)

We want to prove, under suitable conditions, that this system has a unique
attracting fixed-point. The argument is valid for any hyperplane

n∑
i=1

pi(t) = c

c > 0. Without loss of generality, we will use c = 1. It turns out that these
hyperplanes are invariant, and that they have an attracting fixed-point. The
main observation is that we have a linear system in the di(pi).

If
n∑
i=1

pi(t) = 1

then

n∑
i=1

pi(t+ 1) =

n∑
i=1

pi(t)− θ

(
n · 1

n

n∑
i=1

di(pi(t))−
n∑
i=1

di(pi(t))

)

= 1− θ

(
n∑
i=1

di(pi(t))−
n∑
i=1

di(pi(t))

)
= 1

Hence
n∑
i=1

pi(t) = 1 =⇒
n∑
i=1

pi(t+ 1) = 1
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However, this does not ensure that all pi(t+ 1) ∈ [0, 1]. We must have

0 ≤ pi(t)− θ

 1

n

n∑
j=1

dj(pj(t))− di(pi(t))

 ≤ 1

for i = 1, 2, . . . , n.
Note that this simple calculation also shows that if

n∑
i=1

pi(t) = k

then
n∑
i=1

pi(t+ 1) = k

whenever this makes sense with respect to the other quantities involved in the
definition of the system. This means that the dynamic of the system “lives” in
hyperplanes of codimension 1, all of them parallel to p1 + p2 + · · ·+ pn = 0.

3.2. The fixed-point equation

Theorem 2. Assume the notation above, and assume that the functions di are
all strictly decreasing. Let

Mi = max
ξ∈[0,1]

di(ξ) = di(0)

mi = min
ξ∈[0,1]

di(ξ) = di(1)

Ii =[mi,Mi]

and

m = max
i∈{1,...,n−1}

( min
ξ∈[0,1]

di(ξ)) = max
i∈{1,...,n−1}

di(1)

M = min
i∈{1,...,n−1}

( max
ξ∈[0,1]

di(ξ)) = min
i∈{1,...,n−1}

di(0)

and assume m < M . Let

J =

n−1⋂
i=1

Ii = [m,M ]

and dn([0, 1]) = In. Assume In ∩ J 6= ∅. Let

h(ξ) = ξ +

n−1∑
j=1

d−1j ◦ dn(ξ)

and
d−1n (In ∩ J) = [ξl, ξr] ⊂ [0, 1] where ξl < ξr

Assume that h(ξl) < 1 and h(ξr) > 1.
Then the system (1) has a unique fixed point in [0, 1]n.
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Proof. The fixed-point equation in vector form is given by

F (P ) = P with P = (p1, . . . , pn) and

n∑
i=1

pi = 1

Hence we must have D(P ) = 0. We write

pn = 1−
n−1∑
i=1

pi

and in component form we then have for j = 1, . . . , n− 1

1

n

(
n−1∑
i=1

di(pi) + dn(1−
n−1∑
i=1

pi)

)
− dj(pj) = 0

and
1

n

(
n−1∑
i=1

di(pi) + dn(1−
n−1∑
i=1

pi)

)
− dn(1−

n−1∑
i=1

pi) = 0

for j = n. Rearranging these, we get

n−1∑
i=1

di(pi) + dn(1−
n−1∑
i=1

pi) + (1− n)dj(pj) = 0

for j = 1, . . . , n− 1, and

n−1∑
i=1

di(pi) + (1− n)dn(1−
n−1∑
i=1

pi) = 0

for j = n. The equations give a linear system for the vector

v = (d1(p1), d2(p2), . . . , dn−1(pn−1), dn(1−
n−1∑
i=1

pi))

with n × n-coefficient matrix C with 1 − n along the diagonal, and the rest of
the entries equal to 1.

C =


1− n 1 1 · · · 1

1 1− n 1 · · · 1
...

. . .
...

1 1 1 · · · 1− n


Let Lj denote the j-ht row in C, then

L1 = −
n∑
j=2

Lj (2)
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since each column in C consists of n − 1 entries 1 and one entry 1 − n. Hence
the rows are linearly dependent, so detC = 0.

Now (2) gives

Ln = −
n−1∑
j=1

Lj

so the matrix C reduces to

Ĉ =


1− n 1 1 · · · 1

1 1− n 1 · · · 1
...

. . .
...

1 1 · · · 1− n 1
0 0 · · · 0 0


The reduced row echelon form of Ĉ is given by

CR =


1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...

. . .
. . .

...
...

0 · · · · · · 0 1 −1
0 0 · · · · · · 0 0


To see this, let Lj , j = 1, . . . , n−1 be the j-th row in Ĉ, and Ki, i = 1, . . . , n−1,
be the i-th row of CR. Then

Lj =

n−1∑
i=1
i 6=j

Ki + (1− n)Kj

since this gives 1 in each column i 6= j and (1−n) in column j, j = 1, . . . , n−1.
In column n we get

(−1)(n− 2) + (1− n)(−1) = 2− n+ n− 1 = 1

Hence the system Cv = 0 reduces to the equations

dj(pj) = dn(1−
n−1∑
i=1

pi) = dn(pn) where j = 1, . . . , n− 1

with the additional requirement that

n∑
i=1

pi = 1

The functions di are all strictly decreasing and hence have unique inverse func-
tions d−1i , each defined in the range of di, an interval contained in [0, 1]. Now
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since dj(pj) = dn(pn) we obtain d−1j ◦dj(pj) = d−1j ◦dn(pn), so pj = d−1j ◦dn(pn)
provided that dn(pn) is in the range of each dj for j = 1, . . . , n− 1.

Let
di : [0, 1] −→ Ii ⊂ [0, 1]

and

Mi = max
ξ∈[0,1]

di(ξ) = di(0)

mi = min
ξ∈[0,1]

di(ξ) = di(1)

Ii =[mi,Mi]

Let

m = max
i∈{1,...,n−1}

( min
ξ∈[0,1]

di(ξ)) = max
i∈{1,...,n−1}

di(1)

M = min
i∈{1,...,n−1}

( max
ξ∈[0,1]

di(ξ)) = min
i∈{1,...,n−1}

di(0)

and assume m < M . Then J 6= ∅ where

J =

n−1⋂
i=1

Ii = [m,M ]

Let dn([0, 1]) = In. Then, from the above, we have two different cases

In ∩ J = ∅ (3)

In ∩ J 6= ∅ (4)

where (3) implies that we have no possibility of finding a solution in the required
range of states, pi ∈ [0, 1], but (4) makes solutions possible, but does not prove
their existence. Note that (3), and hence (4), are easily checked.

Assume (4) holds, and consider

h : d−1n (In ∩ J) −→ R+
0

where

h(ξ) = ξ +

n−1∑
j=1

d−1j ◦ dn(ξ)

Hence our problem in this case reduces to solving the equation

h(ξ) = 1 with ξ ∈ d−1n (In ∩ J) (5)

Note that d−1n (In ∩ J) 6= ∅ is a closed interval

d−1n (In ∩ J) = [ξl, ξr] ⊂ [0, 1] where ξl < ξr
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Furthermore, h = h(ξ) is a strictly increasing function on [ξl, ξr] as

h′(ξ) = 1 +

n−1∑
j=1

(d−1j )′(dn(ξ))d′n(ξ)

where (d−1j )′(dn(ξ)) < 0 and d′n(ξ) < 0, so the sum of composite derivatives is
positive, and hence

h′(ξ) > 1 for ξ ∈ (ξl, ξr)

This shows that h is a strictly increasing function on [ξl, ξr], and therefore there
exists a unique point ξ = ξ0 ∈ (ξl, ξr), such that h(ξ0) = 1 if h(ξl) < 1 and
h(ξr) > 1.

If this is the case, the system (1) has a unique fixed point. Hence we have
proved the theorem.

Theorem 3. The location of the fixed point, provided it exists, of the system (1)
is independent of the parameter θ. However, the Jacobian matrix and hence the
eigenvalues ξi at the fixed point are dependent on θ. We have

ξi −→ 1− when θ −→ 0+ for 2 ≤ i ≤ n

while ξ1 = 1 independent of θ.

Proof. The Jacobi matrix for the system (1) at a point P = (p1, p2, . . . , pn) is
given by

DF (P ) =


∂F1

∂p1
∂F1

∂p2
· · · ∂F1

∂pn
∂F2

∂p1
∂F2

∂p2
· · · ∂F2

∂pn
...

...
. . .

...
∂Fn
∂p1

∂Fn
∂p2

· · · ∂Fn
∂pn


A simple calculation shows that

∂Fi
∂pj

(pj) = − θ
n

∂dj
∂pj

(pj) if i 6= j

and
∂Fi
∂pj

(pj) = 1 +
(n− 1)θ

n

∂dj
∂pj

(pj) if i = j

Note that

− θ
n

∂dj
∂pj

(pj) > 0

and

1 +
(n− 1)θ

n

∂dj
∂pj

(pj) < 1
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Hence the Jacobi matrix has the form

DF (p) =


1 + (n−1)θ

n
∂d1
∂p1

(p1) − θ
n
∂d2
∂p2

(p2) · · · − θ
n
∂dn
∂pn

(pn)

− θ
n
∂d1
∂p1

(p1) 1 + (n−1)θ
n

∂d2
∂p2

(p2) · · · − θ
n
∂dn
∂pn

(pn)
...

...
. . .

...

− θ
n
∂d1
∂p1

(p1) − θ
n
∂d2
∂p2

(p2) · · · 1 + (n−1)θ
n

∂dn
∂pn

(pn)


We will now look at the structure of this matrix, let

εj = − θ
n

∂dj
∂pj

(pj)

then
∂dj
∂pj

(pj) = −n
θ
εj

If 0 < θ � 1, then 0 < εj � 1, and the numbers εj are of the same magnitude
for a regular family of functions {dj}. Furthermore

1 +
(n− 1)θ

n

∂dj
∂pj

(pj) = 1− (n− 1)εj

so
0� 1− (n− 1)εj < 1

Hence the structure of the Jacobi matrix is

MJ,n =


1− (n− 1)ε1 ε2 · · · εn

ε1 1− (n− 1)ε2 · · · εn
...

...
. . .

...
ε1 ε2 · · · 1− (n− 1)εn


The matrix MJ,n has (at least) one eigenvalue that equals 1. To see this, let

v =

[
εn
ε1
,
εn
ε2
,
εn
ε3
, . . . ,

εn
εn−1

, 1

]>
Then MJ,nv = v, so v is an eigenvector with eigenvalue 1. To see this, let Lj
denote the j-th row of MJ,n, j = 1, . . . , n− 1. We find that

Ljv =

n∑
i=1
i6=j

εi
εn
εi

+ (1− (n− 1)εj)
εn
εj

= (n− 1)εn +
εn
εj
− (n− 1)εn

=
εn
εj
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For Lnv we find

Lnv = (

n−1∑
i=1

εi
εn
εi

) + 1− (n− 1)εn = (n− 1)εn + 1− (n− 1)εn = 1

Now, we will resort to a perturbation argument.
We consider the matrix

MJ,n =


1− (n− 1)ε1 ε2 · · · εn

ε1 1− (n− 1)ε2 · · · εn
...

...
. . .

...
ε1 ε2 · · · 1− (n− 1)εn


where 1 � εi > 0. Let us assume that εi ≈ εj for all 1 ≤ i, j ≤ n. Define ε to
be the average of εi, 1 ≤ i ≤ n,

ε =
1

n

n∑
i=1

εi

and define the matrix Mε,n by

Mε,n =


1− (n− 1)ε ε · · · ε

ε 1− (n− 1)ε · · · ε
...

...
. . .

...
ε ε · · · 1− (n− 1)ε


Clearly Mε,n is symmetric, that is, Mε,n = M>ε,n. From Section 3, we know

that θ1 = 1 is an eigenvalue with an eigenvector u1 = (1, 1, 1, . . . , 1). Further-
more, θ = 1 − nε is an eigenvalue of algebraic multiplicity n − 1. Hence, we
have

θ2 = θ3 = · · · = θn = 1− nε
We claim that the geometric multiplicity is n− 1. To see this, let

uj = (−1, 0, 0, . . . , 1, 0, . . . , 0) where 2 ≤ j ≤ n

where the first component is −1, the j-th component is 1, and all other compo-
nents are 0 in uj .

Consider Mε,nuj , then a simple calculation shows that

Mε,nuj = (1− nε)uj
The details are as follows, where 2 ≤ j ≤ n:

Mε,nuj =



1− (n− 1)ε ε · · · ε · · · ε
ε 1− (n− 1)ε · · · ε · · · ε
...

...
...

...
...

...
ε ε · · · 1− (n− 1)ε · · · ε
...

...
...

...
...

...
ε ε · · · ε · · · 1− (n− 1)ε





−1
0
...
1
...
0
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=



−(1− (n− 1)ε) + ε
−ε+ ε

...
−ε+ (1− (n− 1)ε

...
−ε+ ε


=



−1 + nε
0
...

1− nε
...
0


= (1− nε)



−1
0
...
1
...
0


= (1− nε)uj

This shows that 1 − nε is an eigenvalue with an associated eigenvector uj for
2 ≤ j ≤ n. Furthermore, the set {ui}ni=1 forms a basis for Rn, in fact det(U) = n,
where U is the matrix with ui as columns. Hence we conclude that θ = 1− nε
is an eigenvalue with algebraic and geometric multiplicity n− 1.

The fixed-point equations are given by

1

n

n∑
j=1

dj(pj(t))− di(pi(t)) = 0

independent of the parameter θ.
However, we note from

DF (p) =


1 + (n−1)θ

n
∂d1
∂p1

(p1) − θ
n
∂d2
∂p2

(p2) · · · − θ
n
∂dn
∂pn

(pn)

− θ
n
∂d1
∂p1

(p1) 1 + (n−1)θ
n

∂d2
∂p2

(p2) · · · − θ
n
∂dn
∂pn

(pn)
...

...
. . .

...

− θ
n
∂d1
∂p1

(p1) − θ
n
∂d2
∂p2

(p2) · · · 1 + (n−1)θ
n

∂dn
∂pn

(pn)


that each element in the matrix DF (p) is dependent on θ. We have shown in
Section 3 that ξ1 = 1 is always an eigenvalue, and that the other eigenvalues
are approximated by ξi = 1− nε, where ε→ 0+ when θ → 0+.

3.3. The case of strictly increasing functions
So far, we have considered strictly decreasing smooth functions di : [0, 1] −→

[0, 1]. However, the same types of arguments apply to strictly increasing func-
tions.

Let {fi}ni=1 be a family of strictly increasing smooth functions

fi : [0, 1] −→ [0, 1] where i = 1, 2, · · · , n

Assume for simplicity that fi(0) = 0 and fi(1) = 1 for 1 ≤ i ≤ n. This
assumption will always ensure that all the components in the fixed-point vector
are located in the interval [0, 1].

The dynamical system describing the update algorithm will in this case
change its sign. Let θ > 0, and consider the discrete system

pi(k + 1) = pi(k) + θ

 1

n

n∑
j=1

fj(pj(k))− fi(pi(k))

 (6)

where i = 1, 2, · · · , n and

n∑
i=1

pi = 1
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Note here that
n∑
i=1

pi(k) = 1⇒
n∑
i=1

pi(k + 1) = 1

As in the case of strictly decreasing functions, the fixed-point equations are
given by

1

n

n∑
j=1

fj(pj)− fi(pi) = 0 where 1 ≤ i ≤ n and

n∑
i=1

pi = 1

Hence we obtain a linear system in the quantities fi(pi), as in the decreasing
case. We find

fj(pj) = fn(pn) where j = 1, 2, · · · , n− 1

The functions fi are all invertible, and hence we can write

pj = f−1j ◦ fn(pn) where j = 1, 2, · · · , n− 1

so we get

pn +

n−1∑
j=1

pj = 1

Let ξ = pn. Then we have

ξ +

n−1∑
j=1

f−1j ◦ fn(ξ) = 1

We define a function h by

h(ξ) = ξ +

n−1∑
j=1

f−1j ◦ fn(ξ)

The function h is smooth and strictly increasing on [0, 1], so it is easy to see
that h′(ξ) > 1. The fixed-point equations then reduce to the scalar equation

h(ξ) = 1

With the simplified conditions on the family {fi} we have

h(0) = 0 +

n−1∑
j=1

f−1j (0) = 0

h(1) = 1 +

n−1∑
j=1

f−1j (1) = n ≥ 2

Hence there exists a unique point ξ0 ∈ [0, 1] such that h(ξ0)− 1 = 0.
We have the following theorem:
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Theorem 4. The discrete dynamical system given by (6) has a unique fixed
point

Pf = (p1, p2, · · · , pn)

where 0 < pi < 1, 1 ≤ i ≤ n such that

n∑
i=1

pi = 1

It is apparent that the matrix DF (p) has the same form as in the case of de-
creasing functions. Hence the same arguments apply with respect to eigenvalues
in this case too. Thus, we obtain the following theorem:

Theorem 5. One of the eigenvalues of (6) at the fixed point is equal to 1,
while the rest are less than 1 in norm, as the eigenspace corresponding to 1 is
transversal to the invariant hyperplane. It follows that the fixed point is stable
and attracting.

3.4. A special case

We will consider a special case where the functions di, i = 1, . . . , n are of
the form

di(x) = αi exp(−βix)

where 0 < αi ≤ 1 and βi > 0.
By taking the logarithm on both sides in the definition of di this gives

d−1i (x) =
1

βi
log

αi
x

where x ∈ Ii

Furthermore, we find formally that

d−1i (dn(x)) =
1

βi

(
log

αi
αn

+ βnx

)
Hence

h(ξ) = ξ +

n−1∑
i=1

1

βi

(
log

αi
αn

+ βnξ

)
=

(
1 +

n−1∑
i=1

βn
βi

)
ξ +

n−1∑
i=1

1

βi
log

αi
αn

is a linear function in ξ.

4. Experimentation and analysis of results

In this section, we present our experimentation and analyze the results. In
Section 4.1, we examine the rate of convergence of our scheme for two families of
functions. While in Section 4.2, we compare our scheme to the state-of-the-art
competitive scheme attributed to Stanojevic et al. (Stanojevic and Shorten,
2008, 2009a). Finally, in Section 4.3, we report some experimental results that
demonstrate the applicability of our approach to the problem of rate limiting in
cloud computing.
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4.1. Rate of convergence

In this section, we shall provide the rate of convergence for two families of
functions.

Family 1. We provide the convergence rate for a family of di(x) functions given
by:

di(x) = exp(−βix) (7)

For the case of this family of functions di, in Figure 1, we report the rate
of convergence of our scheme as a function of the different values of θ, i.e,
the number of iterations needed for the euclidean distance between the iterates
vectors to reach the machine accuracy which is in the order of 10−16.
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Figure 1: Rate of convergence as a function of θ for the first family of functions di

Family 2. We provide the convergence rate for a family of di(x) functions given
by:

di(x) = exp(−βix2) (8)

For the case of this family of functions di, in Figure 2, we report the rate
of convergence of our scheme as a function of the different values of θ, i.e,
the number of iterations needed for the euclidean distance between the iterates
vectors to reach the machine accuracy which is in the order of 10−16.

4.2. Comparison results

To the best of our knowledge, the only available approach in the literature
that treats the deterministic NEFK problem is that of Stanojevic et al. (Stano-
jevic and Shorten, 2008, 2009a). However, the latter approach requires some
message exchange between different pairs of the components of the allocation
vector. In this section, we provide some typical comparison results that show the
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Figure 2: Rate of convergence as a function of θ for the second family of functions di

superiority of our approach to the work of Stanojevic (Stanojevic and Shorten,
2008, 2009a).

We choose di(x) functions given by:

di(x) = 0.7 exp(−ix) (9)

In Figures 3, 4, and 5, we report the evolution of the error for both our
approach and the approach taken by Stanojevic (Stanojevic and Shorten, 2008,
2009a) for n = 4, n = 10 and n = 20, respectively. In order to enable a
fair comparison, we use the same update parameter θ = 0.001 for both schemes.
From Figures 3, 4, and 5, we observe that our approach is an order of magnitude
faster than (Stanojevic and Shorten, 2008, 2009a).

In fact, in Figure 3, it took around 3850 iterations for the Stanojevic ap-
proach to achieve an error of less than 0.1, while our approach took around 2320
iterations to yield the same error. Similarly, in Figure 4, it took around 7705
iterations for the Stanojevic approach to reduce the error to less than 0.1, while
our approach took around 2065 iterations to achieve the same result. In Fig-
ure 5, it took around 12970 iterations for the Stanojevic approach to reach an
error of less than 0.1, while our approach took around 1895 iterations. Hence,
according to Figure 5, our approach is almost six times faster than the Stano-
jevic approach in reducing the error to less than 0.1. Interestingly, it seems
that the convergence speed of our approach is much less sensitive to the number
of dimensions than the Stanojevic approach. In fact, the Stanojevic approach
experiences a dramatic decrease in the convergence speed whenever the number
of dimensions increases.
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Figure 3: Evolution of the error for n = 4 for our approach and the Stanojevic approach
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Figure 4: Evolution of the error for n = 10 for our approach and the Stanojevic approach
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Figure 5: Evolution of the error for n = 20 for our approach and the Stanojevic approach

4.3. Application to rate limiting

We provide a proof of concept of our paradigm to the rate limiting problem
(Doyle et al., 2012; Stanojevic and Shorten, 2008, 2009a). We resort to a set of
n servers. Each limiter i is modelled as M/M/1 queue characterized by service
rate Ci(t) and packet arriving according to Poisson process with intensity λi.

The mean-response time at limiter i is given by:

MRTi(t) =
1

Ci(t)− λi
(10)

We follow the same line as in Stanojevic (Stanojevic and Shorten, 2009a)
and instead define the “spare-bandwidth” based on estimates of the arrival rate.
The spare-bandwidth will be used as the performance indicator here:

qi = λi − Ci (11)

In order to estimate λi, we merely use the exponential moving average ap-
proach, with learning parameter α:

λ̂i(t+ 1) = (1− α)λ̂i(t)) + αδ(t) (12)

where δ(t) is a random variable such that δ(t) = 1 if a packet arrived at the
time slot t and δ(t) = 0 otherwise.

We will use the Jain’s fairness index (JFI) (Bukh and Jain, 1992) to assess
how equal the performance indicators (q1(t), ..., qn(t)) are. Jain’s fairness is
defined as:

JFI =
(
∑n
i=1 qi(t))

2

n
∑n
i=1 qi(t)

2
(13)
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Please note that JFI lies in the unit interval. Values closer to 1 of JFI
indicate fairer resource distribution.
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Figure 6: Dynamics of the rate limiting in a static environment for n = 10

In the simulation, we use n = 10 limiters. The demand intensity at node i
is defined by:

λi(t) =
i

n+ 1
for i = 1, 2, . . . , n (14)

The aggregate service rate C =
∑n
i=1 Ci is 10% larger than the aggregate

traffic intensity
∑n
i=1 λi. We set α = 10−3 and the update parameter λ = 0.1.

For the sake of clarity, the equations for updating the Ci are given by:

Ci(t+ 1) = Ci(t)− λ

(
1

n

n∑
i=1

qi(Ci(t))− qi(Ci(t))

)
(15)

Note that Ci plays the role of pi, and qi plays the role of di.
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Figures 6a and 6c show the evolution of the vector of performance indicators:
q(t) = (q1(t), ..., qn) and its JFI. Figure 6b illustrates the estimate of the traffic
using our exponential moving average estimator.

Case of n = 4. Similar results are given for the case of n = 4. We report in
Figure 7a, Figure 7b and Figure 7c the evolution of spare-bandwidth, the arrival
estimates, and the fairness index, respectively.

0

5
0
0

1
,0

0
0

1
,5

0
0

2
,0

0
0

−0.2

0

0.2

0.4

t

q

q1
q2
q3
q4

(a) Evolution of the spare-bandwidth
for n = 4

0

5
0
0

1
,0

0
0

1
,5

0
0

2
,0

0
0

0

0.2

0.4

0.6

t

λ λ̂1

λ̂2

λ̂3

λ̂4

(b) Evolution of the arrival rate esti-
mates for n = 4

0

5
0
0

1
,0

0
0

1
,5

0
0

2
,0

0
0

0

0.5

1

t

J
F
I

Fairness Index

(c) Evolution of the fairness index for
n = 4

Figure 7: Dynamics of the rate limiting in a static environment for n = 10

4.3.1. Queues in a dynamic environment

We simulate a dynamic environment where the traffic intensity is altered
using a circular permutation each 500 time instants. This means that, between
time instants 0 and 499, we have

(λ1, λ2, . . . , λn) = (
1

n+ 1
,

2

n+ 1
, . . . ,

n− 1

n+ 1
,

n

n+ 1
)
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, then a circular permutation takes place at time instant 500 and the vector
becomes

(λ1, λ2, . . . , λn) = (
2

n+ 1
,

3

n+ 1
, . . . ,

n

n+ 1
,

1

n+ 1
)

The rate limiting algorithm is run with the λ parameter specified above and
the resulting q(t) and JFI(q(t)) are shown in Figure 8c and Figure 8a. This
simulation illustrates the case of changing demand patterns. We observe from
the figures that the rate limiting algorithm is still able to regulate the values of
λi(t) yielding optimal fairness.
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Figure 8: Dynamics of the rate limiting in a dynamic environment for n = 4

4.4. Discussion

At this juncture, we draw some insightful implications based on our experi-
mental outcomes:

• Our approach is an order of magnitude faster than the Stanojevic ap-
proach. Moreover, in contrast to the Stanojevic approach, the conver-
gence speed of our approach is less sensitive to the increase in the number

23



of materials (dimensions). This is illustrated in Figures 3, 4, and 5 where
we increase the number of dimensions from 4 to 20 without noticing a
significant decrease in the convergence speed. The informed reader would
observe that the Stanojevic approach suffers from an increase in the num-
ber of exchanged messages as the number of materials increases, which
slows down its convergence speed.

• When we consider the first family and the second family of functions given
by equations (7) and (8) respectively, we observe that the first family
achieves significantly faster convergence rate as seen from Figure 1 and
Figure 2. This can be explained by the fact that the functions in the first
family decrease at a much faster rate than those of the second family. This
can be easily seen by considering the derivatives of (7) and (8). Loosely
speaking, the functions described by the system of equations (8) are more
“flat” around zero than (7). Therefore a small change in pi(t) for the first
family leads to a bigger change in di(t) and therefore to a bigger change
in pi(t+ 1) compared to the second family.

• In Section 4.3, we consider a rate limiting application. We observe that
choosing a low value of λ ( λ = 0.1) yields fast convergence speed. Further-
more, the system is able to adapt to changes in a dynamic environment.

5. Conclusion

In this paper, we presented an optimal, efficient and yet simple solution
to a class of the deterministic non-linear fractional equality knapsack (NEFK)
problem that is superior to the state-of-the-art. While the majority of the
state-of-the-art studies consider convex function optimization, the NEFK prob-
lem discussed here involves monotonicity of the objective function, which is a
property that arises in many resource allocation problems. We provide a rigor-
ous theoretical analysis that demonstrates the optimality of our scheme. Our
simulation results illustrate the behaviour of the scheme and its optimality. An
application to the problem of rate limiting in cloud computing (Stanojevic and
Shorten, 2008, 2009a) is provided. Experimental results show the superiority of
our scheme to the state-of-the-art (Stanojevic and Shorten, 2008, 2009a).

We shall delineate some future research directions worth pursuing:

• Fairness applications: Our scheme bears similarity to the Homo Egualis
scheme (De Jong et al., 2008a) as both schemes seek achieving some type
of fairness. Therefore, it is interesting to explore applying our scheme to
different real-life applications where the Homo Egualis theory was applied
by other researchers as well comparing both our approach and the Homo
Egualis approach. Those problems include for instance fairness in multi-
agent social learning (De Jong et al., 2008b) and spectrum allocation in
cognitive networks (Ko et al., 2013; Xing and Chandramouli, 2008) to
mention a few.
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• Evolutionary game theory: Our approach can be extended to model pop-
ulation dynamics under decreasing fitness functions in the real of evolu-
tionary game theory (Chen and Wang, 2009; Barari et al., 2012). More
particularly, in these settings, pi can be used to model the size of the ith

population while di(pi) can be seen as its corresponding fitness function.

• Stochastic NEFK problem: The current solution can be extended to solve
the stochastic NEFK problem introduced (Granmo and Oommen, 2011,
2010b,a). The latter problem was applied for determining the optimal
polling frequencies of a web crawler as well as optimal sampling for es-
timation with constrained resources. According to the nomenclature of
the stochastic NEFK problem, pi is a polling probability, and di(pi) is a
binomial stochastic variable. Yazidi et al. introduced the concept of two
time scale learning automata in (Yazidi et al., 2017) which also can be
applied to solve the stochastic NEFK problem by estimating di(pi) using
a faster time scale than pi.

• Special case solution: In this paper, we treated the case where the fixed
point exists and we also gave conditions in Theorem 2 that ensure its
existence. However, treating the case when the optimal solution is not a
fixed point of our update equations remains an open research question.

• Hierarchical solution: Under a large number of materials, we can envisage
a hierarchical solution where items are divided into different groups at each
level as performed in (Granmo and Oommen, 2010b, 2011; Brodowski
and Podolak, 2011). The intuition is to divide the main problem into
smaller sub-problems that are easier to solve. However, this needs further
investigation as it is not clear how to divide the capacity between the
different groups.
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