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Abstract

The ability of large-eddy simulation (LES) to resolve the most energetic coherent 
structures of a spatially-evolving supersonic turbulent boundary layer over a flat plate 
at M∞ =2 and Reθ ≈ 6000 is analyzed using three types of local subgrid scale models. 
Aditionally, an Implicit LES (ILES), which relies on the intrinsic numerical 
dissipation to act as a subgrid model, is investigated to assess the consistency and the 
accuracy of the method. Direct comparison with data from high resolution DNS cal-
culations [S. Pirozzoli and M. Bernardini, Turbulence in supersonic boundary layers 
at moderate Reynolds number, J. Fluid Mech, 68, 120-168, 2011] provides validation 
of the different modeling approaches. Turbulence statistics up to the fourth-order are 
reported, which helps emphasizing some salient features related to near-wall asymp-
totic behavior, mesh resolution and models prediction. Detailed analysis of the near-
wall asymptotic behavior of all relevant quantities shows that the models are able to 
correctly reproduce the near-wall tendencies. The thermodynamic fluctuations, Trms 
and ρrms, show a lack of independence from SGS modeling and grid refinement in 
contrast to the velocity fluctuating field. The pressure fluctuations, which are assumed 
to be associated with the acoustic mode, are not significantly affected by the modeling 
and the mesh resolution. Furthermore, the comparison of different contributions to 
the viscous dissipation reveals that the solenoidal dissipation plays the most dominant 
role regardless of the model. Finally, it is found that the ILES is more likely to produce 
consistent results even though a small amount of numerical viscosity is introduced 
through a sixth-order skew-symmetric split-centered scheme to emulate the effects of 
unresolved scales.
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(STBL), Wall-adapting local eddy-viscosity (WALE), Dynamic Smagorinsky model
(DSM), Coherent Structures model (CSM), Implicit LES (ILES)
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The study of supersonic turbulent boundary layers (STBL) is crucial for under-
standing basic flow physics in turbulent wall-bounded flows. The study has also a 
great importance in many industrial applications, such as high speed external and 
internal aerodynamics [1, 2, 3, 4], combustion and detonation [5, 6]. For adiabatic 
STBL, and due to viscous heating, compressibility effects arise mainly from the large 
change in the fluid properties (variable-density flow). It is then commonly concluded 
that adiabatic supersonic turbulent boundary layers at moderate Mach numbers (typ-
ically M ≤ 5) can be studied using the same models as low-speed flows, as long as the 
variations in the mean flow properties are accounted for (see for example Morkovin 
1961 [7], Bradshaw, 1977 [8] and Smits & Dussauge, 2006 [9]). Adiabatic supersonic 
turbulent boundary layers were first investigated through experiments, in order to 
validate the Morkovin’s hypothesis (for a large data compilation, see Fernholz & 
Finley, 1977 [10]).

Three-dimensional numerical simulations of turbulent boundary layer are usu-ally 
classified as direct Navier-Stokes simulations (DNS) and large-eddy simulations 
(LES). In a DNS all relevant scales of motions are numerically resolved and therefore a 
detailed representation of a turbulent flow field can be obtained. In LES, only large 
energy-containing eddies are numerically resolved. This is accomplished by filtering-
out the high–frequency component of the flow field and using the low-pass-filtered 
form of the Navier-Stokes equations to solve for the large-scale component only. The 
effects of the filtered-out small-scale fields on the resolved fields are accounted for 
through the so-called subgrid-scale (SGS) model. Many different LES approaches 
have been developed for the construction of SGS models; some of these are described 
in this paper, which addresses their applicability in the case of supersonic turbulent 
flow over a flat plate at a zero-pressure-gradient. Our focus here is on developing a 
methodology for assessing LES approaches on a representative flow, which is the 
obvious pre-requisite before applying these models to more complex geometries.

Among others, Spyropoulos & Braisdell (1998) [11] reported LES of spatially-
evolving supersonic turbulent boundary layer at Mach number M = 2.25. Because 
of the low considered Mach number, the modeling of the isotropic part of the shear 
stresses was not found to have a considerable effect on the skin-friction coefficient, 
Cf . The insufficient amount of turbulent transport was attributed to the use of 
the dynamic Smagorinsky model, in which the eddy viscosity is computed using the
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smallest resolved scales. Hadjadj et al. (2015) [12] recently studied spatially-evolving 
STBL with cooled walls via well-resolved LES’s. Also, supersonic flat-plate bound-
ary layers have been investigated by Yan et al. (2002) [13] using monotonically 
integrated large-eddy simulation (MILES) approach. In this simulation, the numeri-
cal dissipation induced by the scheme substitutes the SGS eddy viscosity, mimicking 
from an energetic view-point the action of SGS terms on the flow dynamics. Their re-
sults indicate that the subgrid-scale effects can be adequately modeled using MILES 
without the need for the Smagorinsky model.

In LES, the accuracy of the resolved scales highly relies on the mesh size. Locally 
refined grids usually lead to more resolved turbulent energy but with costly CPU time 
and memory requirements. The strategy in LES is then to make the best compromise 
between accuracy and computational costs. Dissipation of a given SGS model may 
originate, in different proportions, either from the resolved velocity fluctuations or 
from the mean-averaged velocity gradients. In the recent work of Ben-Nasr et al.
(2016) [14], we presented a detailed study of a spatially-evolving STBL over a flat 
plate at M∞ = 2 and Reθ ≈ 2600. Different SGS models (namely the wall-adapting 
local eddy-viscosity (WALE) model, the Dynamic Smagorinsky model (DSM) and 
the Coherent Structures model (CSM)) as well as grid resolutions were used in order 
to compare the contribution of the SGS modeling on turbulence. The advantage and 
superiority of CSM and WALE in resolving high-speed compressible turbulent 
boundary layer over flat plate is clearly established in that study over computation-
ally costly DSM. It is also interesting to mention the performance of Implicit LES 
(ILES) with respect to other models. In the present study, we extend the previous 
work for higher Reθ, while using wider spanwise domain for various LES models. 
Much coarser grid resolutions have been employed to assess the effectiveness of the 
LES modeling compared to well-resolved LESs presented in Ben-Nasr et al., (2016)
[14]. We further highlight the interesting features of these LESs in light of the near 
wall interactions of the fluctuating quantities as a natural sequel of the previous work. 
After a brief description of the numerical methodology and the problem setup in 
section 2, we present the flow analysis in section 3. Turbulence statistics up to fourth-
order moments are reported in order to assess more specifically the near-wall behavior 
of the SGS models. Finally, the conclusions are drawn in section 4.66

2. Numerical methodology and SGS modeling67

For sake of brevity, we restrict the description of the governing equations used68

69 for the present study. The details of the numerical methodology as well as the 
modeling aspect can be found in Ben-Nasr et al., (2016) [14]. The convective fluxes70
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71
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74

are discretized using a sixth-order locally-conservative skew-symmetric split-centered 
formulation [15]. The viscous fluxes are discretized using a fourth-order compact 
central differences scheme. Time advancement is assessed by a standard explicit 
Runge-Kutta algorithm of third-order.

2.1. Modeling the SGS tensor75

The SGS stress tensor, τij = ρ (uĩuj − ũi ũj) is modeled via the definition of a SGS76

eddy viscosity, µsgs, as77

τij −
1

3 τkk δij = −2 µsgs(S̃ij − 
1
3
S̃kk δij ) (1)

where S̃ij = 1 

2

ale78

above SGS viscosity can be expressed as: µsgs = ρ Cs∆
2|S̃ |, where |S̃ | =

(∂ũi/∂xj + ∂ũj /∂xi) is the strain rate tensor of the resolved sc√ s. The

2S̃ijS̃ij79

80 is the second invariant of the strain rate tensor, and Cs is a dynamically-retrieved 
modeling constant. We use Yoshisawa [16] closure for the isotropic part of the SGS81

stress tensor, τkk = 2ρ CI∆
2|S̃ |2 . The model constant, CI , is dynamically calculated82
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101

for the DSM procedure, or set equal to 0.005 for the CSM (Moin et al. [17]). Unless 
stated, the isotropic part of the SGS stress tensor, τkk, is not modeled for CSM and 
WALE models.

Dynamic Smagorinsky model

In the Dynamic Smagorinsky procedure, the two model’s constants, Cs and CI , are 
dynamically extracted from the resolved flowfield quantities. A test filter, denoted

as (.̂), whose width is larger than the grid-filter width, is applied to the grid-filtered
quantities. The model’s constants are then calculated at the test-filter wavenumber, 
and are assumed to remain about the same within [ktest, kc] wavenumbers range. 
Denoting ∆̂ as the test-filter width and ∆ is the grid-filter width, it is common to 
define ∆̂ /∆ = 2. After dynamically retrieving Cs and CI , and to avoid any numerical 
instability due to negative values, both constants are averaged in the homogeneous 
direction (z), and clipped within [0, 0.08] and [0, 0.02], respectively.

Coherent structures model

For the coherent structures model, Cs is dynamically calculated using a function of 
the velocity gradient tensors. This function is based on the assumption which states 
that, for a well-resolved DNS grid, the SGS dissipation is small at the center of a 
coherent fine-scale eddy, and that the energy transfer between resolved and subgrid 
scales is located around this coherent eddy (Kobayashi [18]; Kobayashi [19];
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Onodera et al. [20]). The model’s constant, Cs, is thus defined by: Cs = Ccsm|Fcs|
3/2 

with Fcs = ˜/Ẽ, where Ccsm is a model’s parameter (by default equal to 1/30) and Fcs 

is the coherent structures function. ˜ and Ẽ are respectively the second invariant of 
the resolved velocity gradient and the magnitude of a resolved velocity gradient 
tensor, given by:106

Q̃
=

1

2

(
W̃ijW̃ij − S̃ijS̃ij

)
Ẽ =

1

2

(
W̃ijW̃ij + S̃ijS̃ij

)
(2)

107 with S̃ij and W̃ij are the velocity-strain tensor and the vorticity tensor in a grid 
scale flowfield, respectively. It follows that:

108

Q̃ = −
1

2

∂ũj

∂xi

∂ũi

∂xj
Ẽ =

1

2

∂ũj

∂xi

∂ũj

∂xi
(3)

109

110

111

112

Note that −1 ≤ Fcs ≤ 1, which assume that the model’s constant is bounded (0 ≤ 
Cs ≤ 0.05) and admits a weak variance.

Wall-Adapting Local Eddy-viscosity model

The WALE model estimates the eddy viscosity, based on the invariants of the 
velocity gradient as:113

µsgs = ρ∆2C2
w

(
S̃∗
ijS̃∗

ij

)3/2

(
S̃ijS̃ij

)5/2 
+ 
(
S̃∗ 
ij S̃

∗
ij

)5/4
(4)

with114

S̃∗

ij =
1

2

(
g̃i
2
j + g̃j

2
i

)
−

1

3
g̃k
2
kδij g̃i

2
j = g̃ikg̃kj (5)

115

116

117

118

Cw is a model’s constant, by default taken equal to 0.5 (Nicoud & Ducros [21]) and 
g̃ij = ∂ũi/∂xj .

2.2. Modeling the SGS heat flux
By analogy to the SGS stress tensor modeling, the SGS heat flux is modeled using 

an eddy-viscosity formulation, which can be written as:119

1

γ − 1
∂ (puj − pũj ) 

∂xj = −
µsgs

P rsgs
Cp

∂T̃

∂xj
(6)
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The SGS Prandtl number, Prsgs, is taken constant and equal to 0.9.120

2.3. Problem setup121

The incoming boundary layer is spatially evolving at a freestream Mach number,122

M∞ = 2, and an inlet Reynolds number, Reτin = ρwuτ δin/µw ≈ 450 or Reθin =123

ρ∞u∞θin/µ∞ ≈ 2000 (where uτ is the friction velocity, δin is the inflow boundary124
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layer thickness and θin is the momentum thickness at the inlet).
The computational domain used in this study is a box having a size of Lx × Ly × Lz 

= 106 δin ×9.13 δin ×4.77 δin in the streamwise (x), wall-normal (y) and spanwise (z) 
directions, respectively.

As shown in table 1, different grid resolutions are used with uniformly spaced grid 
in both streamwise and spanwise directions. Clustered grid is used in the wall-normal 
direction based on a stretching function Ly sinh(βη)/ sinh(β), where Ly is the the box 
size in the y-direction and the β is the stretching factor. The mapped coordinate η is 
equally spaced and varies between 0 and 1. The flowfield is initialized using a digital 
filter procedure based on Klein’s method (Klein et al., 2004 [22]) where the r.m.s. 
velocity profiles are extracted from the DNS of Bernardini and Pirozzoli (2011) [23]. 
A series of approximately 140 characteristic times, τc = δin/u∞, is achieved to sweep 
the initial transient solution. Then, turbulence statistics are sampled and extracted 
each time step from time series covering τ ≈ 300τc. By plotting the time evolution 
of the main boundary layer statistics, such as the boundary layer thickness and the 
friction velocity, this sampling time is judged to be sufficient to reach a statistical 
convergence of the considered quantities. A reference simulation (e.g. CSM-M90 case) 
is performed over about 40 hours using 64 processors, for a total of about 2560 CPU 
hours.

The First-half of the computational domain is dedicated to the recycling/rescaling 
procedure, while the second-half is used for data analysis. In the latter domain, Reτ 
approximately ranges from 950 to 1250 and Reθ from 4000 to 6000. Table 2 reports 
statistical properties of the considered test-cases at a given station xres ≃ 92.8δin, 
which corresponds to Reτ ≈ 1100.

3. Results and discussions

3.1. Basic flow organization
It is known that the inner part of the boundary layer is occupied by alternating 

streaks of high- and low-speed fluids. These streaks are presumed to derive from 
elongated, counter-rotating streamwise vortices near the wall. At y+ < 100, those 
streaks are shown to significantly contribute to the turbulence production, which

6



Case Nx Ny Nz ∆x+ ∆y+min ∆z+ β

DNS [24] 7680 331 800 6.84− 6.57 0.7 5.91− 5.67 –

M45 768 45 96 66− 69 ∼ 1.9 24− 25 6.55
M90 768 90 96 66− 69 ∼ 1.3 24− 25 6.15
M180 768 180 96 66− 69 ∼ 1.2 24− 25 5.45

Table 1: Grid resolution sensitivity study using the CSM. Subscript (+) denotes the
normalization by the friction velocity, with y+ = y uτ /νw.

Case Reτ Reθ 103 Cf δ∗/δ 102 θ/δ H Tw/T∞ Mτ

√
〈p′2w〉/τw

DNS [24] 1113.4 6044.1 2.11 0.250 8.57 2.92 1.717 0.0649 –

DSM 1076.9 5866.4 1.86 0.288 9.64 2.98 1.56 0.0611 5.94
CSM 1216.6 5532.1 2.39 0.247 8.48 2.91 1.659 0.0691 4.58
WALE 1150.6 5236.4 2.33 0.237 8.61 2.75 1.621 0.0682 4.16
ILES 1050.2 5457.5 2.20 0.293 8.97 3.26 1.707 0.0767 4.81

Table 2: Boundary layer properties using M90 grid for different subgrid models. Reτ =

ρwuτ δ/µw; Reθ = ρ∞u∞θ/µ∞; Cf = 2τw/ρ∞u2 ; H = δ∗/θ; Mτ = uτ /(γRTw)
1/2, δ∗ is

∞

the displacement thickness.
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Case Line Symbol

DNS ❍

DSM | ■

CSM −− ▲

WALE · · · ◆

ILES · − · ▼

M45 | ▲

M90 | ■

M180 | ●

Table 3: Lines and symbols of the different cases.

Case Reτ Reθ 103 Cf δ∗/δ 102 θ/δ H Tw/T∞ Mτ

√
〈p′2w〉/τw

CSM-M45 1148.6 5207.8 2.35 0.249 8.40 2.96 1.653 0.0686 4.45
CSM-M90 1216.6 5532.1 2.39 0.247 8.48 2.91 1.659 0.0691 4.58
CSM-M180 1117.1 5586.6 2.35 0.278 9.25 3.00 1.657 0.0684 4.57

Table 4: Boundary layer properties for different grids using the CSM.
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Figure 1: Instantaneous (a) velocity- and (b) temperature-fluctuation fields in the x-z plane 
at y+ ≃ 25, for using the CSM-M90. Contour levels are shown for (a) −0.25 ≤ u′/u∞ ≤ 
0.25 and (b) −0.25 ≤ T ′/T∞ ≤ 0.25, from dark to light shades.

occurs during the bursting process: low-speed streaks would gradually lift up from 
the wall, oscillate, and then break up violently, ejecting fluid away from the wall and 
into the outer layer (Smits & Dussauge, 2006 [9]).

In order to qualitatively assess the turbulent nature of the flow in the log layer, 
wall-parallel slices of velocity and temperature fluctuations are plotted in Fig. 1 in a 
wall-parallel plane at y+ ≃ 25. The data are obtained using the CSM-M90. As reported 
by Pirozzoli & Bernardini (2011) [24] and Duan et al. (2010) [25], Fig.(1-a) shows 
bearly alternating high- and low-speed streaks, which corresponds to positive and 
negative velocity fluctuations, respectively. For the temperature field, Fig. (1-b) shows 
similar structured patterns, with alternated dark and light shades. These can be 
interpreted as the anti-correlated character that links the velocity and temperature 
fluctuations close to solid walls.

Fig. (2) shows that the distributions of the auto-correlation functions (for the 
different meshes for CSM at different y+) drop rapidly towards zero when Lz in-
creases. Note that all other cases exhibits similar behavior and are not shown here. We 
can thus consider that the spanwise domain extent is wide enough to not inhibit 
turbulence dynamics in z-direction. This confirms the previous observation made on

9



the streaks development in the x-z wall-parallel plane.172

3.2. Thermodynamic properties and Strong Reynolds Analogy173

Figs. (3-a; 3-c) show the wall-normal distribution of the normalized r.m.s of174

some thermodynamic quantities when varying SGS models and Figs. (3-b; 3-d;175

when varying the grid resolutions. Overall, the results show similar levels of these176

quantities when varying the SGS models. The r.m.s of temperature, Trms, exhibits a177

peak near the wall (y/δ ≃ 0.015) where it reaches a maximum of bit higher than T∞178

and decreases afterward to 2% of T∞ outside the boundary layer. At the wall, the179

r.m.s of pressure, prms, reaches a maximum of 3% of p∞ for the CSM & DSM, and180

decreases within the layer reaching 0.8% near the edge of the boundary layer. For the181

WALE mode, these properties remain lowest compared to the other models. For the182

ILES, a bump of Trms is present in the outer region of the boundary layer y/δ > 0.2,183

probably due to a lack of energy dissipation in this region. The r.m.s quantities184

show a monotone increase when coarsening the grid for temperature and density,185

while prms remains insensitive with grid refinement. The observed bump is found to186

be sensitive to the grid resolution for Trms which can confirm an accumulation of non-187

dissipated energy in this region of the flow. For an adiabatic supersonic turbulent188

boundary layer, it is commonly known that u′ and T ′ are supposed to be perfectly189

anti-correlated and that the Strong Reynolds Analogy relation, linking the r.m.s of190

the temperature and the velocity fluctuations, equals nearly 1.191

By definition, the r.m.s of the temperature fluctuations is defined as:192

〈T ′T ′〉 =

(
γ − 1

γR

)2

〈u〉2〈u′u′〉+ 2〈T ′T ′

t〉 − 〈T ′

tT
′

t〉 (7)

where T ′

t is the total temperature fluctuations. The angle brackets represent an193

ensemble average approximated by a volume and a time average. If it is assumed194

that the following condition holds (Guarini et al., 2000 [26]; Pirozzoli et al., 2004195

[27]):196

〈T ′T ′〉

〈T 〉2
≫

〈T ′

tT
′

t〉 − 2〈T ′T ′

t〉

〈T 〉2
(8)

Eq. (7) then reads:197

〈T ′T ′〉1/2 ≈
γ − 1

γR
〈u〉〈u′u′〉1/2 (9)
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Figure 2: Instantaneous auto-correlation coefficients (a) at y+ ≃ 30 for CSM-M45, (b) at y+ ≃ 
10 for CSM-M90, (c) at y+ ≃ 30 for CSM-M90, (d) at y+ ≃ 100 for CSM-M90.
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Figure 3: Normalized r.m.s. of the thermodynamic quantities as a function of y/δ. (a-b-c)
Different SGS models using M90 grid; (d-e-f) Grid sensitivity study using CSM. See table
3 for legends.
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Figure 4: SRA and −Ru′T ′ correlations as a function of y/δ. Circle: Pirozzoli et al. (2004)
[27]. (a) Different SGS models using M90 grid; (b) Grid sensitivity study using CSM. For
legends, see table 3.

and the Ru′T ′ and Ru′v′ correlations are:198

Ru′T ′ = −1 +
〈T ′

tT
′

t〉

2〈T ′T ′〉
(10)

Ru′v′ = −Rv′T ′

(
1−

〈v′T ′

t〉

〈v′T ′〉

)
(11)

Finally, if the total temperature is supposed to be uniform and the total temperature199

fluctuations are neglected, the SRA and the velocity-temperature correlation Ru′T ′200

become:201

SRA =

√
〈T ′T ′〉/〈T 〉

(γ − 1)M2
∞

√
〈u′u′〉/〈u〉

≈ 1

Ru′T ′ =
〈u′T ′〉√

〈u′u′〉
√

〈T ′T ′〉
≈ −1

(12)

The SRA is found to hold very near to unity 0.8 − 1.2 for about 70% (Fig. 4)202

of the boundary layer for all models as well as for the ILES. However, the CSM203

estimates a value of SRA ≈ 1 in almost 60% of the boundary layer. The SRA is also204

found to weakly be grid dependent. The deviations become larger for coarser mesh205

M45 near the edge of the boundary layer.206
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Previous studies predicted lower values of −Ru′T ′ , ranging between ≈ 0.55 and207

0.8 (Pirozzoli et al., 2004 [27]; Duan et al., 2010 [25]; Pirozzoli & Bernardini, 2011208

[24]). In the present simulations, −Ru′T ′ lies between 0.5 and 0.6 for 0.2 < y/δ < 0.8,209

and rises to 0.8 at y/δ ≃ 0.02. All models predict almost the same range of value.210

The velocity-temperature correlation, −Ru′T ′ , is found to be slightly sensitive to211

the grid resolution, decreasing when coarsening the grid (Fig. 4 ). At the vicinity212

of the boundary layer, −Ru′T ′ drops gradually matching the previous DNS studies.213

This weak u′ and T ′ anti-correlation can be attributed to the non-negligible total-214

temperature fluctuations within the boundary layer.215

Considering a polytropic behavior of the thermodynamic quantities (Lechner et216

al., 2001) [28], the correlation between the density and the temperature fluctuations217

is:218

Rρ′T ′ =
〈ρ′T ′〉√

〈ρ′ρ′〉
√

〈T ′T ′〉
≈

√
〈ρ′ρ′〉√
〈T ′T ′〉

〈T 〉

〈ρ〉
= −1 (13)

In a wide region of the boundary layer (see Fig. 5), ρ′ and T ′ are anti-correlated,219

and −Rρ′T ′ remains very close to unity. The correlation −Rρ′T ′ is also found to be220

insensitive to the SGS models as well as to the grid resolutions. The −Ru′v′ correla-221

tion’s behavior (Fig. 5) is also confident with theoretical observations: constant in222

the region 0.1 ≤ y/δ ≤ 0.8 and then decrease beyond this region (Spina et al., 1994)223

[29]. At 0.2 < y/δ < 0.8, all models show the same trends regardless of the grids224

(0.41 < −Ru′v′ < 0.49). Both −Ru′v′ and Rv′T ′ are found to be fairly correlated, and225

nearly equal to ≈ 0.5 in the outer-region of the boundary layer (0.2 < y/δ < 0.8).226

These results are also in good agreement with the experimental data of Klebanoff227

[30] (−Ru′v′ ≈ 0.5). The effect of the SGS models on Ru′v′ and Rv′T ′ in this re-228

gion is weak. However for coarse mesh M45, both correlations show lower prediction229

throughout the wall-normal direction.230

The resolved turbulent Prandtl number, Prt, is defined as:231

Prt =
〈ρu′v′〉∂〈T 〉/∂y

〈ρv′T ′〉∂〈u〉/∂y

=

(
1−

〈ρv′T ′

t〉

〈ρv′T ′〉

)(
1−

∂〈Tt〉

∂〈T 〉

)
−1

(14)

Assuming a uniform total temperature in Eq. (14) yields to Prt = 1. Fig.232

(6) shows that this assumption is not satisfied in a wide region of the boundary233

layer y/δ > 0.2, Prt < 0.8. This tendency is sensitive to grid coarsening near the234

14



0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

y/δ

−
R

ρ
′
T

′

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

y/δ

−
R

ρ
′
T

′

(b)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

y/δ

−
R

u
′
v
′

(c)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

y/δ

−
R

u
′
v
′

(d)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

y/δ

R
v
′
T

′

(e)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

y/δ

R
v
′
T

′

(f)

Figure 5: −Rρ′T ′ , −Ru′v′ and Rv′T ′ correlations as a function of y/δ. (a-c-e) Different SGS
models using M90 grid; (b-d-f) Grid sensitivity study using CSM. For legends, see table 3.
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Figure 6: Resolved turbulent Prandtl number as a function of y/δ. (−−) DNS curve-fitting
in Eq. (15). (a) Different SGS models using M90 grid; (b) Grid sensitivity study using
CSM. For legends, see table 3.

outer region of the boundary layer. Pirozzoli et al. (2004) [27] proposed a curve-235

fitting of their supersonic boundary layer DNS data at Reδ2 ≈ 2400 in the region236

0.2 < y/δ < 0.8:237

Prt ≈ 0.783− 0.094
(y
δ

)2

(15)

It is found that the present results slightly under-estimate this curve-fitting.238

3.3. Turbulence behavior239

3.3.1. Anisotropy invariants map240

The behavior of turbulent wall-bounded flows can be analyzed by examining241

the evolution of the anisotropy through the turbulent stresses, 〈u′

iu
′

j〉, which can be242

qualified using the anisotropy tensor, defined as aij = 〈u′

iu
′

j〉−
2

3
Kδij , where δij is the243

Kronecker tensor and K = 1
2〈u

′

iu
′

i〉 is the turbulent kinetic energy. The normalized244

anisotropy tensor, bij =
1

2
aij/K, is then simply defined as:245

bij =
1

2

〈u′

iu
′

j〉

K
−

1

3
δij (16)

The anisotropy tensor has three invariants, the first being simply the trace of
the tensor and is zero by definition. Therefore, any turbulent state can be fully
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Figure 7: Anisotropy invariants maps. (a) Different SGS models using M90 grid; (b) Grid
sensitivity study using CSM. For legends, see table 3.

characterized by the second and the third invariants, given by:

II = bijbji =
1

2
b2ii, III = bijbjkbki =

1

3
b3ii (17)

According to Lumley (1978) [31], any realizable quantity associated with the fluc-246

tuating field must fall within the anisotropy map or on its boundaries. An analysis247

of the variation of these points and curves in the anisotropy invariants map can248

help highlighting the change of turbulence state. As can be seen in Fig. (7), the249

computed anisotropy maps for different models and grids lie inside the theoretical250

map, showing basically the same trends. Very close to the wall, the wall-normal fluc-251

tuation component, 〈v′2〉, quickly vanishes compared to the other two components,252

〈u′2〉 and 〈w′2〉, making the turbulence state approximately two-dimensional. Here,253

the two–dimensionality means a two-component flow because 〈u′2〉 and 〈w′2〉 vary in254

the y-direction (Pope, 2000) [32]. Moving progressively inside the boundary layer, a255

state of an axisymmetric expansion is observed up to the outer edge of the boundary256

layer (y ≃ δ), where the turbulence state is near-isotropic, and thus located near the257

origin of the map. This behavior of the turbulence is well reproduced by the current258

simulations in accordance with previous studies (Krogstad & Torbergsen, 2000 [33];259

Shahab et al., 2011 [34]).260
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3.3.2. Skewness and flatness factors261

Higher-order moments such as the skewness and the flatness factors of the veloc-
ity fluctuations can be calculated for better analysis of the turbulence nature from
statistics view-point. By definition, the skewness and flatness coefficients of a given
velocity fluctuation are such as:

S(u′

i) =
〈u′

i
3〉

〈u′

i
2〉3/2

, F (u′

i) =
〈u′

i
4〉

〈u′

i
2〉2

(18)
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Their distribution along the boundary layer are plotted in Fig. (8) for different LES 
models and grid resolutions. Apart from the near-wall deviation of the skewness and 
flatness coefficients, the turbulence behavior is found to be nearly Gaussian, with 
S(u′) ≈ 0 (marginally negative) and F (u′) ≈ 3. This result is in good agreement 
with the DNS data. The peak position of both factors is correctly recovered by 
the LES, whereas their magnitudes are slightly over-estimated. For instance, S(u′) 
reaches a maximum within the range of 1.3 − 1.56 against a maximum of 1 for the 
DNS. For 40 < y+, all agree well with the DNS database of Pirozzoli & Bernardini [24]. 
On the other hand, F (u′) maxima lies . 6.6 against a maximum of 5.15 for DNS. 
Nevertheless for y+ ≥ 10, all SGS models agree well with the DNS data. Both skewness 
and flatness are found to be less sensitive to the grid refinement. Among the models, 
the DSM shows largest deviation from the DNS data.

3.3.3. Near-wall asymptotic behavior
By means of the continuity equation and the non-slip wall boundary conditions, 

Tamano (2002) [35] and Morinishi et al. (2004) [36] proposed a comparison of adi-
abatic and isothermal near-wall asymptotic behaviors for compressible and incom-
pressible turbulent channel flows, expressed as a power of y+. In the following, we 
examine the near-adiabatic-wall asymptotic behaviors of different turbulent quan-
tities, such as the velocity fluctuations, the turbulent kinetic energy, the viscous 
dissipation and the fluctuations of thermodynamic quantities.

The turbulent fluctuations φ′ of a given quantity φ can be expanded in terms of 
Taylor series of y+ as follows:283

φ′ = ξ1,φ(x, z, t) + ξ2,φ(x, z, t) y
+ + ξ3,φ(x, z, t) y

+2 +O(y+3) (19)

It is evident that, no-slip condition at the wall implies ξ1 for all velocity fluctuating284

components are zero. For incompressible flow, satisfying the continuity equation at285

the wall additionally yields ξ2 = 0 for v′ as ∂v′/∂y |w= 0 and thus vrms ∝ y+2. On the286

other hand, urms ∝ y+ and wrms ∝ y+. It follows that K+ ∝ y+2 and 〈u′v′〉 ∝ y+3.287
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Figure 8: (a-b) Skewness and (c-d) Flatness factors as a function of y+. For legends, see
table 3.
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Case u+
rms v+rms w+

rms −〈u′v′〉+ K+ ε+ −〈v′T ′〉 Trms ρrms Prms

Compressible 1 1 1 2 2 0 1 0 0 0
Incompressible 1 2 1 3 2 0 2 0 − 0

Table 5: Power indecies n of near-adiabatic-wall asymptotic behaviors.

The temperature and pressure distributions have a non-zero value at the wall, which288

implies that Trms ∝ y+0 and prms ∝ y+0. This yields 〈v′T ′〉 ∝ y+2.289

For a compressible turbulent flow, the main difference comes from the density290

variation with ∂ρ/∂t |w 6= 0 and ρrms presents a non-zero value asymptotic behavior,291

which yields ∂ui/∂xi |w 6= 0. According to Eq. (19), for a compressible urms, vrms292

and wrms present asymptotes ∝ y+. It follows that K+ ∝ y+2, 〈u′v′〉 ∝ y+2, and293

subsequently 〈v′T ′〉 ∝ y+.294

The different power indices n (∝ y+
n

) of near-adiabatic-wall asymptotic behavior295

of different quantities are summarized in table 5.296

Figs. (9-15) depict the near-wall asymptotic behaviors of the velocity fluctuations297

u+
rms, v

+
rms, w

+
rms according to the Morkovin’s scaling, as well as the Reynolds shear298

stress 〈u′v′〉+, the normalized kinetic energy K+ = K/u2
τ , the turbulent heat flux299

−〈v′T ′〉, the temperature fluctuations Trms and the density fluctuations ρrms as a300

function of y+ in log-log coordinates.301

Figs. (9) and (11) show that, at the wall and up to the frontier of the viscous302

sublayer, u+
rms and w+

rms vary linearly with decreasing y+. All SGS models exhibit303

excellent matching behavior for the different quantities, and all grid-resolution cases304

almost fairly compare with the near-wall required asymptotes, except at the wall305

region (∆y+min ≈ 1), for coarsest mesh M45 ∆y+min & 1.9.306

The difference in indices between the compressible and incompressible flows was307

mainly observed for v+rms, −〈u′v′〉+ and−〈v′T ′〉. Those asymptotes are plotted in Fig.308

(10;12;14), and show that, up to the considered wall-region (∆y+ & 1), the near-wall309

asymptotic behavior of v+rms, −〈u′v′〉+ and 〈v′T ′〉+ = Rv′T ′ are better estimated using310

the incompressible indices (∝ y+
2

, y+
3

and y+
2

, respectively), even if the Morkovin’s311

scaling is not used for the Reynolds shear stress. In fact, according to Tamano312

(2002) [35], the theoretical compressible asymptotes of these quantities hold for the313

very near-wall region, i.e. at y+ ≤ 1. In the present simulations, M90 and M180314

show quite good agreement for these quantities except v+rms, where very near to the315
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Figure 9: Near-wall asymptotic behavior of the streamwise velocity fluctuations urms in
Morkovin’s scaling as a function of y+. (a) SGS models study using M90 grid; (b) Grid
sensitivity study using CSM. For legends, see table 3.

wall the slope reduces as ∆y+min & 1.316

Turbulent kinetic energy, K+, varies linearly with decreasing y+
2

, while the vis-317

cous dissipation ε exhibits a non-zero constant behavior near the wall (Fig. 13).318

This tendency was also confirmed by Morinishi et al. (2004) [36], and this behavior319

is found to be unaffected mostly by varying the SGS model or the grid resolution.320

Morinishi et al. (2004) [36] also reported that the near-adiabatic-wall behavior of321

the thermodynamic quantities Trms, ρrms and prms for a compressible flow, have322

a constant non-zero value asymptote (y+
0

) with decreasing y+. As shown in Fig.323

(15), Trms/T∞, ρrms/ρ∞ and prms/p∞ exhibit an asymptote ∝ y+
0

when decreasing324

y+. However, for a compressible flow near an isothermal wall, Trms should vary lin-325

early with decreasing y+, while ρrms and prms do conserve a constant non-zero value326

asymptote with the same boundary condition.327

Hence, for a near-adiabatic-wall region (1 ≤ y+ ≤ 6), all statistics showed very328

good asymptotic behavior when compared to their incompressible flow counterparts329

discussed by Morinishi et al. (2004) [36]. The correlations 〈u′v′〉+ and 〈v′T ′〉+ also330

showed acceptable behaviors compared to incompressible asymptotes although the331

mean-density variation is not taken into account.332
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Figure 10: Near-wall asymptotic behavior of the wall-normal velocity fluctuations vrms in
Morkovin’s scaling as a function of y+. (a) Different SGS models using M90 grid; (b) Grid
sensitivity study using CSM. For legends, see table 3.

3.4. Turbulent energy dissipation rate333

In homogeneous compressible turbulence with constant viscosity, the turbulent334

energy dissipation is commonly written as the sum of two components, namely the335

solenoidal dissipation, εs, and the dilatational dissipation, εd. Additionally, in inho-336

mogeneous turbulent flows, an inhomogeneous component of the dissipation, εI , is337

also present. Starting from the definition of the turbulent energy dissipation ε:338

ρε ≡

〈
τ ′ik

∂u′

i

∂xk

〉
(20)

where τ ′ik is [37]:339

τ ′ik =

[
µ′

(
∂u′

i

∂xk
+

∂u′

k

∂xi

)
−

2

3
µ′
∂u′

l

∂xl
δik

]
−

[〈
µ′

(
∂u′

i

∂xk
+

∂u′

k

∂xi

)〉
−

2

3

〈
µ′
∂u′

l

∂xl

〉
δik

]

+

[
µ′

(
∂〈ui〉

∂xk
+

∂〈uk〉

∂xi

)
−

2

3
µ′
∂〈ul〉

∂xl
δik

]
+

[
〈µ〉

(
∂u′

i

∂xk
+

∂u′

k

∂xi

)
−

2

3
〈µ〉

∂u′

l

∂xl
δik

] (21)
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Figure 11: Near-wall asymptotic behavior of the spanwise velocity fluctuations wrms in
Morkovin’s scaling as a function of y+. (a) Different SGS models using M90 grid; (b) Grid
sensitivity study using CSM. For legends, see table 3.

The total energy dissipation can be cast as the sum of three main parts ε = ε1+ε2+ε3,340

where:341

ρε1 = 〈µ〉

〈
∂u′

i

∂xk

(
∂u′

i

∂xk

+
∂u′

k

∂xi

)〉
−

2

3
〈µ〉

〈
∂u′

i

∂xk

∂u′

l

∂xl

〉
δik

ρε2 =

〈
µ′
∂u′

i

∂xk

(
∂u′

i

∂xk

+
∂u′

k

∂xi

)〉
−

2

3

〈
µ′
∂u′

i

∂xk

∂u′

l

∂xl

〉
δik

ρε3 =

〈
µ′
∂〈ui〉

∂xk

〉(
∂〈ui〉

∂xk
+

∂〈uk〉

∂xi

)
−

2

3

〈
µ′
∂u′

i

∂xk

〉
∂〈u〉l
∂xl

(22)

The quantity ε1 = εs + εd + εI is also expressed as the sum of three contributions,342

namely, the solenoidal dissipation, εs, the dilatational dissipation, εd, and the inho-343
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Figure 12: Near-wall asymptotic behavior of the normalized Reynolds shear stress 〈u′v′〉+

as a function of y+. (a) Different SGS models using M90 grid; (b) Grid sensitivity study
using CSM. For legends, see table 3.

mogeneous dissipation, εI , given by:344

ρεs = 2〈µ〉〈ω′

ijω
′

ij〉

ρεd =
4

3
〈µ〉

〈
∂u′

l

∂xl

∂u′

k

∂xk

〉

ρεI = 2〈µ〉

(
∂2〈u′

iu
′

j〉

∂xi∂xj
− 2

∂

∂xi

〈
u′

i

∂u′

j

∂xj

〉)
(23)

Note that in our case, εs is directly deduced from εs = ε1 − εd − εI . The turbulent345

energy dissipation rate is studied only using the CSM and the M90 grid. Fig. (16-a)346

shows the ratios of ε1/ε, ε2/ε and ε3/ε as a function of y/δ for CSM-M90. It can347

be seen that ε1 dominates the other components and that the contribution of µ′ is348

negligible for such a flow. This is found to be true for all other LES models. Fig.349

(16-b) shows the ratios εs/ε, εd/ε and εI/ε as a function of y/δ, and shows that the350

solenoidal part of the dissipation is the most significant part. This result is true for351

all LES models. Contributions of εd and εI are found to be of the same order of352

magnitude.353
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Figure 13: Near-wall asymptotic behavior of (a-b) dimensionless kinetic energy and (c-d)
dimensionless molecular dissipation, ε+ = ε.νw/(ρwu

4
τ ) as a function of y+. For legends,

see table 3.
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Figure 14: Near-wall asymptotic behavior of the normalized turbulent heat flux Rv′T ′ as a
function of y+. (a) Different SGS models using M90 grid; (b) Grid sensitivity study using
CSM. For legends, see table 3.

10
0

10
110

-3

10
-2

10
-1

y+

T
r
m
s
/T

∞

y+
0

(a)

10
0

10
110

-3

10
-2

10
-1

y+

ρ
r
m
s
/ρ

∞

y+
0

(b)

10
0

10
110

-3

10
-2

10
-1

y+

p r
m
s
/p

∞

y+
0

(c)

Figure 15: Near-wall asymptotic behavior of (a) the temperature, (b) the density and (c)
the pressure fluctuations as a function of y+. For legends, see table 3.
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Figure 16: Ratios of the turbulent energy dissipation rate terms as a function of y/δ for
CSM-M90.
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Figure 17: Ratio of the dilatational to the solenoidal dissipation as a function of (a) y/δ
and (b) turbulent Mach number Mt.
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Fig. (17-a) shows the ratio of dilatational dissipation to solenoidal dissipation as354

a function of y/δ. This ratio is found to be constant throughout the boundary layer355

for the WALE model, while reaching a level of 0.055 near the edge of the boundary356

layer for the CSM and the DSM models. Fig. (17-b) shows the ratio εd/εs as a357

function of the turbulent Mach number. As found by Huang et al. (1995) [37], the358

relationship between εd/εs and Mt is not linear. Furthermore, this result indicates359

that the Sarkar’s [38] dilatational dissipation model, formulated for the problem360

of compressible shear layers growth rate, is not applicable in the case of turbulent361

bounded flows.362

4. Conclusion363
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In this paper, large-eddy simulations of a spatially-evolving supersonic turbulent 
boundary layer over a flat plate are performed using three different SGS models. An 
Implicit LES (a subset of under-resolved DNS) is also investigated to assess its 
applicability and to see whether small truncation terms of sixth-order scheme would 
themselves serve as SGS models. The results are compared to both DNS and theo-
retical considerations and showed an overall acceptable agreement. In this study, we 
extend our previous work by considering high-speed compressible turbulent bound-
ary layer for higher Reθ and enlarged spanwise domain by a factor of two. The mesh 
resolution has been systematically considered to assess the effectiveness of the LES 
modeling compared to DNS or to well-resolved LESs. In terms of compressibility 
effects due to turbulent fluctuations, the LES results did confirm the early findings, in 
which the temperature and the velocity fluctuations are seen to be not perfectly anti-
correlated, where Ru′T ′ lies between 0.5 and 0.6 in a wide range of the boundary layer. 
Results also showed that the near wall asymptotic behavior for all relevant quantities 
agree very well with the DNS results for all subgrid models. The ILES is found to 
adhere to this observation, by predicting satisfactory results even for high-order 
turbulent moments. The thermodynamic fluctuations, Trms and ρrms, show however a 
lack of independence from SGS modeling and grid refinement in contrast to the 
velocity fluctuating field. The pressure fluctuations, which are assumed to be 
associated with the acoustic mode, are not significantly affected by the modeling and 
the mesh resolution. By analyzing the different components of the turbulent energy 
dissipation rate, the present LESs show confidence to correctly predict the dissipa-tion 
rate. In fact, it is found that the dissipation is mainly solenoidal throughout the 
boundary layer, which is a classical finding for the considered case. As expected for 
adiabatic flows, the inhomogeneous part is negligible, due to the weak value of µ′. 
Also, the dilatational dissipation εd does not exceed 5% of the solenoidal component
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εs within the boundary layer. As mentioned in Ben-Nasr et al., (2016) [14], the cost 
effective choice with the CSM or the WALE model appears to be the best option when 
dealing with high-speed turbulent boundary layers and the acceptable quality of the 
ILES results did not allow us to discard unquestionably this method at least for the 
range of the Reynolds number we considered. Finally, it is worth mentioning that the 
current study has been key to develop our current level of understanding the ability of 
ILES and LES models to capture basic phenomena and now further LES studies of 
high-Reynolds number supersonic boundary layers are necessary to complete the 
picture. Also, further work is necessary to develop compressible formu-lation of 
subgrid models, especially for heated or cooled walls in presence of strong energy 
release due to combustion for instance, where compressibility effects are, in principle, 
not negligible.
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