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ABSTRACT
The emergence of service-oriented computing, and in partic-
ular microservice architecture, has introduced a new layer of
complexity to the already challenging task of continuously
delivering changes to the end users. Cloud computing has
turned scalable hardware into a commodity, but also im-
poses some requirements on the software development pro-
cess. Yet, the literature mainly focuses on quantifiable met-
rics such as number of manual steps and lines of code re-
quired to make a change. The industry, on the other hand,
appears to focus more on qualitative metrics such as increas-
ing the productivity of their developers. These are common
goals, but must be measured using different approaches.
Therefore, based on interviews of industry stakeholders a
framework for evaluating and comparing approaches to con-
tinuous microservice delivery is proposed. We show that it
is possible to efficiently evaluate and compare strategies for
continuously delivering microservices.
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•Software and its engineering → Software version
control; Programming teams;
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1. INTRODUCTION
Continuous Delivery is a fairly simple task in a monolithic

system [7]. Here, all required configurations are instructions
that are used to build, test and deploy the monolithic appli-
cation. With a low release frequency, such as a few times a
day, it is feasible to maintain a continuous stream of releases
manually. Automation can be achieved by simply introduc-
ing a single build server that builds, tests, and deploys the
system whenever it detects that new code is pushed to the
revision control system. The way software is developed and
deployed, as well as server technology, has changed dramati-
cally over the last decade. Focus has shifted from distributed
task scheduling [19, 20] and the configuration management
of servers [6, 17, 18] to microservices-based systems and de-
ployment to cloud infrastructure [28].

A microservice-based system [7, 24], however, introduces
a whole new set of complications. In a relatively large sys-
tem with hundreds of microservices, the system may require
hundreds, or even thousands, of deployments in a single day.
Moreover, the deployment roles and responsibilities may be
divided between different individuals. A single person, or
even team, will not realistically be able to manually han-
dle the influx of new versions and changes in a production
system.

The literature addressing the quality the software deploy-
ment pipeline [15] mostly employs quantitative measures.
Frequent metrics include number of steps to perform a de-
ployment and lines of code to change the configuration. Al-
though useful, such metrics do not consider the changes to
projects over time. For example, the number of lines of code
required to make a change does not directly give any indica-
tion of the value added by the same change. Furthermore,
aspects such as testability [13] of the software system are
crucial to a large-scale development project, yet testability
has received limited attention in the research literature.

Individuals responsible for the development must usually
decide which underlying technology stack to choose. This is
a challenging task where poor choices are expensive. More-
over, there are few tools that can help navigate the com-



plex and rapidly changing landscape of available options and
tools for packaging, testing, deploying, and scaling services.
This work therefore proposes a framework to help evaluate
such technologies, so that one may commit to the most suit-
able technology stack.

2. BACKGROUND
Talwar et al. [23] define a service as a piece of software

that encapsulates and presents some useful functionality,
and can be part of an overall system. In other words, a ser-
vice is a specialized, autonomous, stand-alone server. The
idea of splitting a large application’s code base into multiple
services is often referred to as Service-Oriented Architecture
(SOA) [25, 3].

Evans and Fowler [11] used the term domain about the
subject area to which a piece of software is applied. In this
context, the entire set of services is a software expression of
the domain: it both contains the data, and provides means
of accessing and manipulating them. A domain has multiple
contexts, especially in large projects. It is therefore impor-
tant to define bounded contexts1 in which a model applies
[11]. A project should initially be a monolith, and be de-
composed into microservices the domain is explored and the
project grows in size and complexity [16].

Each client in a system is an expression of a bounded
context. A client has traditionally meant either a desktop
application or a website, rendered to static assets (HTML,
CSS, and JavaScript) on the server before being sent to the
end user’s web browser. In a system with only microser-
vices and clients, the client connects directly to one or more
services. It is then the client’s task to combine data in a
meaningful way and display the result to the user.

With the emergence of front-end JavaScript frameworks
such as Google’s AngularJS2 and Facebook’s React3, as well
as mobile apps, it has become a common practice to build an
API (Application Programming Interface) gateway4 in addi-
tion to the clients. An API gateway is similar to the classic
façade pattern [14] from object-oriented programming. The
responsibility of the API gateway is to combine data from
the various microservices within the bounded context, and
expose the data to the client through a tailored web API. In
this pattern, each API gateway represents a single bounded
context.

Villamizar et al. [25] conclude that there are several ben-
efits to being able to publish a system as a set of smaller ser-
vices that can be managed independently. Specifically, they
point to independence in development, deployment, scaling,
operation, and monitoring as a key enabler for companies to
manage large applications with a more practical methodol-
ogy, and scale individual development teams more easily.

Relevant to this discussion is also the CAP theorem. Also
known as Brewer’s theorem, it states that it is impossible for
a system to simultaneously guarantee consistency, availabil-
ity and partition tolerance [5], where consistency refers to
all nodes seeing the same data at the same time, availability
refers to all requests receiving a response indicating success
or failure and partition tolerance means that a system con-

1http://martinfowler.com/bliki/BoundedContext.html
2https://angularjs.org/
3https://facebook.github.io/react/
4https://www.nginx.com/blog/building-microservices-
using-an-api-gateway

tinues to function under network failures.

2.1 Software Deployment
Wahaballa et al. [27] define software deployment as ”all of

the activities that make a software system available for use”.
Following this definition, deployment is something every sin-
gle provider of an online service must handle in some way.
Deployment strategies can be simple, such as logging onto
a server and manually editing some code in an interpreted
language running in production. On the other end of the
spectrum, they can involve comprehensive code review pro-
cesses followed by running a pre-built artifact through sev-
eral suites of automated tests, multiple testing environments
for manual quality assurance involving layers of bureaucracy,
and finally deploying the new changes to a controlled sub-
set of the production servers, known as blue/green deploy-
ment5, and a fraction of the end users of the service, known
as canary release6.

Software deployment dominates system administration co-
st, and configuration is a major error source [23]. As the
popularity of service-based computing rises, so does the im-
portance of answering which deployment approach is the
best fit for the context [22].

Talwar et al. [23] define and compare four different ap-
proaches to deployment of services: manual, script-based,
language-based, and model-based as a function of scale, com-
plexity, and susceptibility to change. They also define sev-
eral evaluation metrics, which they call Quality of Manage-
ability for the deployment configuration, namely:

1. Lines of code (LOC) for deployment configuration.

2. Number of steps involved in deployment.

3. LOC to express configuration changes.

4. Time to develop and deploy a change.

Based on these criteria, they conclude that for systems
with few deployed services and configuration changes, a man-
ual solution is the most reasonable approach. Few deployed
services with comprehensive configuration changes call for a
script-based approach. Larger environments where changes
involve dependencies prefer language-based solutions. Fi-
nally, a model-based approach is ideal for large systems
where the underlying service design is affected by the de-
ployment. This is mirrored in terms of configuration [23].

In summary, there are multiple areas to look at in future
research related to cloud computing and microservices. Per-
haps most prevalent is the need for an evaluation of various
strategies and tools for deployment automation. One way
to approach this can be development of tools for quantita-
tive comparison of deployment automation strategies. Look-
ing at deployment configuration as source code allows using
techniques from software engineering for this evaluation.

Armour [2] stated that a software system is not in itself a
product, but a container for knowledge; code is, indeed, exe-
cutable knowledge. While his focus is on domain knowledge
as it lives within software systems, it is possible to apply
this idea to any code: as Spinellis [21] points out, code is
an executable specification, so expressive and concise code
is self-documenting in a way that never rots.

5http://martinfowler.com/bliki/BlueGreenDeployment.html
6http://martinfowler.com/bliki/CanaryRelease.html



Another of Talwar et al.’s [23] key findings is that main-
tainability and documentability are proportional to the num-
ber of lines of code, and that the number of steps and lines
of code are both reduced with the introduction of more so-
phisticated deployment tools.

2.2 Continuous Delivery and DevOps
Continuous delivery (CD) can be said to be a combina-

tion of two ideas [26], namely continuous integration (CI)
and continuous deployment. Continuous integration is the
practice of integrating changes into the mainline early (e.g.,
master branch if the team uses Git for version control). Con-
tinuous deployment is the practice of deploying changes to
the end users as soon as they make it into the mainline.

Combined, these render a development workflow where
developers frequently merge their changes into the product-
ion-ready version of the code base, and those changes are
immediately deployed to the end users. This way of devel-
oping may introduce a need for feature management such as
blue/green deployment and canary release.

Continuous Delivery is only a part of a deployment strat-
egy, but deserves specific attention because of its potential
organizational impact. With a monolithic architecture, it
may be feasible to have a dedicated operations (ops) team
and still deploy new features and fixes to the end users some-
what continuously, as the team will only have to deal with a
single artifact. Even if they need to deploy it multiple times
per day, tools can be developed to quickly verify and deploy
the artifact. In a microservice context, however, with mul-
tiple services and teams each selecting their own technology
stacks and deployment habits, it quickly becomes infeasi-
ble for a dedicated operations team to manually verify and
deploy each service as it receives changes. Furthermore, hav-
ing to provide the ops team with a production-ready package
for them to verify and deploy whenever a change is made to
the code base introduces unnecessary overhead for the de-
velopment teams. This requires an organizational shift of
deployment responsibility to the development teams, known
as DevOps [10].

2.3 Measuring Continuous Delivery
Several studies have specifically attempted to measure the

quality of a deployment pipeline [23, 25, 12], and others have
focused on only a specific part of the pipeline [21, 8]. Given
that deployment configuration is indeed code, it becomes
relevant to look to metrics designed to measure code quality
in general with regard to architecture [4].

Chen [9] introduces the concept of architecturally signifi-
cant requirements (ASRs), referring to the architectural re-
quirements imposed upon the service itself by the deploy-
ment strategy.

One important factor described by Chen [9] is which archi-
tecturally significant requirements the deployment strategy
imposes on the project. While Chen considers architecting
for continuous delivery in a broad sense, different strategies
will impose fewer or more architecturally significant require-
ments of differing types on the code base of the actual ser-
vice. More architecturally significant requirements can make
the transition to a continuous delivery set-up more difficult,
more time consuming, and thus more expensive.

One particular architecturally significant requirement is
considered by Addo et al. [1], who describe an architecture
for automatically routing traffic to other cloud providers if

one fails. This points back to the CAP theorem, and raises
the question of how to replicate data and ensure consistency
across multiple cloud providers.

2.4 Summary
First, provisioning and maintaining the microservice run-

time is a key concern. It ties in with the CAP theorem,
stating that consistency, availability, and partition tolerance
is an unattainable goal.

Second, cloud computing is an important factor when dis-
cussing microservices, as many of the key advantages of a
microservice architecture come into play when computing
resources are virtually unlimited. A system of microservices
naturally requires more resources such as CPU cycles and
RAM than a monolithic system, as the microservice-based
system comprises multiple runtimes and databases. If com-
puting resources are not limited, however, this isolation al-
lows both scaling and deployment of independent services.
This has become a realistic scenario due to the rise of cloud
providers.

Third, the deployment regime in the organization plays
a large role in the selection of a deployment strategy. It is
essential to contrast how often the organization wishes to de-
ploy changes to the end users with how often the infrastruc-
ture allows deployment. Automating the process takes work
and introduces a learning curve. The deployment pipeline
should therefore be tailored to suit the needs of the organi-
zation.

Fourth, the expressiveness and readability of the code that
specifies the deployment strategy is a key factor in cutting
the learning curve for the deployment strategy. As the con-
figuration code grows, its quality can be measured using
tools from the software engineering field—not just deploy-
ment.

Fifth, selecting a deployment strategy may have a sig-
nificant organizational impact. For example, introducing
DevOps to enable continuous delivery in an organization
that previously had a centralized team responsible for de-
ployments requires the organization to distribute these re-
sponsibilities to the developers, and possibly introduce new
roles. In a sizeable organization, this distribution of respon-
sibility can be challenging, because it affects the workflow
of everyone responsible for the development, ranging from
developers to managers. DevOps also affects processes for
identifying and resolving problems with the software.

Last, there are multiple ways of measuring quality of de-
ployment approaches. In particular, architecturally signifi-
cant requirements of the deployment strategy may require
so many changes to the existing code base that the strategy
is unfeasible for the organization.

3. EVALUATION FRAMEWORK
The evaluation framework is designed to assist system

architects in selecting a strategy and technology stack for
implementing continuous delivery in a microservice-based
software system. We define a strategy as the combination
of technological components and organizational measures
taken to achieve continuous delivery.

3.1 Overview
We have based the framework on a combination of expe-

riences documented in the existing literature as well as two
interviews of industry professionals. We interviewed two



technical team leaders at FINN.no, Norway’s leading actor
in the online classified ads market and a frontrunner in Nor-
way for adopting modern technological trends. Their system
comprises hundreds of microservices, and new changes are
delivered to the end users tens of times per day by multi-
ple autonomous teams. As a result, they have faced and
countered many of the problems discussed here. We focused
on their efforts towards automating continuous microservice
delivery by interviewing the infrastructure team lead, as well
as the lead developer on a team that has completely auto-
mated their software delivery process.

The framework itself is a set of criteria uncovered as im-
portant to the development and delivery process through
the existing literature and the interviews. Each criterion is
accompanied by a unit. These units can be used both to
give a general overview of the strategy, and compare it to
other strategies.

3.2 Testability
The framework measures testability broadly, as one of the

following three options.

1. Trivial: single set-up per project, mirrors the produc-
tion environment.

2. Time-consuming: some set-up per machine, but mir-
rors the production environment.

3. Uncertain: requires set-up per machine and cannot
closely mirror the production environment.

Testability is perhaps the most prominent requirement for
a system architect selecting a deployment strategy. All in-
formants strongly agreed that automated tests are crucial to
continuously delivering changes to the end users with cer-
tainty. These tests can be grouped into three levels: unit
testing, for individual code fragments; module testing, for in-
dividual microservices; and feature testing, for cross-service
integrations.

The interviews showed that the strategy must allow test
suites on all three of these levels. Unit tests only require the
language runtime to be executed, so the deployment strat-
egy will typically have little effect on the unit testability.
Testing on the module level, on the other hand, requires
starting the actual application with a production-like con-
text. In this case, the strategy may drastically impact the
simplicity of running the actual service for testing. Fea-
ture level tests take this problem even further, as multiple
services must both run and communicate with each other.
The technical implementation of the deployment strategy is
certain to affect the difficulty of feature level testing.

Testability, and especially feature level testing, is a com-
plex matter regardless of deployment strategy. A measure-
ment of a system’s testability is most useful when compared
to that of other strategies: systems often differ too much
to allow easily measuring the time to develop a running
test suite. However, it is possible to quantitatively mea-
sure things like the number of significant differences from
production environment (e.g., operating system or available
computing resources) and the number of manual steps re-
quired of each developer to run the test suite on their local
machines.

3.3 Deployment Abstraction
Deployment abstraction concerns the learning curve for

developers in order to efficiently deploy their services. De-
ployment abstraction can be evaluated as a group of criteria.
First, the number of manual steps a developer must take
between finishing their changes and deploying a verified ar-
tifact to the end users is a key indicator of the strategy’s
quality in this regard.

Second, given that code is executable knowledge [2] [21],
the expressiveness of the deployment configuration and learn-
ing required to use it must be considered relatively to that
of other strategies.

We define the following three levels of deployment config-
uration expressiveness.

1. Highly expressive: no highly error-prone manual steps,
little learning required.

2. Somewhat expressive: some manual steps.

3. Manual: largely manual deployment, error-prone.

Clearly, deployment abstraction ties in closely with the
number of manual steps required to perform a single de-
ployment. A greater number of manual steps makes the
deployment process much more error-prone [23]. In other
words, a good abstraction allows the deployer to follow the
artifact as it automatically passes through each quality as-
surance step before it is released to the end users.

As Talwar et al. [23] found, maintainability and docu-
mentability are proportional to the number of lines of code
(LOC), and LOC are reduced by introducing more sophis-
ticated deployment tools. However, in the DevOps context,
introducing tools comes at the expense that developers in
each team must learn how to configure and use them. On
the other hand, using no tools requires the developers to
be intimately familiar with the infrastructure in addition to
their own services.

3.4 Environment Parity
We measure the parity between environments as one of

the following three options.

1. Equal: any software bug is present in all environments.

2. Distinguishable: some differences that can be easily
mitigated.

3. Disparate: parity must be ensured manually on all de-
velopment, testing, and production machines.

The parity7 of runtime environments for development,
testing, and production is crucial to quality assurance. Op-
erating systems differ in many ways, for example the im-
plementation of the file system. Furthermore, runtimes im-
plemented for multiple platforms inevitably differ in some
ways.

The goal for maintainability must be to achieve completely
equal environments. However, this may not always be fea-
sible: testing and production servers typically sport head-
less8 operating systems, which is unfeasible for development.

7Dev/prod parity is described in detail in The Twelve-Factor
App, a collection of factors that increase the maintainability
of a system: https://12factor.net/
8Without a graphical user interface.



Some measures can be taken to circumvent this issue, such as
running the code inside a virtual machine with the same op-
erating system as the production environment. On the other
hand, this can be impractical, as virtual machines are expen-
sive in terms of computing resources. Some differences, such
as in available processing power, are mostly unavoidable.

In many development contexts, including at FINN.no, mo-
st developers develop and run applications locally on ma-
cOS. The production servers, on the other hand, usually
run on Linux-based distributions. This disparity between
the local and production environments is compensated for
with production-like build servers. Each code change re-
quires the artifact to be rebuilt and tested on a build server.

3.5 Time to Deploy
The framework measures the average overall time to de-

ploy a service in minutes.
The time taken to deploy an artifact is a major concern

in continuous delivery. Traditionally, completing the auto-
mated test suites of a service could take several hours. In
a microservice environment, and particularly if the build
servers are shared between projects, building and verifying
a single artifact cannot be allowed to occupy resources for
long. Furthermore, the developer is often required to watch
over the deployment to ensure it went well, and an exten-
sive deployment time directly hinders productivity for the
developer.

The total time taken to deploy is affected by multiple as-
pects of the deployment strategy. On the strictly technical
side is the number of long-running automated tests. On the
organizational side, there is the number of staging environ-
ments and the amount of manual quality assurance required
before delivering the changes to the end users.

3.6 Availability Adequacy
High Availability is a well-known quality attribute for soft-

ware systems. The framework measures the deployment
strategy’s impact on system availability as one of the fol-
lowing three options.

1. Adequate: zero-downtime deployments and automatic
scaling of computing nodes in response to both in-
creased and decreased server load.

2. Excessive: zero-downtime deployments and easy man-
ual scaling of computing nodes.

3. Error-prone: significant error-prone manual work in-
volved in deployment or resource scaling.

For FINN.no, high availability means staying online dur-
ing both deployments and peak load. This is obviously im-
portant to Software as a Service (SaaS) providers9 to make
continuous delivery feasible. Zero-downtime deployments
can be easily accomplished for stateless services by running
more than one instance of the same service behind a load
balancer.

Automatic scaling of available computing power—usually
the number of computing nodes—to handle requests is re-
quired to handle peak load times in a non-wasteful way.
We call this availability adequacy : offering just enough com-
puting power to solve the task. Using an Infrastructure as

9Suppliers of applications meant to be used directly by end
users, such as an online social network.

a Service (IaaS)10 solution such as Amazon AWS11 solves
this problem at monetary cost. However, in a manual, self-
hosted deployment regime, resource scaling requires man-
ually adding or removing physical computing nodes, and
updating the load balancer configuration.

3.7 Summary
We have identified testability, deployment abstraction, en-

vironment parity, time to deploy, and availability adequacy
as the five most key elements of strategies for continuous mi-
croservice deployment. These do not necessarily come at the
expense of each other. However, logically, any abstraction
must be learned by the developers, and computing resources
carry a cost. This must be considered by each system archi-
tect in the context of their organization and system as they
evaluate various strategies.

All criteria aim to decrease the overall cost of deployment
by way of reducing both time to build, verify, and deploy an
artifact after it has been changed, and the number of errors
resulting from manual work.

4. APPLYING THE FRAMEWORK
A simple web service system is used to demonstrate how

the framework is used. Two contrasting strategies for con-
tinuously deploying the system are explored using the frame-
work: manual, and automated with containers.

4.1 Test application
Figure 4.1 presents BeerFave, a small sample web applica-

tion system comprising three different microservices and one
web client. The system is intentionally designed to be sim-
ple, but its microservices are general enough to be worked
on by individual and autonomous teams.

Figure 1: BeerFave architecture

The web client lives outside the firewall, and runs in the
end user’s web browser. It communicates with an API gate-

10Cloud-based, managed hardware and networking configu-
ration on which to set up and configure applications

11https://aws.amazon.com/autoscaling/



way12, a microservice designed to collect data from other
microservices behind the firewall, combine the data, and ex-
pose them to the web client. This pattern lessens the load
on the client, and restricts it from fully accessing the under-
lying microservices behind the firewall.

The last two microservices are simple. The users and au-
thentication service handles the registration of users and ver-
ification of passwords for the system. The beer list service
contains all beers available in the application. Another ser-
vice could be added to allow users to ”save” a subset of the
beers to their profile.

The system thus contains three different microservices,
two of which are dependent on some type of persistent stor-
age such as a database system, as well as one web client.
The following paragraphs explore how the framework can
be used to evaluate two possible strategies for continuously
deploying the system.

To simulate a real-world case, we require the system to
remain available during deployment, and to run a production
environment as well as a testing environment on self-hosted
servers. We make a modest estimate that each service is
modified and delivered 10 times per day.

4.2 Deployment strategy evaluation
An evaluation of a completely manual deployment strat-

egy is first described, followed by deployment with Google’s
Kubernetes13. Each criterion in the framework is discussed
and summarized.

4.2.1 Manual deployment
Testability is not affected in any particular way in a

manual strategy: the microservices are all manually built
and deployed, and so the task of running them locally is
also a manual one.

Deployment abstraction is not introduced by manual
deployment. In this system, it means that the deployer of
each service much understand the infrastructure used for
all environments. Rolling out a new artifact to the produc-
tion environment requires uploading the pre-built artifact to
each host server and somehow load it into a runtime envi-
ronment. This does not scale well with an increasing num-
ber of services and server hosts. Each runtime environment
must be pre-installed on the production and testing servers.
However, most of the build and deployment process can be
abstracted by using a continuous integration server14 such
as Travis CI15 or Jenkins16.

Environment parity is difficult to achieve perfectly with
a fully manual approach to deployment. As Talwar et al.
[23] found, manual configuration is a major error source in
deployment work. Upgrading any given piece of software,
or the operating system itself, must be repeated manually
on every development machine, as well as every testing and
production server. For example, upgrading the Java runtime
for one application means installing the new Java runtime on
each server in the stack, as well as any continuous integration
servers in use.

12See for example https://www.nginx.com/blog/building-
microservices-using-an-api-gateway

13http://kubernetes.io
14Also known as ”build server”
15https://travis-ci.org
16https://jenkins.io

Time to build, verify, and deploy any given new ar-
tifact is high in a multi-host environment, and even more
so with multiple environments. For each microservice, for
each delivery, for each environment, for each host, the same
procedure must be repeated to complete a deployment. For
BeerFave with two environments and two server hosts, rede-
ploying a single application once would require deplying to
2 environments × 2 hosts, yielding 4 manual actions, which
can be feasible. However, in a more realistic scenario, all
four services are worked on and delivered simultaneously.
A modest estimate of 10 deployments per application in a
single day results in 4 microservices × 10 deliveries × 2 en-
vironments × 2 hosts, yielding 80 manual actions every day.

However, it should be noted that a fully manual approach
with a scripting language and limited regard for quality as-
surance would make manual deployment extremely efficient.
For example, one might log onto the single production host
and change code in a PHP runtime that does not require
reloading the environment to reflect changes. In this case,
one could achieve both zero-downtime deployments and an
extremely low time to deploy the artifact. This is not a
healthy strategy in the long run, though, as major changes
to the code base are reflected immediately after the files are
changed.

Availability adequacy is time consuming to achieve
with a manual approach to deployment. Merely ensuring
availability during deployments requires at least two sepa-
rate running instances of the microservice. This, in turn,
typically requires the deployer to sign into at least two dif-
ferent servers and complete the task of deployment on each
server. This can perhaps be feasible with two instances, but
it logically does not scale well to the tens or hundreds, which
might be required in a high-load environment.

Scaling the number of computing nodes handling requests
to the system requires manual monitoring of the traffic.
When traffic increases, new hosts must be manually provi-
sioned and configured to receive traffic. As traffic decreases,
traffic must be directed away from hosts before they are
taken down. This would be extremely time consuming, so
continually running enough nodes to handle the peak traffic
is a more feasible, if wasteful, choice.

This brief evaluation of a fully manual approach to mi-
croservice deployment can be represented in table form as
shown in table 1.

Table 1: Evaluation of a manual deployment strat-
egy

Criterion Evaluation

Testability ease Uncertain

Abstraction expressiveness Manual

Environment parity Disparate

Number of manual steps 80 per day

Minutes to build, verify, deploy Unknown

Availability adequacy Error-prone

4.2.2 Deployment with Kubernetes
Kubernetes leverages Docker17, a highly popular container-

17https://www.docker.com



ization platform that allows isolating services to their own
operating systems without the loss of computing power that
comes with traditional virtual machines. The Kubernetes
platform handles everything related to the actual deploy-
ment based on a per-project configuration file.

Testability is strongly affected by the introduction of
Docker. Because all artifacts are packaged and published as
Docker images, downloading and running an artifact (image)
is a trivial task. This affects automated testing by making it
much easier to simply start the services on which the service
under test depends. For example, in the BeerFave system,
the API gateway service depends on both the users and au-
thentication service and the beer list service. Feature level
testing of the API gateway, then, requires starting both of
those services with dummy datasets. Without containers,
they would typically be started locally in a manual man-
ner along with databases and any other external services.
However, a larger network of dependencies makes this ap-
proach infeasible. The interviews indicated a trend that it
was easier to simply avoid writing feature level tests. Pack-
aging and publishing services as container images greatly
helps simplify this process.

Deployment abstraction is the entire role of Kuber-
netes itself. The application artifact, for example a WAR18

file in a Java context, is installed into a Docker image. Docker
introduces an additional step of building the image. The im-
age is then typically uploaded to a server, and Kubernetes is
able to download the image and create a container in which
to run the service. In this case, the entire deployment is ab-
stracted into the building and publishing of a Docker image.
In other words, the developers do not need to understand
the actual infrastructure, or worry about the underlying op-
erating system.

On the other hand, Kubernetes requires each project to be
configured through configuration files residing in the reposi-
tory. In a way, the manual steps are moved to the beginning
of the development instead of recurring with every deploy-
ment. These configuration files can be extremely short, but
the configuration reflects the complexity of the image build
process and the deployment itself.

The configuration is expressed as simple values, not code.
This increases the expressiveness of the configuration, but
decreases its flexibility.

Environment parity is still challenging, but Kubernetes
makes it easy in comparison to manual deployment. As the
developers configure and build their own Docker images, the
testing and production servers are not required to have any
runtimes pre-installed. Thus, upgrading runtime versions
on a per-microservice basis becomes trivial. However, con-
tainerizing the application does not avoid the variance in
available computing resources, or any differences between
operating systems.

Number of manual steps with a Kubernetes-based set-
up per delivery is the same as the number of steps required
to publish the Docker image and notify Kubernetes to pull
it. If this process is automated, the number of manual steps
is 0. If not, the image can be built and published with
two simple commands. This is negligible in comparison to
publishing, uploading, and loading each artifact onto every
host in every environment.

Time to build, verify, and deploy is comparatively
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low, as the entire deployment step is automated by Kuber-
netes. The build time may go up for simple applications be-
cause of the added steps of building and publishing Docker
images. This is insignificant, however, because both the ver-
ification process and the deployment itself should become
much faster and safer when automated.

Availability adequacy is handled in a fully automated
manner by Kubernetes, and is activated through configu-
ration parameters on a per-service basis in the Kubernetes
configuration file. It supports both zero-downtime deploy-
ments through ”rolling updates”, and automatic scaling of
resources. In other words, Kubernetes will try to utilize
all available hardware resources in as efficient a manner as
possible.

This brief evaluation of a container-based approach using
Kubernetes is represented in table form as shown in table 2.

Table 2: Evaluation of a container-based deployment
strategy

Criterion Evaluation

Testability ease Trivial

Abstraction expressiveness High

Environment parity Distinguishable

Number of manual steps 0

Minutes to build, verify, deploy Unknown

Availability adequacy Adequate

4.3 Summary
We have showed how to apply the framework to two very

different strategies: one fully manual, and one completely
automated with a complicated stack of technology. The re-
sults are discussed in the next section.

5. DISCUSSION
The framework solves two related problems for the system

architect in selecting a strategy and technology stack for
continuous delivery of microservices.

5.1 Predefined criteria
The framework consists of a set of predefined criteria that

are useful in evaluating a deployment strategy. This set of
criteria is designed to make it easy for architects to eval-
uate potential strategies in a structured way, even if they
are not intimately familiar with the landscape of software
deployment. In other words, the predefined criteria support
an initial implementation of each strategy by defining what
to look for in the strategies.

The effect of having these predefined criteria lowers the
barrier to implementing continuous delivery: the technology
and possible strategies are becoming increasingly diverse. It
follows that it is difficult to establish confidence in that the
most relevant candidate strategies have been evaluated, and
the most suitable strategy for the project was selected.

5.2 Transparent comparison
A second effect of this structure for comparing strategies is

that each comparison is valuable in itself. Using this frame-
work for evaluating options results in data that are easy to



revisit and comprehend. The concise and structured nature
of the framework allows architects to easily reuse their re-
sults in new projects, or even share the results with other
teams.

Evaluation results for multiple strategies and technologies
help make informed choices, as it becomes simple to under-
stand what formed the basis of selecting a single strategy
and technology stack. In a DevOps context, sharing the re-
sults in this manner is particularly helpful: the transparency
of the evaluation results allows the architect to share the
knowledge with the developers, who will be able to under-
stand the strengths and weaknesses of the strategy.

The units presented as part of each criterion in the frame-
work are particularly important in the process of sharing
knowledge with others within the organization. Some units
are intentionally relative to other evaluations, and thus re-
quire some evaluations to have been completed in order to
be meaningful. Because of this, the value of the framework
improves as it is applied to various strategies. On the other
hand, some units are absolute: they allow the architect to
present hard facts, such as the number of minutes a deploy-
ment can be expected to take.

5.3 Mitigating weaknesses
As each organization and system is different, the most

common use case for the framework is to implement a proto-
type of a deployment strategy and test it for a small subset—
possibly just one—of the services in the system. This al-
lows quick evaluation of multiple strategies to get a broad
overview of the possibilities, while simultaneously maintain-
ing focus on the key quality indicators. If the organization
has more specific requirements than the proposed framework
offers, new criteria can easily be added. Similarly, if a crite-
rion is not interesting to the organization, it can simply be
removed.

After evaluating several strategies, the implementation of
these strategies can be compared and contrasted systemati-
cally in a way that highlights important differences. For ex-
ample, packaging artifacts as virtual machine images yields
high parity between testing and production environments,
at the cost of significantly increasing its computing resource
requirements and the time taken to build, verify, and deploy
the artifact.

An organization may not want to introduce a major ab-
straction. The cost of training developers, who will in-
evitably make mistakes, is an expected expense of abstract-
ing deployment. This means that even though the frame-
work shows one strategy as ”better” than another overall, a
conscious decision must be made to accept these expenses.
FINN.no observed an immediate need to mitigate the prob-
lems with their current deployment regime, and thus found
it necessary to train their developers in using a new abstrac-
tion.

As mentioned previously, the usefulness of the framework
increases incrementally as it is used to evaluate more strate-
gies. In particular, the relative units such as testability be-
come more meaningful if multiple evaluations are presented
together. Thus, it is in the interest of architects and devel-
opers alike to apply the framework and share the results to
build a common knowledge base. In some organizations, re-
sults can be shared internally for use across multiple teams.
In other organizations, results can be made public and thus
be of common benefit.

The criteria themselves are intentionally broad, and can
of course be tailored to the particular needs of an organi-
zation. For example, if a particular type of testability, such
as feature level testing, is especially important to the indus-
try, it may be simply added as a new criterion—or grouped
together with other criteria. In other words, the proposed
framework is intended to be a flexible guide that may be
modified.

In the evaluations presented in the previous section, the
framework seems to indicate that using Kubernetes is the
obvious choice over a manual approach. A reliable measure-
ment of developer productivity that respects factors such as
the size of the team; the cost of implementing a new strategy;
the number of projects any developer is working on simul-
taneously; and the number of deployments per project per
day would be a useful addition to the framework. However,
this would likely result in almost disparate frameworks for
different types of organizations. In this early generalization
of deployment strategy criteria, our focus has intentionally
been on the strictly technical aspects of deployment.

6. CONCLUSIONS AND FURTHER WORK
This study addressed continuous delivery in the context of

microservices. A framework for evaluating strategies for con-
tinuous delivery of microservices was proposed. The frame-
work is based on issues that practitioners from the industry
report as important. The work with the framework has re-
vealed large discrepancies between the research literature
and practice field. In particular, the literature mostly fo-
cuses on quantitative measurements of strategies such as the
number of manual steps required to perform a deployment or
the number of lines of code required to change the configu-
ration, while the practice field values more general qualities,
such as whether the strategy will increase the testability of
the system or not.

The evaluation framework comprises a set of characteris-
tics mapped to units. The framework is modifiable. Char-
acteristics can be added, changed, or removed to make the
framework better suit a particular context.

Several aspects of continuously deploying microservices
were not considered, such as the organizational impact of in-
troducing continuous delivery in a microservice and contain-
er-based deployments.
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