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Abstract

Abstract: Random Walks (RWs) have been extensively studied for more than a century [1]. These

walks have traditionally been on a line, and the generalizations for two and three dimensions, have been by

extending the random steps to the corresponding neighboring positions in one or many of the dimensions.

Among the most popular RWs on a line are the various models for birth and death processes, renewal

processes and the gambler’s ruin problem. All of these RWs operate “on a discretized line”, and the walk

is achieved by performing small steps to the current-state’s neighbor states. Indeed, it is this neighbor-step

motion that renders their analyses tractable. When some of the transitions are to non-neighbour states, a

formal analysis is, typically, impossible because the difference equations of the steady-state probabilities are

not solvable. One endeavor on such an analysis is found in [2]. The problem is far more complex when the

transitions of the walk follow an underlying tree-like structure. The analysis of RWs on a tree have received

little attention, even though it is an important topic since a tree is a counter-part space representation of a

line whenever there is some ordering on the nodes on the line. Nevertheless, RWs on a tree entail moving

to non-neighbor states in the space, which makes the analysis involved, and in many cases, impossible.

In this paper, we consider the analysis of one such fascinating RW. We demonstrate that an analysis

of the chain is feasible because we can invoke the phenomenon of “time reversibility”. Apart from the

analysis being interesting in itself from an analytical perspective, the RW on the tree that this paper models,

is a type of generalization of dichotomous search with faulty feedback about the direction of the search,

rendering the real-life application of the model to be pertinent. To resolve this, we advocate the concept of

“backtracking” transitions in order to efficiently explore the search space. Interestingly, it is precisely these

“backtracking” transitions that naturally render the chain to be “time reversible”. By doing this, we are able

to bridge the gap between deterministic dichotomous search and its faulty version. The paper contains the

analysis of the chain, reports some fascinating limiting properties, and also includes simulations that justify

the analytic steady-state results.
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1 Introduction:

The theory of Random Walks (RWs) and its applications have gained an “exponential” amount of research

interest since the early part of the last century. From the recorded literature, one perceives that the pio-

neering treatment of a one-dimensional RW was due to Pearson in [3]. The RW is, usually, defined as a

trajectory involving a series of successive random steps, which are, quite naturally, modeled using Markov

Chains (MCs). MCs are probabilistic structures that possess the so-called “Markov property” – which, in-

formally speaking, implies that the next “state” of the walk depends on the current state and not on the

entire past states (or history). The latter property is also referred to as the “lack of memory” property, which

imparts to the structure practical consequential implications since it permits the modeler to predict how the

chain will behave in the immediate and distant future, and to thus quantify its behavior.

Applications of RWs: It would be no exaggeration to state that tens of thousands of papers have been

written that either deal with the analysis of RWs or their applications. Embarking on a comprehensive

survey would thus be meaningless. In all brevity, we mention that RWs have been utilized in a myriad

of applications stemming from areas as diverse as biology, computer science, economics and physics. For

instance, concrete examples of these applications in biology are the epidemic models described in [4], the

Wright-Fisher model, and the Moran Model in [5] etc. . . RWs arise in the modeling and analysis of queuing

systems [6], ruin problems [7], risk theory [8], and sequential analysis and learning theory as demonstrated

in [9]. In addition to the above-mentioned classical application of RWs, recent applications include mobility

models in mobile networks [10], collaborative recommendation systems [11], web search algorithms [12],

and reliability theory for both software/hardware components [13] (pp. 83–111).

Classification of RWs: RWs can be broadly classified in terms of their Markovian representations. Gen-

erally speaking, RWs are either ergodic or possess absorbing barriers. In the simplest case, the induced

MC is ergodic, implying that sooner or later, each state will be visited (w. p. 1), independent of the initial

state. In such MCs, the limiting distribution of being in any state is independent of the corresponding initial

distribution. This feature is desirable when the directives dictating the steps of the chain are a consequence

of interacting with a non-stationary environment, allowing the walker to not get trapped into choosing any

single state. Thus, before one starts the analysis of a MC, it is imperative that one understands the nature of

the chain, i.e., if it is ergodic, which will determine whether or not it possesses a stationary distribution.

A RW can also possess absorbing barriers. In this case, the associated MC has a set of transient states

which it will sooner or later never visit again. When the walker reaches an absorbing barrier, it is “trapped”,

and is destined to remain there forever. RWs with two absorbing barriers have also been applied to analyze

problems akin to the two-choice bandit problems in [14] and the gambler’s ruin problem in [7], while their

generalizations to chains with multiple absorbing barriers have their analogous extensions.

Although RWs are traditionally considered to be uni-dimensional (i.e., on the line), multi-dimensional
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RWs operate on the plane or in a higher dimensional space.

The most popularly-studied RWs are those with single step transitions. The properties of such RWs have

been extensively investigated in the literature. A classical example a RW of this type is the ruin problem

in [7]. In this case, a gambler starts with a fortune of size s, and decides to play until he is either ruined

(i.e. his fortune decreases to 0), or until he has reached a fortune of M . At each step, the gambler has a

probability, p, of incrementing his fortune by a unit, and a chance q = 1 − p of losing a unit. The actual

capital possessed by the gambler is represented by a RW on the line of integers from 0 to M , with the states

0 and M serving as the respective absorbing barriers. Of course, the game changes drastically to be ergodic

if a player is freely given a unit of wealth if he is bankrupt, i.e., when his fortune is 0, and he forfeits a unit

if he attains the maximum wealth of M . In these cases, the respective boundaries are said to be “reflecting”.

Analysis of Ergodic RWs: Ergodic MCs possess the fascinating property that the probabilities of being in

the various states converge to an asymptotic value, also known as the steady state or stationary distribution.

For a chain with W states, characterized by the Markov matrix, H , this distribution, say Π, satisfies:

HT Π = Π. (1)

Most of the RWs that have been formally analyzed operate “on a discretized line”, and since the walk

is achieved by performing small steps to the current-state’s neighbor states, such a neighbor-step motion

renders their analyses tractable. This is because the asymptotic probability, πi, of being in state i, can be

written in terms of πj , where {j} are integers centered around, or in the neighborhood of i. This then

reduces to solving difference equations of πi in terms of the πj ’s.

Analysis of Ergodic RWs with “Jumps” (RWJ): When some of the transitions are to non-neighbour

states, the MC takes a “jumps” to such a non-neighbor state, rather than a step. A formal analysis of RWJs

is, typically, impossible because there are no known techniques to solve the the corresponding difference

equations of the steady-state probabilities. The literature on RWJs is extremely sparse. One example RWJ

was reported in [2], and it was applied in the online tracking of spatio-temporal event patterns in [15, 16].

Analysis of Ergodic RWs on Trees: Although RWs with with transitions on a line, such as the gambler’s

ruin problem, have been extensively studied for almost a century, as one can observe from [1], that problems

involving the analysis of RWs on a tree are intrinsically hard and have received little research attention. This

is because they involves the hardest concepts of two arenas: Firstly, they involve specific RWJs, where the

transitions are to non-neighbor states. Secondly, the non-neighbor states have an additional constraint in

that they are associated with an underlying tree structure, as opposed to a line. In this paper, we consider

the analysis of one such fascinating RWJ. Although the analysis is seemingly impossible, we shall show that

because of the nature of the tree-based transitions, the phenomenon of time reversibility can be invoked,

and thus the analysis can be achieved.

Application of our tree-based RW: Although the analysis of our chain is pioneering and is a contribution

in its own right, it turns out that our RW is a generalization of a dichotomous search when the feedback

about the direction of the search is faulty or erroneous. In fact, typical classically-known dichotomous
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search schemes are deterministic in the sense that they work with non-faulty feedback. Thus, it is possible

to eliminate a whole subtree at each iteration, effectively shrinking the search space by half, until the target

node is discovered. However, under faulty feedback possessing a stochastic nature, the most intuitive way

to solve the problem is to perform a large enough number of tests at each level of the tree before deciding

whether to eliminate either the left or right subtree, and to then proceed iteratively until the deepest level is

reached [17]. Unfortunately, however, if by mistake a subtree that contains the target node is eliminated the

whole search process is “misled”. More precisely, schemes such as those reported in [17] are prone to error1.

How then do we circumvent the problem alluded to above? In our solution, we propose that the RW

does “backward” transitions in the tree so that to avoid the problem of sampling with a large number of

tests at each level. In addition, the RW is made “non-absorbing” so that to avoid getting trapped into a

subtree that does not include the target node. All of these concepts will be explained presently.

We believe that the current RW analyzed in this paper is important in its own right since it is known that

a dichotomous search of a sorted list is an order of magnitude faster than a sequential search. One should

further note that any line structure can be easily mapped into a tree structure if the nodes on the tree have

some inherent ordering between themselves.

History of tree-based RWs: To present the results of this paper in the right perspective, we mention that

the problem of considering RWs on a tree for parameter optimization [19] was first introduced by the authors

of the current paper in [20] and extended by Zhang et al. [18] to the case of symmetrical environments. The

current work is a generalization of our previous work [20] as we derive a general result which does not

involve the golden ratio condition as a lower bound on the transition probabilities along the optimal path in

the tree, but rather the more intuitively appealing ratio, namely 1
2 . It can thus be applied in many random

search problems. Furthermore, the transitions of the RW analyzed here are different from the one proposed

in [20] as the only allowed self-transitions take place at the leaves while no self transition takes place at the

root node. Additionally, this paper provides a guideline for the analysis of RWs on tree structures, and thus,

the design of RW schemes can be rendered more useful in designing engineering applications involving

some dichotomous faulty feedback responses. Finally, and most importantly, the current RW on a tree has a

very genuine interpretation as a form for dichotomous search with faulty feedback.

1.1 Contributions of this Paper

The novel contributions of this paper are the following:

• We submit a pioneering analysis for Random Walks with Jumps (RWJs) where the “jumps” are done

along the nodes of a tree superimposed over the line;

• The RWJ permits self loops at certain “terminal” states of the chain;

1These algorithms can be designed to yield a high probabilistic guarantee of reaching the target. To do this, they formulate a limiting
assumption: In order to choose a number of tests at each level that is large enough, one needs to know the exact probability by which
the environment suggests the right direction of the search. In this paper, we assume that the latter probability is unknown and that
the only known clue is that this quantity has a lower bound of 1

2
. The case when the probability of correct transition is less than 1

2
is

referred to as the symmetric environment [18].
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• The analysis that we submit utilizes the phenomenon of time reversibility, which provides us with a

powerful tool for analyzing such RWJs. We hope that our current analysis can pave the way towards

more interest and analysis of RWs of similar type.

• Our RW is a generalization of a dichotomous search with faulty feedback about the direction of the

search. We show that under a simple condition on the correctness of the feedback from an Oracle

(Environment), i.e, p, it is possible to accumulate the mass of the steady state probability of the RW

arbitrarily close to the optimal target node in the tree.

• We advocate the concept of probabilistic “backtracking” in dichotomous search which permits the

mechanism to “target” the direction of the search whenever the RW wrongly moves in a subtree

which does not include the target node. Interestingly, these “backtracking” transitions naturally lead

to bridging the gap between dichotomous search and “reversible Markov chains”. In fact, in the case of

our chain, the property of “reversibility ” of our Makov Chain emerges as a consequence of backtrack-

ing, which is a very intriguing result in itself. Ironically, the classical dichotomous search schemes

only use “downtracking” and never invoke a “backtracking” operation. Although the idea behind

“backtracking” is simple, its implications are powerful, and leads to an anlysis that allows for time

reversibility.

• The current work is an example where relatively straightforward but powerful scientific concepts can

be applied to yield significant results. This simplicity renders it easily readable and offers the readers

a promising tool in the design of AI-based engineering applications. We are currently investigating

further applications of the RW specially in problems involving some advanced types of local search.

1.2 Organization of this Paper

After having introduced the problem in Section 1, we proceed in Section 2 to introduce the powerful concept

of Time Reversible MCs which makes our analysis possible. In Section 3, we describe the RW as well as

present some analytical results. In Section 4, we report experimental results that support our theoretical

results which include steady-state results and simulation results for the chain’s transient behavior.

2 Time Reversible Markov Chains

A fundamental contribution of this paper is the analysis of a RW that is superimposed on a tree structure

using the concepts of time reversibility. This model can be see as a generalization of a deterministic dichoto-

mous search. Since this is crucial to this paper, this phenomenon is briefly surveyed here.

Some Markov chains have the property that the process behaves in just the same way regardless of

whether time is measured forwards or backwards. Kelly [21] made an analogy saying that “if we take a film

of such a process and then run the film backwards, the resulting process will be statistically indistinguish-

able from the original process.” This property is described formally in the following definition.
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Definition: A stochastic process X(t) is time reversible if a sequence of states (X(t1), X(t2), . . . , X(tn))

has the same distribution as the reversed sequence (X(tn), X(tn−1), . . . , X(t1)) for all t1, t2, . . . , tn.

Consider a stationary Ergodic Markov chain (that is, a Markov chain that has been in operation for a

long time) having transition probabilities Mst and stationary probabilities P {πs}. Suppose that starting at

some time we trace the sequence of states going backwards in time. That is, starting at time t, consider the

sequence of states Xt, Xt−1, Xt−2, . . . X0, It turns out that this sequence of states is itself a Markov chain

with transition probabilities Qst = (P{πt}/P{πs} ) ∗Mts. If Qst = Mst for all s, t, then the Markov chain

is said to be time reversible. Note that the condition for time reversibility, namely Qst = Mst, can also be

expressed as

P {πs}Mst = P {πt}Mts for all s 6= t . (2)

The condition in the above equation can be stated as, for all states s and t, the rate at which the process

goes from s to t (namely P{πs}Mst ) is equal to the rate at which the process goes from t to s (namely

P{πt}Mts). It is worth noting that this is an obvious necessary condition for time reversibility since a

transition from s to t going backward in time is equivalent to a transition from t to s going forward in time.

Thus, if πm = s and πm−1 = t, then a transition from s to t is observed if we are looking backward, and

one from t to s if we are looking forward in time.

The following theorem adapted from Ross and used universally ( [21–23]) gives the necessary and suf-

ficient condition for a finite ergodic Markov chain to be time reversible. The proof of the theorem can be

found in [23] (see Page 143).

Theorem 1. A finite ergodic Markov chain for which Mst = 0 whenever Mts = 0 is time reversible if and only if

starting in state s, any path back to s has the same probability as the reversed path. That is, if

Ms,s1 Ms1,s2 . . . Msk,s = Ms,sk Msk,sk−1
. . . Ms1,s

for all states s, s1, . . . , sk.

Using the above theorem, we state the result that any tree structure associated with a finite stationary

Markov process is time reversible. This follows from the avenue that a Markov chain resulting from the

“transition” operations on any tree structure is time reversible. In fact, this result is not totally new. Kelly

(see [21], Page 9) proved the following lemma.

Lemma (Adapted from Kelly [21].) If the graph G associated with a stationary Markov process is a tree, then the

process is time reversible.

Although Kelly reported this result, he did not demonstrate how to associate a tree with a stationary

Markov chain. In this paper, we shall give a formal definition for one such tree structure by organizing the

points on the line along a tree and prove the corresponding theorem regarding its time reversibility. The

application of time reversibility in the domain of self-organizing lists has been reported elsewhere [24].
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3 The Random Walk on Tree

The space of the search is arranged in the form of a binary tree with depth D = log2 (N), where N is an

integer. The Random Walker (RW) searches for the target leaf node by orchestrating a controlled random

walk on a tree. We assume the existence of an “Oracle”, also referred to as the Environment, Ξ, which

informs the RW, possibly erroneously (i.e., w. p. p), which way it should move to reach the target node2.

3.1 Definitions

Construction of hierarchy. The search space is constructed as follows: First of all, the hierarchy is

organized as a balanced binary tree with maximal depth D. For convenience, we will use the same notation

adopted in [20, 25] and index the nodes using both their depth in the tree and their relative order with

respect to the nodes located at the same the depth.

Root node. The hierarchy root (at depth 0), which we call S{0,1}.

Nodes at depth d. Node j ∈ {1, ..., 2d} at depth d, called S{d,j}, where 0 < d < D which has two children

nodes S{d+1,2j−1} and S{d+1,2j}. We say that S{d+1,2j−1} is the Left Child of S{d,j} and S{d+1,2j} is its Right

Child.

Nodes at depth D. At depth D, which represents the maximal depth of the tree, the nodes do not have

children.

Convention regarding the Leaves’ notation. In a same vein, since level “D + 1” is nonexistent, we use

the convention that Right Child of a leaf node is the same as the leaf node in question itself. Similarly, the

Left Child of a leaf node is the leaf node itself. Formally, we say that:

Left Child(S{D,j}) = Right Child(S{D,j}) = S{D,j} for j ∈ {1, ..., 2D}.

Target Node. The target node is a unique leaf node. We will later show that by imposing a simple

condition on the “effectiveness” of the Environment (a concept defined presently), that we can concentrate

the RW to be arbitrarily close to the target node.

Non-Target Node. They are leaf nodes different from the target node.

Effectiveness of the Walker. The probability to make a transition along the shortest path to the target

node is denoted p and is a constant. Effectively, this probability can be seen as the probability of the RW

making a “correct” movement towards the target node. However, whenever the random walker is situated

at the target node itself, the effectiveness translates into the probability of it staying in the target node, i.e,

this is represented by the probability of self-transition.

3.2 Structure of the Search Space

We intend to organize the search space in the form of a balanced binary tree. The random walker searches

for the target node by operating a random walk on the tree, moving from one tree node to another.
2The reader should note that we could have defined the RW without even invoking the concept of the “Oracle” or Environment, Ξ,

since it is merely a fictitious concept introduced to ease the understanding and readability of the paper. In addition, it emphasizes the
analogy with dichotomous search as we can see the Environment as a type of faulty Oracle as opposite to a “perfect” Oracle, as in a
classical dichotomous search.
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At any given time instance, the RW finds itself at a node S{d,j} in the tree, where j ∈ {1, . . . , 2d} and

0 ≤ d ≤ D. The Environment Ξ essentially instructs the RW, possibly erroneously (i.e., with probability p),

which way it should move to reach the target node.

• Reverse Transitions: Transitions of this type correspond to a movement to a lower level in the hierarchy.

This happens when the RW moves to the immediate Parent which allows the RW to escape from

getting trapped in a wrong subtree, i.e. one that does not contain target node.

• Top-down Transitions: Transitions of this type correspond to a movement to a deeper level in the hier-

archy. The RW performs a transition to a deeper level in the hierarchy by choosing a Child node which

is, hopefully, contained in a subtree that contains the target node.

• The only reflexive transitions (self-transitions) are allowed at the leaf node. We emphasize that we do

not allow a reflexive transition in the root node as done in our previous work [20].

This concludes the description of our RW. We shall now investigate its convergence properties.

3.3 Analysis of the Solution

In this section, we shall prove that the RW is asymptotically optimal. We shall show that, eventually, based

on an informed series of guesses, the RW will be able to concentrate its moves within nodes in the tree that

are associated with the target node, and this will be true if p is larger than 0.5.

Theorem 2. We suppose that the effectiveness p of the environment is strictly larger than 0.5. Let S{D,j∗D} be the

target node. Formally, LimD→∞π{D,j∗D} → 1.

Proof: Our intention is to prove that as D increased indefinitely, LimD→∞π{D,j∗D} → 1. We shall prove this

by analyzing the properties of the underlying Markov chain.

Let H be the corresponding transition matrix. Clearly, H represents a single closed communicating

class whose periodicity is unity. The chain is ergodic, and the limiting probability vector is given by the

eigenvector of HT corresponding to eigenvalue unity.

Π = [π{0,1}, π{1,1}, π{1,2}, . . . , π{D,1}, π{D,2}, . . . , π{D,2D}]. Then Π satisfies

HT Π = Π. (3)

Since the tree is a complete binary tree, in total, the tree contains 2D+1 − 1 nodes (since 2D+1 − 1 =

1 + 2 + ...+ 2D).

We now specify the elements of the transition matrix, H . For each node in the tree, we will give the

expression for the transition probabilities to the next states (nodes). To achieve this task, we distinguish

three cases, namely whether the considered node is a root node, intermediate node or a leaf node.

Let j∗D be the relative index of the target node among the leaf nodes located at level D.

Let Q{d,j},{D,j∗D} denote the shortest path in the balanced tree from the node S{d,j} to the target node

S{D,j∗D}. Whenever there is no confusion, we will denote the latter quantity as Q{d,j}.
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Transitions at the root node. Consider the root node S{0,1}. Since we do not allow a self-transition (from

the root node to itself) as in [20], this translates simply to the fact that p{0,1},{0,1} = 0.

Concerning the transitions to the children nodes from the root node, two cases emerge according to

whether the target node belongs to the left subtree or to the right subtree:

• If S{0,1},{1,1} ∈ Q{0,1}, then:

p{0,1},{1,1} = p

p{0,1},{1,2} = 1− p.

• If S{0,1},{1,2} ∈ Q{0,1}

p{0,1},{1,1} = 1− p

p{0,1},{1,2} = p.

Transitions at intermediate nodes. Consider an intermediate node S{d,j}, i.e, node j ∈ {1, . . . , 2d} at depth

d where 0 < d < D. In order to specify the transitions probabilities at an intermediate node, we have to

consider the following three cases:

1. If S{d,j} /∈ Q{d,j}, then:

p{d,j},{d−1,dj/2e} = p

p{d,j},{d+1,2j−1} + p{d,j},{d+1,2j} = 1− p

Informally, the above equations simply mean that backtracking has highest probability if the subtree

rooted in S{d,j} does not contain the target node.

2. Else if S{d,j} ∈ Q{d,j}, then:

(a) If S{d+1,2j−1} ∈ Q{d,j}, then:

p{d,j},{d+1,2j−1} = p

p{d,j},{d−1,dj/2e} + p{d,j},{d+1,2j} = 1− p.

(b) If S{d+1,2j} ∈ Q{d,j}, then:

p{d,j},{d+1,2j} = p

p{d,j},{d−1,dj/2e} + p{d,j},{d+1,2j−1} = 1− p

Transitions at the leaf nodes. The transitions probabilities at a leaf node depend on whether the latter is a

target node or a non-target node. We consider each of these cases individually.

• For a non-target leaf node:

p{D,j},{D−1,dj/2e} = p

p{D,j},{D,j} = 1− p
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• For the target node:

p{D,j},{D,j} = p

p{D,j},{D−1,dj/2e} = 1− p.

To clarify situations, we present a graphical example for the case when the depth of the tree is 3. Figure

1 specifies the transition matrix of the associated Markov chain when node S{3,7} is the target leaf node.

incorrect transition 

correct transition with p target node

{0,1}

 {1,2} {1,1}

 {2,4} {2,3}

  {3,8}{3,7} {3,6} {3,5}

 {2,2} {2,1}

 {3,4} {3,3} {3,2}{3,1}

Figure 1: An example of a Markov chain for the RWJ in which the depth of the tree is 3.

The main idea of proof is to demonstrate that the limiting probability increases geometrically with the

state indexes along the shortest path to the target node. As a consequence of this, the limiting probability

can be shown to be concentrated within an arbitrarily small interval around the target node, simply by

increasing the size of the tree.

Let j∗D be the relative index of the target node among the leaf nodes located at level D.

LetQ{0,1},{D,j∗D} denote the shortest path in the balanced tree from the root node S{0,1} to the target node

S{D,j∗D}.

Q{0,1},{D,j∗D} is composed of the sequence of the indexes of the nodes leading to the target node S{D,j∗D}

when starting from the root S{0,1}. Thus,Q{0,1},{D,j∗D} = [{0, 1}, {1, j∗1}, . . . , {l, j∗l }, . . . , {D, j∗D}], where j∗d is

the relative index of the node at depth d that belongs to the optimal path Q{0,1},{D,j∗D}. Equivalently, S{l,j∗d}
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is the node at depth l (0 ≤ l ≤ D) that is on the path that starts from the root node and that leads to the

target node. Clearly, j∗0 = 1.

Let S{D,j} be a non-target leaf node. Also, let Q{D,j},{D,j∗D} be the shortest path in the tree that connects

the non-target node S{D,j} to the target node S{D,j∗D}. Following the tree structure of the search space, the

path Q{D,j},{D,j∗D} is clearly composed by the concatenation of the two following sub-paths:

• A sub-path that originates from the non-target node S{D,j} and that does not intersect with the path

Q{0,1},{D,j∗D};

• And a second sub-path that intersects with Q{0,1},{D,j∗D} (or more exactly a sub-path of Q{0,1},{D,j∗D}).

Let S{k,j∗k} be the node whose index comes first in the ordered list of node indexes forming this sub-

path (i.e., the head of the sequence).

Therefore, Q{D,j},{D,j∗D} can be seen as the concatenation of Q{D,j},{k,j∗k} and Q{k,j∗k},{D,j∗D}.

Informally speaking, moving along Q{D,j},{D,j∗D} involves performing a series of reverse transitions from

the non-target leaf node to the first node who is the root of the subtree containing the target node, and then

performing top-down transitions in the direction of the target leaf node until the target node is attained.

Let us first study the transitions along the “reverse” path Q{D,j},{k,j∗k}. Examining the balance (equilib-

rium) equation of the MC at the the non-target leaf node S{D,j} gives:

π{D−1,dj/2e} =
p{D,j},{D−1,dj/2e}

p{D−1,dj/2e},{D,j}
π{D,j}. (4)

We now observe that the Markov Chain is time reversible [21]. We thus resort to the time reversibility

property in order to deduce the following equation:

π{d−1,dj/2e} =
p{d,j},{d−1,dj/2e}

p{d−1,dj/2e},{d,j}
π{d,j}, (5)

where d denotes any given level in the tree such that k ≤ d ≤ D, implying that:

π{d−1,dj/2e} =
p

p{d−1,dj/2e},{d,j}
π{d,j}. (6)

It is easy to note that p
p{D−1,dj/2e},{D,j}

< 1 since p{D−1,dj/2e},{D,j} > p.

Similarly, we consider the transitions along the path Q{k,i∗k},{D,j∗D}. Examining the balance (equilibrium)

equation of the Markov Chain at the the non-target node S{D,j∗D} gives:

π{D,j∗D} =
p{D−1,dj∗D/2e},{D,j∗D}

p{D,j∗D},{D−1,dj∗D/2e}
π{D−1,dj∗D/2e}. (7)

π{D,j∗D} =
p

p{D,j∗D},{D−1,dj∗D/2e}
π{D−1,dj∗D/2e}. (8)

By making use of the time reversibility property of the Markov Chain, we can easily deduce that along

the “top-down” path Q{k,i∗k},{D,i∗D}, for k ≤ d ≤ D:
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π{d,j∗d} =
p

p{d,j∗d},{d−1,dj∗d/2e}
π{d−1,dj∗d/2e}. (9)

We define e1 as Min( p
p{d−1,dj/2e},{d,j}

) for indexes {d, j} such that nodes S{d,j} are along the “reverse”

path Q{D,j},{k,j∗k}. Clearly, the latter quantity, e1, is always greater than 1.

In an analogous manner, we denote e2 to be the quantity e2 = Min( p
p{d,j∗

d
},{d−1,dj∗

d
/2e}

) for indexes {d, j}

such that the nodes S{d,j} are along the “top-down” path Q{k,i∗k},{D,i∗D}, for k ≤ d ≤ D. Then, e2 > 1 .

With these balance (equilibrium) equations in place, we are ready to deduce the relationship that relates

the stationary probability of the target node to the stationary probability of any non-target node. Combining

Eq. (6) and Eq. (9), and applying the reasoning behind the recurrence relationships we see that:

π{D,j∗D} > eD−kπ{D,j},

where e = e1e2. Note that since we have e1, e2 > 1, then e > 1.

To finalize the proof, we consider the steady state of the Markov Chain for for any finite depth D. To do

this, we invoke arguments similar to those used in [26]. Since e > 1, the limiting probabilities Π increases

geometrically with the state indexes, along the shortest path to the target node, until its reaches its maximum

at π{D,j∗D}. Since eD increases exponentially and we are speaking about the mean of an increasing geometric

progression, most of the mass will be concentrated among an arbitrarily small number of states close to the

target node S{D,j∗D}.

Thus, asD goes to infinity the steady state will be centered around π{D,j∗D} and will thus be be arbitrarily

close to 1. Hence the theorem.

Theorem 3. We suppose p > 0.5. Let the steady probability of the Markov Chain be:

Π = [π{0,1}, π{1,1}, π{1,2}, . . . , π{D,1}, π{D,2}, . . . , π{D,2D}]. (10)

Then, Max(Π) = π{D,j∗D}, where Max(.) is the max operator applied to a vector and that returns the maximum

element with tie breaks3.

Proof: The proof of the theorem is straightforward and is already implicitly proven in the proof of Theorem

2. In fact we have already expressed this in the previous proof as since we know that the limiting probabili-

ties Π increases geometrically with the state indexes along the shortest path to the target node, until its reaches

its maximum at π{D,j∗D}.

4 Simulation Results

In this section, we report some representative experimental results submitted to confirm the validity of the

theoretical results we have obtained.
3In this case, the maximum is unique.
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Since the convergence is asymptotic as the number of levels D tends to infinity, and due to the conse-

quential explosion of the memory requirements, we were not able to perform simulations for large values

of the tree depth D, i.e., those that can be considered to be large enough to be seen to tend to “infinity”. In

order to counter this limitation, we defined a neighborhoodN∗(i) as the ith neighborhood of the target node

which simply means all nodes that are located at the subtree rooted at node π{D−i,j∗D−i}. Observe that the

target node belongs to subtree rooted at node S{D−i,j∗D−i}, and that the latter subtree is composed of i levels.

Thus, we have, instead, reported the steady state probability of the neighborhood N∗(i) which, informally,

is the sum of the steady state probabilities of the nodes in N∗(i), i.e., belonging to the subtree rooted at node

S{D−i,j∗D−i}.

4.1 Empirical Verification of the Optimality

In this section, we report the steady probability in N∗(3) using simulation, by running the random walk for

107 iterations. We varied the number of nodes in the tree D from 8 to 12, and varied the effectiveness of the

environment p using the following three values: p = 0.7, p = 0.85 and p = 0.95.

In intermediate nodes, the RW is always faced with three transition alternatives (parent, right child or

left child). The Oracle/Environment suggests the correct transition with the probability p. To further enrich

the experiments, we performed experiments with different ways to “unevenly” distribute the remaining

probability 1 − p among the two incorrect transitions at the intermediate nodes. However, we discovered

that distributing this probability mass “evenly” or “unevenly” (for example, with probabilities 1
3 and 2

3 ) had

no effect on the convergence results4. We thus chose to “evenly” divide the remaining probability 1 − p in

between the two incorrect transitions, i.e., each incorrect transition occurs with the probability 1−p
2 in the

intermediate nodes. More specifically, if we suppose, for example, that at an intermediate node, the correct

search direction is a transition to the parent, i.e., to do a backtracking operation, then the transition to the

left child and right child will both takes place with probability 1−p
2 , while the transition to the parent will

occur with probability p.

In all the experiments that we report the results for, we chose the target node to be the rightmost node

in the hierarchy, i.e, node S{D,2D}. As expected, from Table 1, we observe that the values of the steady

state probability in N∗(3) approached 1. The latter value increased with p (which represented the quality

of the Oracle/Environment, and it attained its maximum values for p = 0.95. In fact, for p = 0.95, the

steady probability was greater than 0.999 for all the different values of D. Similarly, for p = 0.85, the steady

probability exceeded 0.99 for all the different values of D.

4This is also in line with the theoretical results where we did not impose any condition on distributing 1 − p. Thus, for the sake of
brevity, we will not report those experiments with “uneven” distributions of 1−p over the incorrect alternatives, and limit the reported
results to the case of “even” distributions, i.e., 1−p

2
.
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D p = 0.7 p = 0.85 p = 0.95

8 0.9530518 0.9922004 0.9993106

9 0.9527884 0.9922102 0.9993274

10 0.9532058 0.9920532 0.9993156

11 0.9526474 0.9922458 0.9992978

12 0.9529796 0.9921286 0.9999534

Table 1: Convergence to the neighborhood N∗(3) for various values of D and p.

In order to observe the rate of convergence by which the RW centers around the target node, we resorted

to running an ensemble of 1, 000 experiments so as to observe the chain’s transient behavior. In the following

four figures, Figures 2, 3, 4 and 5, we report the evolution of the steady state probability of N∗(3) for the

values of p = 0.6, p = 0.7, p = 0.8, p = 0.9 respectively. In every experiment, we used 200 iterations, since

we observed that the convergence in all the cases occurred in less than 200 iterations. The results from the

figures display the speed with which fast our scheme converges. In fact, we observe from Figure 5 that the

convergence took place before the 20 iterations transpired, and this was within a neighborhood of 0.98 for a

value of p = 0.9. However, as illustrated in Figure (2) for a value of p as small as 0.6, the scheme converged

slower. This is, of course, understandable because of the uncertain behavior of the Oracle/Environment. In

this case, it took around 140 iterations for the scheme to converge.
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Figure 2: Plot of the evolution of the steady probability in the neighborhood N∗(3) as a function of time, n,
for p = 0.6 and for different values of D.
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Figure 3: Plot of the evolution of the steady probability in the neighborhood N∗(3) as a function of time, n,
for p = 0.7 and for different values of D.
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Figure 4: Plot of the evolution of the steady probability in the neighborhood N∗(3) as a function of time, n,
for p = 0.8 and for different values of D.
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Figure 5: Plot of the evolution of the steady probability in the neighborhood N∗(3) as a function of time, n,
for p = 0.9 and for different values of D.
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5 Conclusions

This paper concerns the field of Random Walks (RWs), typically used to model birth and death processes,

renewal processes and the gambler’s ruin problem. RWs have been studied for more than a century, and

they have been primarily analyzed for walks on a line. RWs for two and three dimensions, have been

modeled by enforcing the random steps to be made to the corresponding neighboring positions in one or

multiple dimensions. RWs typically operate “on a discretized line” by forcing the walker to perform small

steps to the current-state’s neighbor states, rendering the analysis tractable. When any of the transitions

are to non-neighbour states (referred to as “jumps ” as opposed to steps), a formal analysis of the RW is,

typically, untractable, except in a very few cases such as the one examined in [2]. This paper concerns the

case when the jumps are performed as though a tree is superimposed on the line, and the jumps are to the

children or the parent of the node where the walker is.

RWs on a tree entail moving to non-neighbor states in the space, which makes the analysis involved, and

in many cases, impossible. However, in this case, we demonstrate that an analysis of the chain is feasible

because we can invoke the phenomenon of “time reversibility”. We, however, permit the operation of

“backtracking”, and interestingly, it is precisely these “backtracking” transitions that naturally render the

chain to be “time reversible”. Our analysis is possible because we have used the latter property of the chain.

Further, this RW turns out to be a type of generalization of dichotomous search with faulty feedback, which

has numerous real-life applications.

The paper has derived the formal analysis of the chain, and has also listed its fascinating limiting theo-

retical properties. The paper has also presented simulations that justify the chain’s analytic steady-state and

transient characteristics.
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