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Abstract The Exponentially Weighted Average (EWA) of observations is known
to be state-of-art estimator for tracking expectations of dynamically varying data
stream distributions. However, how to devise an EWA estimator to rather track
quantiles of data stream distributions is not obvious. In this paper, we present
a lightweight quantile estimator using a generalized form of the EWA. To the
best of our knowledge, this work represents the first reported quantile estimator
of this form in the literature. An appealing property of the estimator is that
the update step size is adjusted online proportionally to the difference between
current observation and the current quantile estimate. Thus, if the estimator is
off-track compared to the data stream, large steps will be taken to promptly get
the estimator back on-track. The convergence of the estimator to the true quantile
is proven using the theory of stochastic learning.

Extensive experimental results using both synthetic and real-life data show
that our estimator clearly outperforms legacy state-of-the-art quantile tracking
estimators and achieves faster adaptivity in dynamic environments. The quantile
estimator was further tested on real-life data where the objective is efficient online
control of indoor climate. We show that the estimator can be incorporated into a
concept drift detector for efficiently decide when a machine learning model used
to predict future indoor temperature should be retrained/updated.
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The volumes of automatically generated data are constantly increasing [27] and
such data usually requires to be analyzed in real time [18]. Unfortunately, conven-
tional statistical and data mining techniques are not applicable for such real time
analyzes [20]. Analysis of automatically generated data has been transitioning from
being predominantly offline (or batch) to primarily online (or streaming) [18]. A
wide range of streaming algorithms are continuously being developed pointed at
real time analyzes, like clustering, filtering, cardinality estimation, estimation of
moments or quantiles, predictions and anomaly detection.

In this paper we consider the problem of estimating quantiles of streaming
data. Streaming quantile estimation has been considered for a wide range of appli-
cations like portfolio risk measurement in the stock market [15,1], fraud detection
[40], signal processing and filtering [32], climate change monitoring [41], SLA vio-
lation monitoring [30,31], network monitoring [7,22], Monte Carlo simulation [36],
structural health monitoring [16] and non-parametric statistical testing [21],

The first and the second moments of data, i.e. the mean and variance, are most
commonly used as features in machine learning. However, as it is known in many
real-life applications, these features might sometimes be misleading. Quantiles are
better suited to extract the different aspects of data [11,12]. A feature selection
technique can further be applied to select the most appropriate quantile features
such as done in [29,9,35].

Suppose that we are interested in estimating the quantile related to some prob-
ability q. The natural approach is to use the q quantile of the sample distribution.
Unfortunately, such this conventional approach has clear disadvantages for data
streams as computation time and memory requirement are linear to the number
of samples received so far from the data stream. Such methods thus are infeasible
for large data streams.

Several algorithms have been proposed to deal with those challenges. Most of
the proposed methods fall under the category of what can be called histogram
or batch based methods. The methods are based on efficiently maintaining a his-
togram estimate of the data stream distribution such that only a small storage
footprint is required. Another ally of methods are the so-called incremental up-
date methods. The methods are based on performing small updates of the quantile
estimate every time a new sample is received from the data stream. Generally, the
current estimate is a convex combination of the estimate at the previous time
step and a quantity depending on the current observation. A thorough review of
state-of-the-art streaming quantile estimation methods is given in the related work
section (Section 2).

In data stream applications, a common situation is that the distribution of
the samples from the data stream varies with time. Such system or environment
is referred to as a dynamical system in the literature. Given a dynamical system,
two main problems are considered namely to i) dynamically update estimates of
quantiles of all data received from the stream so far or ii) estimate quantiles of
the current distribution of the data stream (tracking). Incremental methods are
well suited to address the tracking problem ii) while histogram and batch methods
mainly have been used to address problem i). Histogram and batch based methods
are not well suited for the tracking problem ii) and incremental methods typically
are the only viable lightweight alternatives [4].

To address the tracking problem ii), several incremental quantile estimators
have been suggested suggested [5,4,3,38,24,34,22]. The intuition behind the esti-
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mators are simple. If the received sample has a value below some threshold, e.g. the
current quantile estimate, the estimate is decreased. Alternatively, whenever the
received sample has a value above the same threshold, the estimate is increased.
Even though the estimators document state-of-the-art tracking performance [38],
neither of them use the values of the received samples directly to update the esti-
mate, but only whether the value of the samples are above or below some varying
threshold. Intuitively, this seems like a waste of information received from the data
stream. In this paper, we thus present an estimator that uses the values of the re-
ceived samples directly separating it from all incremental estimators suggested in
the literature. The estimator is such that the update step size is proportional to
the distance between the current estimate and the value of the sample. Thus if
the current estimate is off-track compared to the data stream, the estimator will
perform large jumps to rapidly get back on-track. A theoretical proof is provided
to document the convergence properties of the estimator in addition to extensive
simulation experiments. The experiments show that the estimator outperforms
several other legacy state-of-the-art quantile tracking algorithms.

The EWA of observations is known to be state-of-the-art estimator to track
expectations of dynamically varying data streams [14]. Interestingly, we will show
that the suggested quantile estimator in this paper is in fact an instance of a
generalized EWA such that quantiles and not expectations are tracked. To the
best of our knowledge, this is the first EWA based quantile estimator found in the
literature.

The paper is organized as follows. In Section 3 we present the novel quantile
estimator using an EWA of observations. In Section 4, we present a quantile esti-
mation algorithms based on the estimator in Section 3. In Section 5, we perform
extensive experiments that document the superiority of the suggested algorithm.
Finally, in Section 6 we apply the quantile estimator on real-life data related to the
problem of efficient online control of indoor climate. More specifically the estima-
tor is used to detect when a machine learning model should be retrained/updated
which is commonly referred to as concept drift detection [13].

2 Related Work

In this Section, we shall review some of the related work on estimating quantiles
from data streams. However, as we will explain later, these related works require
some memory restrictions which renders our work radically distinct from them.
In fact, our approach requires storing only one sample value in order to update
the estimate. The most representative work for this type of “streaming” quantile
estimator is due to the seminal work of Munro and Paterson [25]. In [25], Munro
and Paterson described a p-pass algorithm for selection using O(n1/(2p)) space for
any p ≥ 2. Cormode and Muthukrishnan [8] proposed a more space-efficient data
structure, called the Count-Min sketch, which is inspired by Bloom filters, where
one estimates the quantiles of a stream as the quantiles of a random sample of
the input. The key idea is to maintain a random sample of an appropriate size to
estimate the quantile, where the premise is to select a subset of elements whose
quantile approximates the true quantile. From this perspective, the latter body
of research requires a certain amount of memory that increases as the required
accuracy of the estimator increases [37]. Furthermore, in the case where the un-
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derlying distribution changes over time, those methods suffer from large bias in
the summary information since the stored data might be stale [4].

As Arandjelovic remarks [2], most quantile estimation algorithms are not single-
pass algorithms and thus are not applicable for streaming data. On the other hand,
the single pass algorithms are concerned with the exact computation of the quan-
tile and thus require a storage space of the order of the size of the data which is
clearly an unfeasible condition in the context of big data stream. Thus, we submit
that all work on quantile estimation using more than one pass, or storage of the
same order of the size of the observations seen so far is not relevant in the context
of this paper.

When it comes to memory efficient methods that require a small storage foot-
print, histogram based methods form an important class. A representative work
in this perspective is due to Schmeiser and Deutsch [28]. In fact, they proposed to
use equidistant bins where the boundaries are adjusted online. Arandjelovic et al.
[2] use a different idea than equidistant bins by attempting to maintain bins in a
manner that maximizes the entropy of the corresponding estimate of the histori-
cal data distribution. Thus, the bin boundaries are adjusted in an online manner.
Nevertheless, histogram based methods have problems addressing the problem of
tracking quantiles of the current data stream distribution[4] and are mainly used
to recursively update quantiles for all data received so far. Finally, Lou et al. [23]
perform extensive experiments to compare several histogram based algorithms.

Another group of methods are incremental quantile algorithms, which are par-
ticularly suitable to track quantiles of dynamically varying data stream distribu-
tions. In [6,3–5], the authors proposed modifications of the stochastic approxima-
tion algorithm [33]. While Tierney [33] uses a sample mean update from previ-
ous quantile estimates, [6,3–5] propose an exponential decay in the usage of old
estiamtes making them able to track quantiles of non-stationary data stream dis-
tributions. Indeed, a “weighted” update scheme is applied to incrementally build
local approximations of the distribution function in the neighborhood of the quan-
tiles. More recent approaches in this direction is the Frugal algorithm by Ma et al.
[24]. The RUMIQE and DUMIQE algorithms by Yazidi and Hammer [38] repre-
sents multiplicative updates compared to the additive updates of other incremental
methods. A nice property of the RUMIQE and DUMIQE algorithms and the es-
timator suggested in this paper is that the update size is automatically adjusted
dependent on the scale/range of the data. This makes the estimators robust to
substantial changes in the data stream. The DQTRE and DQTRSE algorithms by
Tiwari and Pandey [34] aim to achieve the same by estimating the range of the
data using peak and valley detectors. However, a disadvantage with these algo-
rithms is that several tuning parameters are required to estimate the range of the
data which renders the algorithms difficult to tune.

3 Quantile Estimator Using a Generalized Exponentially Weighted
Average of Observations

Let Xn denote a stochastic variable representing the possible outcomes from a
data stream at time n and let xn denote a random sample (realization) of Xn.
We assume that Xn is distributed according to some distribution fn(x) that varies
dynamically over time n. We denote the cumulative distribution of Xn with Fn(x),
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Notation Meaning
Xn Possible outcomes from data stream at time n
fn Distribution of Xn
Fn Cumulative distribution of Xn
Qn(q) Quantile of Xn associated with probability q

Q̂n(q) Estimate of Qn(q)

µ− E(Xn|Xn < Q̂n(q))

µ+ E(Xn|Xn > Q̂n(q))

Table 1 Key notations with their meaning.

i.e. P (Xn ≤ x) = Fn(x). Further, let Qn(q) denote the quantile associated with
probability q, i.e P (Xn ≤ Qn(q)) = Fn(Qn(q)) = q. A summary of the most
central notation is given in Table 3.

In 2017 Hammer and Yazidi suggested the DUMIQE algorithm [38] given by

Q̃n+1(q)← Q̃n(q) + λqQ̃n(q) if xn > Q̃n(q)

Q̃n+1(q)← Q̃n(q)− λ(1− q)Q̃n(q) if xn ≤ Q̃n(q)
(1)

which documents state-of-the-art tracking performance. However, a weakness of
the DUMIQE and other proposed quantile tracking algorithms is that neither of
them use the values of the received samples directly to update the estimate, but
only whether the value of the samples are above or below some varying threshold.
Intuitively, this seems like a waste of information received from the data stream.
We now propose an incremental quantile estimator where the update step size is
proportional to the distance between the received sample and current estimate.
Thus, if the current estimate is off-track compared to the data stream, the estima-
tor will initiate large jumps to rapidly get back on-track and thus more efficient
tracking is expected. The suggested estimator is described formally as follows

Q̂n+1(q)← Q̂n(q) + λcn
q

µ+
n − Q̂n(q)

∣∣∣xn − Q̂n(q)
∣∣∣ if xn > Q̂n(q)

Q̂n+1(q)← Q̂n(q)− λcn
1− q

Q̂n(q)− µ−n

∣∣∣xn − Q̂n(q)
∣∣∣ if xn ≤ Q̂n(q)

(2)

where µ+ = E(Xn|Xn > Q̂n(q)) and µ− = E(Xn|Xn < Q̂n(q)). Naturally, the
conditional expectations satisfy the inequality

µ− < Q̂n(q) < µ+

such that µ+
n − Q̂n(q) > 0 and Q̂n(q)− µ−n > 0. The factors q/(µ+

n − Q̂n(q)) and
(1 − q)/(Q̂n(q) − µ−n ) are included to ensure that the estimator converges to the
true quantile value.

The constants cn can be any sequence of positive and bounded values. The
estimator performed well when the fractions in Eq. (2) were “normalizied” as
follows

cn =

(
q

µ+
n − Q̂n(q)

+
1− q

Q̂n(q)− µ−n

)−1

(3)
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Substituting Eq. (3) into Eq. (2) we get

Q̂n+1(q)← Q̂n(q) + λan
∣∣∣xn − Q̂n(q)

∣∣∣ if xn > Q̂n(q)

Q̂n+1(q)← Q̂n(q)− λ(1− an)
∣∣∣xn − Q̂n(q)

∣∣∣ if xn ≤ Q̂n(q)
(4)

where

an =
q

µ+
n − Q̂n(q)

/(
q

µ+
n − Q̂n(q)

+
1− q

Q̂n(q)− µ−n

)
(5)

Please note that since µ+
n−Q̂n(q) > 0 and Q̂n(q)−µ−n > 0 we have that 0 < an < 1.

By factoring out Q̂n(q) and xn we get

Q̂n+1(q)← (1− λan)Q̂n(q) + λanxn if xn > Q̂n(q)

Q̂n+1(q)← (1− λ(1− an))Q̂n(q) + λ(1− an)xn if xn ≤ Q̂n(q)

which can be written as

Q̂n+1(q)← (1− bn)Q̂n(q) + bnxn (6)

where bn = λ
(
an + I

(
xn ≤ Q̂n(q)

)
(1− 2an)

)
and I(A) the indicator function

returning one (zero) if A is true (false).
Now we will present a theorem that catalogs the properties of the estimator

Q̂n(q) for a stationary data stream, i.e. Xn = X ∼ F (x), n = 1, 2, . . ..

Theorem 1 Let Q(q) = F−1(q) be the true quantile to be estimated. Applying the
updating rule in Eq. (6), we obtain:

lim
nλ→∞,λ→0

Q̂n(q) = Q(q)

The proof of the theorem can be found in Appendix A. Although the quantile
estimator Q̂n(q) given in Eq. (6) is designed to track quantiles for dynamic envi-
ronments, it is an important requirement that the estimator converges to the true
quantile for static data streams as verified by Theorem 1.

We end this section with a remark.
Remark 1: If the conditional expectations are symmetrically positioned on each
side of the quantile estimate, then Q̂n(q) − µ−n = Q̂n(q) − µ−n and an = q which
is equal to DUMIQE. In other words, we can interpret that Q̂n(q) − µ−n and
Q̂n(q)−µ−n ensure that the update rules take into account the asymmetries of the
data stream distribution on each side of the quantile.

3.1 Connection to the EWA

A simple and intuitive approach to track the expectation of a data stream distri-
bution, i.e. µn = E(Xn), is the weighted moving average

µ̂n =
1

Wn

n∑
i=0

wixi (7)
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where Wn =
∑n
j=1 wj . Using wn−h = · · · = wn = 1 and the other weights equal

to zero, Eq. (7) reduces to the standard moving average. Intuitively, it seems more
reasonable to use weights with decreasing values. The decrease should be more
rapid than the standard sample mean wi = 1/i to be able to track the changes in
the data stream.

Consider the following recursive update scheme

µ̂0 ← x0 (8)

µ̂n+1 ← (1− α)µ̂n + αxn (9)

where the current estimate is a convex combination of the estimate at the previous
time step and the observation. By substitution, we get

µ̂n+1 = α(xn + (1− α)xn−1 + (1− α)2xn−2 + · · ·+ (1− α)n−1x1) + (1− α)nx0
(10)

Interestingly, from Eq. (10) we see that Eq. (8) to Eq. (9) can be interpreted as an
EWA of observations. The estimator is highly popular and known to be the state-
of-the-art approach to track expectations of dynamically varying data streams.
Inspecting the incremental update form of our quantile estimator in Eq. (6), we
see that it is identical to the update form of Eq. (9), except that the 0 < bn < 1
varies with time. Thus by keeping the weights constant as in Eq. (9), the estimator
will track the expectation of the data stream distribution, while using the weights
0 < bn < 1 in Eq. (6), the estimator will track a quantile of the distribution.

4 Quantile Estimation Algorithm

The interpretation of the update rule in Eq. (6) as an EWA of observations (recall
Section 3.1) and Theorem 1 constitute some intriguing theoretical results on the
link between EWA and quantile estimation. However, the update rule in Eq. (6)
cannot be used directly since the conditional expectations, µ+

n and µ−n , are un-
known and need to be estimated. Probably the most natural approach is to track
conditional expectations using an EWA of observations as given in in Eq. (8) to
Eq. (9). This results in the following update rules:

• Q̂n+1(q)← (1− b̂n)Q̂n(q) + b̂nxn (11)

• If xn > Q̂n(q)

- µ̂+
n+1 ← Q̂n+1(q)− Q̂n(q) + (1− γ)µ̂+

n + γxn (12)

- µ̂−n+1 ← Q̂n+1(q)− Q̂n(q) + µ̂−n (13)

• Else

- µ̂+
n+1 ← Q̂n+1(q)− Q̂n(q) + µ̂+

n (14)

- µ̂−n+1 ← Q̂n+1(q)− Q̂n(q) + (1− γ)µ̂−n + γxn (15)

• ân+1 ←
q

µ̂+
n+1 − Q̂n+1(q)

/(
q

µ̂+
n+1 − Q̂n+1(q)

+
1− q

Q̂n+1(q)− µ̂−n+1

)
(16)

• b̂n+1 ← λ
(
ân+1 + I

(
xn ≤ Q̂n+1(q)

)
(1− 2ân+1)

)
(17)
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In each of the equations (12) to (15), the part Q̂n+1(q) − Q̂n(q) is included to
ensure that the conditional expectation estimates are relative to the current quan-
tile estimate Q̂n+1(q). Thus Eq. (11) tracks the overall trends of the dynamical
data stream while Eq. (12) to Eq. (15) are responsible for estimating the condi-
tional expectations relative to the quantile estimate. Thus, for most dynamic data
streams it is reasonable to use a value of the EWA tuning parameter, γ, that is on
a smaller scale than λ [19]. This is verified in our experiments. In the rest of the
paper, we denote this EWA quantile estimator approach for QEWA. We end this
section with a remark.

Remark1: We evaluated a second approach based on estimating the streaming
distribution, fn(x), and computing the unknown conditional expectations from
the estimated distribution. The streaming distribution where estimated by track-
ing several quantiles Qn(q1), Qn(q2), . . . , . . . , Qn(qK) and a linear spline were in-
terpolated between the quantile estimates. However experiments showed that the
QEWA approach performed better than this spline approach. The spline approach
therefore is not followed any further in the paper.

5 Experiments based on Synthetic Data

In this section we perform a thorough comparison of the performance of the sug-
gested algorithm QEWA and other quantile estimators in the literature. Figure 1
shows tracking of the quantile with probability q = 0.7 for the suggested algorithm
QEWA and DUMIQE. The true quantile is given as the dashed black line. The
tuning parameters are adjusted such that the estimation error in the stationary
parts after convergence is the same for the two algorithms. We see that the pro-
posed algorithm QEWA tracks the true quantile more efficiently after a switch
than the DUMIQE. For the suggested algorithm, the step size is proportional to
the difference between the observations and the quantile estimate (recall Eq. (4)).
After a switch, these differences are large, and our devised algorithm makes large
steps to get back on-track. The DUMIQE, and the other state-of-the art incremen-
tal algorithms, use the same step size independent of the these difference, resulting
in poorer tracking.

The results below show a more systematic evaluation of the performance of
the suggested algorithm against seven state-of-the-art quantile estimators namely
the DUMIQE and RUMIQE by Yazidi and Hammer [38], the estimator due to
Cao et al. [3], the Frugal approach by Ma et al. [24], the selection algorithm by
Guha and McGregor [17] and the DQTRE and DQTRSE algorithms by Tiwari
and Pandey [34]. For the DQTRE and DQTRSE algorithms we used values of the
tuning parameters recommended in [34], namely α = 0.1, β = (1− α)λ, pb = 1/10
and l = 1/4 which performed well in our experiments.

The estimator in this paper is designed to perform well for dynamically chang-
ing data streams and the experiments will focus on such streams. We considered
four different data cases. For the first case, the data stream distributions were
normally distributed and the expectations, µn, varied smoothly as follows

µn = a sin

(
2π

T
n

)
, n = 1, 2, 3, . . .
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Fig. 1 Quantile estimates in every iteration using the DUMIQE and the suggested algorithm
QEWA using ratio γ/λ = 1/100.

which is a sinus function with period T . For the second case, the data stream
distributions were also normally distributed, but the expectation switched between
values a and −a

µn =

{
a if nmodT ≤ T/2
−a else

We assumed that the standard deviation of the normal distributions did not vary
with time and was equal to one. For the two remaining cases, the data stream
distributions were χ2 distributed, one with smooth changes and one with rapid
swithces. For the smooth case the number of degrees of freedom, νn, varied with
time as follows

νn = a sin

(
2π

T
n

)
+ b, n = 1, 2, 3, . . .

where b > a such that νn > 0 for all n. For the switch case, the number of degrees
of freedom switched between values a+ b and −a+ b

µn =

{
a+ b if nmodT ≤ T/2
−a+ b else
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In the experiments we used a = 2 and b = 6.
We estimated quantiles of both the normally and χ2 distributed data streams

above using two different periods, namely T = 100 (rapid variation) and T = 500
(slow variation), i.e. in total eight different data streams. For each data stream
we estimated the 50, 70 and 90% quantiles ending up with a total of 24 different
estimation tasks.

To measure estimation error, we used the root mean squares error (RMSE) for
each quantile given as:

RMSE =

√√√√ 1

N

N∑
n=1

(
Qn(q)− Q̂n(q)

)2
(18)

where N is the total number of samples received from the data stream. In the
experiments, we used N = 106 which efficiently removed any Monte Carlo errors
in the experimental results. In order to obain a good overview of the performance
of the algorithms, we measured the estimation error for a large set of different
values of the tuning parameters of the algorithms.

Figures 2 to 5 illustrate the results of our experiments. For the normal distri-
bution period case (Figure 2), we see that the QEWA algorithm outperforms all
the algorithms in the literature. In accordance with the analysis in Section 4, the
QEWA algorithm performed the best using a small value of the ratio γ/λ. The
Cao et al. algorithm struggled with numerical problems for some choices of the
tuning parameters and therefore some of the curves are short.

For the normal distribution switch case (Figure 3), we see that the QEWA
algorithm again outperforms all the algorithms in the literature. Again we see
that the QEWA performs best using a small value of the ratio γ/λ.

For the χ2 distribution cases we see that the QEWA algorithm also here out-
performs the other algorithms. For q = 0.9, the QEWA algorithm documents com-
petitive results to the best performing alternative algorithms. Also here a small
value of the ratio γ/λ is the preferable choice.

Among the alternative algorithms there were no consistency in which algo-
rithms were closest to the performance of the QEWA, but overall the DUMIQE
and DQTRE seem to be closes. However, all the alternative algorithms suffer with
significantly poorer results than the QEWA for at least some cases. E.g. DQTRE
performed poorly when estimating quantiles in the tails (q = 0.9) and DUMIQE
for the switch cases.

q = 0.5 q = 0.7 q = 0.9
T = 100 1.4278 1.5279 1.7646
T = 500 1.4233 1.5433 1.7342

Table 2 Normal distribution smooth case: Root mean squared estimation error for the selec-
tion algorithm [17].

Tables 2 to 5 show results for the selection algorithm [17]. The algorithm does
not have any tuning parameters and the results thus are presented in tables. We
see that QEWA outperforms the selection algorithm with a clear margin for all
the different cases.
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Fig. 2 Normal distribution smooth case: The left and right columns show results for T = 100
and T = 500, respectively. The rows from top to bottom show results when estimating quantile
Qn(q = 0.5), Qn(q = 0.7) and Qn(q = 0.9), respectively. Ratio refers to the ratio between
the tuning parameters, i.e. ratio = γ/λ. The upper x axis refers to the step size in the Frugal
algorithms.
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Fig. 3 Normal distribution switch case: The left and right columns show results for T = 100
and T = 500, respectively. The rows from top to bottom show results when estimating quantile
Qn(q = 0.5), Qn(q = 0.7) and Qn(q = 0.9), respectively. Ratio refers to the ratio between
the tuning parameters, i.e. ratio = γ/λ. The upper x axis refers to the step size in the Frugal
algorithms.
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Fig. 4 χ2 distribution smooth case: The left and right columns show results for T = 100 and
T = 500, respectively. The rows from top to bottom show results when estimating quantile
Qn(q = 0.5), Qn(q = 0.7) and Qn(q = 0.9), respectively. Ratio refers to the ratio between
the tuning parameters, i.e. ratio = γ/λ. The upper x axis refers to the step size in the Frugal
algorithms.
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Fig. 5 χ2 distribution switch case: The left and right columns show results for T = 100 and
T = 500, respectively. The rows from top to bottom show results when estimating quantile
Qn(q = 0.5), Qn(q = 0.7) and Qn(q = 0.9), respectively. Ratio refers to the ratio between
the tuning parameters, i.e. ratio = γ/λ. The upper x axis refers to the step size in the Frugal
algorithms.
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q = 0.5 q = 0.7 q = 0.9
T = 100 2.0541 2.3171 2.5479
T = 500 2.0947 2.3489 2.5427

Table 3 Normal distribution switch case: Root mean squared estimation error for the selection
algorithm [17].

q = 0.5 q = 0.7 q = 0.9
T = 100 1.4441 1.7423 2.4316
T = 500 1.4386 1.7273 2.6951

Table 4 χ2 distribution smooth case: Root mean squared estimation error for the selection
algorithm [17].

q = 0.5 q = 0.7 q = 0.9
T = 100 2.0367 2.3913 3.3717
T = 500 2.0462 2.4137 3.1166

Table 5 χ2 distribution switch case: Root mean squared estimation error for the selection
algorithm [17].

In summary the QEWA algorithm outperforms all the different state-of-the-art
algorithms from the literature. Best performance is achieved using a small value
of the ratio γ/λ.

6 Real-life Data Experiments – Concept Drift Detection

In most challenging data prediction tasks, the relation between input and output
data evolves over time. Thus if static relationships are assumed, prediction per-
formance will degrade with time. In the field of machine learning and data mining
this phenomenon is referred to as concept drift [13]. Different strategies have been
suggested to detect when the performance of the predictive model degrades and
thus should be retrained/updated [13]. Current state-of-the-art strategies monitor
the average predictive error, but for real-life applications it is often more relevant
to control that the prediction error rarely goes above some critical threshold. In
this example we demonstrate how to perform concept drift detection and adapta-
tion on such a critical threshold by tracking an upper quantile of the prediction
error distribution, e.g. the 80% quantile. As an application domain, we investigate
the case of efficient control of indoor climate.

Heating, ventilation and air conditioning (HVAC) systems typically control
indoor climate by reacting on the current room conditions such as indoor temper-
ature. However, given the time required for a HVAC system to adjust to changes
in the indoor climate, such strategies always will lag behind resulting in poor
control of indoor climate and energy usage. This raises the need for building mod-
els that forecast future indoor climate temperature and use this as input to the
HVAC system. Zamora-Mart́ınez et al. [39] propose to use artificial neural network
(ANN) models to forecast future indoor temperature based on a total of 20 fea-
tures including outdoor climate variables such as temperature and precipitation
amounts and indoor climates variables such as CO2 level. Since more observations
are received with time and the relation between input and output may evolve with
time, the model is retrained in an online manner. The authors however do not take
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Fig. 6 The left and right panels refer to dining room and bed room, respectively. The x-
axis refers to the number of days since the observation started. The gray curves show the
forecasting error predicting 15 minutes into the future. The red curves show the linear trends
in the forecasting error.

advantage of concept drift detection in order to efficiently decide when to retrain
the model.

We now demonstrate how the suggested quantile estimator in this paper can
be used for concept drift detection for the online indoor temperature forecasting
problem described above. We consider the same dataset as in [39] where new ob-
servation of input and output variables is received every 15 minutes. We forecasted
indoor temperature 15 minutes into the future using an autoregressive (AR) model
of order one. In addition to the current indoor temperature, the current value of
the other 20 features were used as input to the forecasting model. Given the large
number of features, regularization of the model parameters was required to get a
reliable forecasts and we relied on LASSO regularization [10]3.

First, we trained the LASSO AR model based on eight days of observations and
used the model to predict 15 minutes into the future each time a new observation
was received. The results are shown in Figure 6. The figure demonstrates that if
the model is not retrained after day eight, the forecasting error gradually increases
with time (the red line). In other words, the data is subject to concept drift and the
forecasting model should be retrained as more observations are received. Instead
of retraining the model regularly according to a fixed periodicity which is clearly
ineffective, a sophisticated approach consists of retraining the model only if concept
drift is detected.

We now build a concept drift and model retraining procedure based on quantile
tracking. We required that the indoor temperature forecasting error rarely should
go above two degrees centigrade. We used the QEWA estimator to track the 80%
quantile of the forecasting error data stream (the gray curves in Figure 6). If the
quantile estimate went above two degrees centigrade, the model was retrained. We
trained the model for the first time after 24 hours of observations. The results are
shown in Figure 7. After the initial training after 24 hours of observations, the 80%

3 This model is a simple and natural forecasting model, but other and more advanced ma-
chine learning models that predict on the continuous scale, like ANN models, could also be
used.



Title Suppressed Due to Excessive Length 17

Fig. 7 The left and right panels refer to dining room and bed room, respectively. The x-axis
refers to the number of days since the observation started. The gray curves show the forecasting
error predicting 15 minutes into the future. The blue curves show tracking of the 80% quantiles
of the forecasting error data streams. The black dots along the x-axis show when the model
was retrained. The red curves show the linear trends in the forecasting error.

quantile estimate of the forecasting error distribution went above two degrees three
times and each time the model was retrained. The results demonstrates that by a
few selected retrainings of the model, the forecasting error is controlled, indicated
by a horizontal linear trend (red curves) in Figure 7. In conclusion, the example
demonstrates how the suggested quantile estimator can be useful for concept drift
detection and model adaptation.

7 Closing remarks

The exponentially weighted moving average of observations is known to be the
state-of-art estimator to track the expectation of dynamically varying data stream
distributions. In this paper, we have presented an incremental quantile estimator
that is in fact a generalized exponential weighted moving average estimator. To the
best of our knowledge, this is the first quantile estimator in the literature that falls
within this well-known class of efficient estimators. The experiments show that the
estimator outperforms state-of-the-art quantile estimators in the literature.

We demonstrate how tracking of quantiles has application in the field of ma-
chine learning. More particularly, we show how the suggested estimator can be
used for tracking quantiles of the prediction error distribution in order to detect
when a machine learning model should be retrained.

A potential ally for future research is to extend the QEWA estimator to si-
multaneously track multiple quantiles. One could of course, just run the QEWA
estimator for each quantile of interest, but this could potentially lead to a violation
of the monotone property of quantiles. The monotone property of quantiles, refers
to the requirement that an estimate of a higher quantile should be always bigger
than an estimate of a lower quantile e.g. the 50% quantile always be above the
30% quantile.
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A Proof of Theorem 1

We will first present a theorem due to Norman [26] that will be used to prove Theorem 1.

Norman [26] studied distance ”diminishing models”. The convergence of Q̂n(q) to Q(q) is a
consequence of this theorem.

Theorem 2 Let x(t) be a stationary Markov process dependent on a constant parameter
θ ∈ [0, 1]. Each x(t) ∈ I, where I is a subset of the real line. Let δx(t) = x(t+ 1)− x(t). The
following are assumed to hold:

1. I is compact
2. E[δx(t)|x(t) = y] = θw(y) +O(θ2)
3. V ar[δx(t)|x(t) = y] = θ2s(y) +O(θ2)

4. E[δx(t)3|x(t) = y] = O(θ3) where supy∈I
O(θk)

θk
< ∞ for k = 2, 3 and supy∈I

o(θ2)

θ2
→ 0

as θ → 0
5. w(y) has a Lipschitz derivative in I
6. s(y) is Lipschitz I.

If Assumptions 1 to 6 above hold, w(y) has a unique root y∗ in I and dw
dy

∣∣∣∣
y=y∗

≤ 0 then

1. var[δx(t)|x(0) = x] = O(θ) uniformly for all x ∈ I and t ≥ 0. For any x ∈ I, the

differential equation
dy(τ)
dτ

= w(y(t)) has a unique solution y(τ) = y(τ, x) with y(0) = x
and E[δx(t)|x(0) = x] = y(tθ) +O(θ) uniformly for all x ∈ I and t ≥ 0.

2.
x(t)−y(tθ)√

θ
has a normal distribution with zero mean and finite variance as θ → 0 and

tθ →∞.

Having presented Theorem 2, we are now ready to prove Theorem 1.

Proof We now start by showing that the Markov process based on the updating rules in Eq. (6)
and Theorem 1 satisfies the assumptions 1 to 6 in Theorem 2. We start by verifying assumption
2

E
(
δQ̂n(q)

∣∣∣ Q̂n(q)
)

=

= E
(
δQ̂n(q)

∣∣∣ Q̂n(q) ≥ X
)
P
(
Q̂n(q) ≥ X

)
+ E

(
δQ̂n(q) | Q̂n(q) < X

)
P
(
Q̂n(q) < X

)
=

= λcn
(
Q̂n(q)

) q

µ+n − Q̂n(q)

(
µ+n − Q̂n(q)

)(
1− F

(
Q̂n(q)

))

− λcn
(
Q̂n(q)

) 1− q
Q̂n(q)− µ−n

(
Q̂n(q)− µ−n

)
F
(
Q̂n(q)

)
= λcn

(
Q̂n(q)

)(
q − F

(
Q̂n(q)

))
(19)

where cn
(
Q̂n(q)

)
is as given in Eq. (3). We now let θ = λ, y = Q̂n(q) and w

(
Q̂n(q)

)
equal to

”everything” in Eq. (19) except λ. It is easy to see that assumption 2 in Theorem 2 is satisfied.

Further, since µ+n − Q̂n(q) > 0 and Q̂n(q)−µ−n > 0, w
(
Q̂n(q)

)
has a Lipschitz derivative and

assumption 5 is satisfied.
Next we turn to assumption 3.

E
(
δQ̂n(q)2

∣∣∣ Q̂n(q)
)

=

= E
(
δQ̂n(q)2

∣∣∣ Q̂n(q) ≥ X
)
P
(
Q̂n(q) ≥ X

)
+ E

(
δQ̂n(q)2

∣∣∣ Q̂n(q) < X
)
P
(
Q̂n(q) < X

)
=

= λ2

(
cn
(
Q̂n(q)

) q

µ+n − Q̂n(q)

)2 (
µ2,+n − 2Q̂n(q)µ+n + Q̂n(q)2

)(
1− F

(
Q̂n(q)

))

+ λ2

(
cn
(
Q̂n(q)

) q

Q̂n(q)− µ−n

)2 (
Q̂n(q)2 − 2Q̂n(q)µ−n + µ2,−n

)
F
(
Q̂n(q)

) (20)
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where µ2,+n = E(X2
n|Xn > Q̂n(q)) and µ2,−n = E(X2

n|Xn < Q̂n(q)). Further we know that

V ar
(
δQ̂n(q)

∣∣∣ Q̂n(q)
)

= E
(
δQ̂n(q)2

∣∣∣ Q̂n(q)
)
− E

(
δQ̂n(q)

∣∣∣ Q̂n(q)
)2

(21)

By substituting Eq. (19) and Eq. (20) into Eq. (21), we see that assumption 3 is satisfied with

s
(
Q̂n(q)

)
equal to everything in Eq. (21) except λ2. Since µ+n−Q̂n(q) > 0 and Q̂n(q)−µ−n > 0,

s
(
Q̂n(q)

)
is Lipschitz and assumption 6 is also satisfied. Assumption 4 can now be proved in

the same manner.
We will use the results of Norman to prove the convergence. It is easy to see that w

(
Q̂n(q)

)
in Eq. (19) admits one unique root Q̂n(q) = F−1(q) = Q(q)

(
note cn

(
Q̂n(q)

)
> 0 ∀Q̂n(q)

)
.

We now differentiate to get:

dw
(
Q̂n(q)

)
d Q̂n(q)

= c′n

(
Q̂n(q)

)(
q − F

(
Q̂n(q)

))
− cn

(
Q̂n(q)

)
f
(
Q̂n(q)

)
We substitute the unique root Q(q) for Q̂n(q) and get

dw
(
Q̂n(q)

)
d Q̂n(q)

∣∣∣∣
Q̂n(q)=Q(q)

= c′n(Qn(q)) (q − F (Qn(q)))− cn(Qn(q)) f (Qn(q))

= 0− cn(Qn(q)) f (Qn(q)) < 0

This gives

lim
nλ→∞,λ→0

E
(
Q̂n(q)

)
= Q(q) +O(λ)

and

V ar
(
Q̂n(q)

)
= O(λ)

Consequently

lim
nλ→∞,λ→0

Q̂n(q) = Q(q)




