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Abstract: I give a review of predictions of values of spectral parameters for a large number of
inflationary models. The present review includes detailed deductions and information about the
approximations that have been made, written in a style that is suitable for text book authors.
The Planck data have the power of falsifying several models of inflation as shown in the present
paper. Furthermore, they fix the beginning of the inflationary era to a time about 10−36 s, and the
typical energy of a particle at this point of time to 1016 GeV, only a few orders of magnitude less
than the Planck energy, and at least 12 orders of magnitude larger than the most energetic particle
produced by CERN’s particle accelerator, LHC. This is a phenomenological review with contents
as given in the list below. It includes systematic presentations of the different types of slow roll
parameters that have been in use, and also of the N-formalism.
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1. Introduction

We have a so-called standard-model for the evolution of the universe. According to this model,
the universe started from a quantum fluctuation where the universe appeared in a state dominated by
dark energy with extremely great density. The dark energy caused repulsive gravity and made the
universe expand with great acceleration.

This state lasted for about 10−33 s, and the distances between reference points then increased
by 50–60 e-folds. This is called the inflationary era of the universe. At the beginning of this era,
there was thermal equilibrium, which explains the observed isotropy of the CMB-temperature.
Also, space inflated and became nearly flat, i.e., the geometry of the three-dimensional space became
close to Euclidean, meaning that the sum of the densities of all types of cosmic energy and matter
approached the critical density. This explains that the observed density is so close to the critical density.

The Big-Bang explosion that caused most of the observed expansion velocity of the universe,
may have been this era. Also quantum fluctuations happened at the beginning of the inflationary
era, and they were the seeds from which the structure of the universe evolved. Calculations show
that these fluctuations had a scale invariant spectrum, explaining the observed Harrison-Zel’dovich
spectrum of the large scale structure in the universe.

At the beginning of the inflationary era, there were wildly changing patterns in the cosmic
density distribution, and these changing shapes produced gravity waves. These gravity waves
functioned as messengers telling about events that happened before the universe was 10−35 s old.
About 380,000 years later the gravity waves imprinted upon the CMB a B-mode polarization pattern,
which then became observable when the universe became transparent for this radiation.

The possibility that the B-mode signal observed by BICEP 2 was due to galactic dust in the
Milky way and not to primordial gravitational waves, was discussed early on. A preprint from the

Universe 2018, 4, 15; doi:10.3390/universe4020015 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
http://dx.doi.org/10.3390/universe4020015
http://www.mdpi.com/journal/universe


Universe 2018, 4, 15 2 of 163

Planck team that came in September 2014 concluded that all of the BICEP 2 signal might be due to
galactic dust [1]. They concluded that in order to clarify the consequences of the BICEP 2 and Planck
observations that had been made up to then, the two teams ought to co-operate about the analysis of
the observational data. A common report came in a preprint 3 February 2015 [2]. At the present time
the conclusion is that the observed B-mode signal most probably is of a galactic origin.

However during the next years a more accurate mapping of the B-mode polarization contributed
by galactic dust may make it possible to subtract the galactic contribution from the observed signal,
and if the primordial contribution is not too small, then it may then become detectable.

In the present situation with new observations of the B-mode polarization pattern in the CMB
radiation field expected the next years, the predictions of spectral parameters from different inflationary
models should be presented in a way suitable for chapters in text books and for teachers and students.

In this article I will provide detailed deductions of the values of spectral parameters and of
relationships between spectral parameters, for the inflationary models in the list below. Consequences
of the Planck-data for the inflation models are also considered.

Number Name Potential

1 Polynomial chaotic inflation V(φ) = M4φ̂p, φ̂ = φ/MP

2 Hilltop inflation
V(φ) ≈ M4

(
1− 1

2 η0φ̂2
)

V(φ) ≈ V0
(
1− φ̃p) , φ̃ = φ/φ0 , p 6= 1 & p 6= 2

V(φ) = (1− nφα)β

3
Symmetry breaking inflation

Double well inflation

V(φ) = M4(φ2 −M2)2

V(φ) = V0

[
1− (φ/µ)2

]2

4
Exponential potential and

power law inflation
V(φ) = M4e− λφ̂

V(φ) = V0e− λφ̂p

5 Natural inflation
V−(φ) = V0

(
1− cos φ̃

)
= 2V0 sin2(φ̃/2

)
,

V+(φ) = V0
(
1 + cos φ̃

)
= 2V0 cos2(φ̃/2

)
6 Hybrid natural inflation V(φ) = V0

(
1− β cos φ̃

)

7 Higgs-Starobinsky inflation

V(φ) =


(
V0ξ2/M4

P
)(

φ̂2 − v2)2, φ̂ << 1/ξ

V0

(
1− e−

√
2/3 φ̂

)2
, φ̂ >> 1/ξ

V(φ) = V0

(
1 + e−

√
2/3 φ̂

)− 2
, V(φ) = V0

(
1− e− q φ̂

)
,

V(φ) = V0

(
1− e−

√
2/3α φ̂

)2
, V(φ) = V0

(
1− eαφ̂

)β

8 S-dual inflation V(φ) = V0 coshp φ̃

9 Hyperbolic inflation V(φ) = Asinhpφ̃

10 M-inflation V(φ) ∝ φ2(φ− µ)2

11
Supergravity motivated

inflation
V(φ) = V0αp/2tanhp(φ/M) , M = MP

√
6α

12 Goldstone inflation V(φ) = V0 cos2 φ̂

13 Coleman-Weinberg inflation V(φ) = V0

{
φ̂4
[
ln φ̂− 1

4

]
+ 1

4

}
14 Kähler moduli inflation V(φ) = V0

(
1− αφ̂4/3e−β φ̂4/3

)
15 Hybrid inflation

V(χ, φ) = g2
(

M2 − χ2

4

)2
+ m2

2 φ2 + λ2

4 χ2φ2

V(φ) = V0
(
1 + φ̃2) , φ̃ = mφ/

√
2V0 , V0 = g2 M4

16 Brane inflation
In this class of models the Friedmann equation takes the form

H2 = κ
3

[
1
2

.
φ

2
+ V

(
1 + V

2λ

)]



Universe 2018, 4, 15 3 of 163

Number Name Potential

17 Fast roll inflation
V(φ) = (1/2)M2 M2

P

[
6 + α− α cosh

(√
2(3 + α) φ̂

)]
= M2 M2

P

[
3 + α− α cosh2

(√
3+α

2 φ̂

)]
18 Running mass inflation V(φ) = V0

[
1− φ2

M2

(
ln φ

φ0
− 1

2

)]
19 k-inflation unspecified

20
Dirac-Born-Infield

(DBI) inflation
V ∝ φp

21
Loop of flux-brane inflation

Spontaneously broken
SUSY inflation

V(φ) = V0
(
1 + α ln φ̂

)
22 Mutated hilltop inflation V(φ) = V0

[
1− 1/ cosh

(
α φ̂
)]

23 Arctan inflation V(φ) = V0

(
1 + 2

π arctanφ
)

, φ = φ/M

24
Inflation with fractional

potential
V(φ) = V0

αφ̂2

1+αφ̂2

25 Twisted inflation V(φ) = M4
(

1− Aφ̃2e− φ̃
)

, φ̃ = φ/φ0

26
Inflation with invariant

density spectrum
V(φ) = V0

(
1− αφ̂

)−2

27 Quintessential inflation

V(φ) = sinh2( α
2 φ̂
)
,

V = V0
2
[
1 + tanh

(
pφ̂
)]

, p > 0,

V = M4 exp
(
− 2neφ̂/

√
2 N1

)
,

V(φ) = V0

cosh[(βφ̂)
n
]

28
Generalized Chaplygin Gas

(GCG) inflation
V(φ) = (V0/2) 1+cosh2 ^

φ

cosh2(1+3/m)
^
φ

29 Axion monodromy inflation V = a1φ̂ + a2 cos
(

φ̂
f + δ

)
30

Intermediate
inflationBrane-intermediate

inflation
a(t) = a0eA(MPt)α

, 0 < α < 1

31 Constant-roll inflation ηH = constant

32 Warm inflation Dissipation of inflaton energy to radiation

33 Tachyon inflation V(T) = V
2β

1−2β

0 T
4β

1−2β , β 6= 1/2, φ =
√

V T

The present review is different from earlier ones in several ways. I. It is focused upon predicted
values of the scalar spectral index and the tensor-to-scalar-ratio for a large number of inflationary
models. II. The presentation is self contained to a larger degree than usual, like a text book.
III. Also, it includes in between calculations and details of the deductions to a larger degree than usual.
IV. There are systematic and detailed presentations of the three main types of slow roll parameters
that have been used to describe inflationary universe models, and the relationships between these
parameters. V. Also, I give an encompassing review of the N-formalism with applications to a large
number of inflationary universe models. VI. The large classes of warm and tachyonic inflationary
universe models are thoroughly reviewed.

2. The Inflationary Era of the Universe

The inflationary era of the universe was an extremely brief period lasting only for 10−33 s with
approximately exponentially accelerating expansion of the universe [3–5]. It is usually assumed that
the inflaton field had a large value before inflation and rolled down the potential during inflation.
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Before the announcement of the BICEP2 results we did not know when the inflationary era
started. The earlier it started the warmer it was, and the larger was the energy per particle. At the
Planck time tP =

√
Gh/c5 = 1.4× 10−43 s the energy per particle was equal to the Planck energy,

EP =
√

hc5/G = 1.2× 1019 GeV, where h = 6.6× 1034 Js is Planck’s constant. In this connection the
energy E of the inflationary era is said to be small if E << EP.

Comment on notation. Einstein’s gravitational constant is κ = 8πG/c4. The reduced Planck
mass is often defined as MP =

√
h/κc = 4.3 × 10−9 kg corresponding to the energy

2.4 × 1018 GeV. Using units so that the velocity of light in empty space and Planck’s
constant h = c = 1, Einstein’s gravitational constant is κ = 1/MP

2. In many articles one
uses units so that κ = 1, but we shall keep κ or MP in the equations here. I will use a
hat to denote that a symbol represents the relationship between a physical quantity and
the corresponding Planck unit, hence it is dimensionless. For example the dimensionless
quantities representing the inflaton field and time are and where is the Planck time.

One often distinguishes between large field and small field inflation. These terms concern the
energy contents of the inflaton field. Large field inflation is when φ > MP and small field inflation when
φ < MP.

The Dynamical Equations

During the inflationary era the evolution of the universe is assumed to be dominated by a scalar
field φ which is called the inflaton field. This field is often described as a perfect fluid with density
and pressure

ρ =
1
2

.
φ

2
+ V, p =

1
2

.
φ

2
−V. (2.1)

The first Friedmann equation is

H2 =
κ

3
ρ =

κ

3

(
1
2

.
φ

2
+ V

)
, (2.2)

where the dot denotes differentiation with respect to cosmic time, H =
.
a/a is the Hubble parameter

that is assumed to be positive (expansion), ρ is the energy density of the inflaton field, and V = V(φ)

is the potential of the inflaton field. The continuity equation is

.
ρ + 3H(ρ + p) = 0. (2.3)

Differentiating the first of the Equation (2.1) with respect to time and using that
.

V = V′
.
φ,

where V′ = dV/dφ and
.

V = dV/dt, we obtain
.
ρ =

.
φ
( ..

φ + V′
)

.
ρ =

.
φ
( ..

φ + V′
)

. (2.4)

Inserting this and ρ+ p =
.
φ

2
from Equation (2.1) into the continuity Equation (2.3) we get the evolution

equation for the inflaton field,
..
φ + 3H

.
φ + V′ = 0. (2.5)

This equation shows that a constant inflaton field requires a flat scalar potential, V′ = 0. For a flat
scalar potential, on the other hand, integration of Equation (2.5) gives

a3 .
φ = K, (2.6)

where K is a non-negative constant. Hence the inflaton field is either constant or increases with time if
the potential is flat.
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It follows from the second Friedmann equation that the acceleration of the cosmic expansion is
given by

..
a
a
= − κ

6
(ρ + 3p). (2.7)

The inflaton field is often described as a perfect fluid with density and pressure as given in
Equation (2.1). Hence, the fluid obeys the equation of state

p = wρ, w =
(1/2)

.
φ

2
−V

(1/2)
.
φ

2
+ V

. (2.8)

For −1 < w < 1 the inflaton field interpolates between a Lorentz invariant vacuum energy (LIVE)
with w = −1 for a constant inflaton field and a Zel’dovich fluid with w = 1 for a flat potential with
V = 0. Solved with respect to V the second of these equations gives

V =
1
2

1− w
1 + w

.
φ

2
, (2.9)

showing that V > 0 for |w| < 1.
Using Equations (2.2) and (2.8) the acceleration Equation (2.7) of the scale factor takes the form

..
a = − aH2

2
(1 + 3 w). (2.10)

With Equation (2.1) the same equation may be written as

..
a
a
= − κ

3

(
.
φ

2
−V

)
. (2.11)

Hence accelerated expansion requires that V >
.
φ

2
or, from Equation (2.10), that w < −1/3.

Differentiating Equation (2.2), inserting Equation (2.5) and using that V′
.
φ =

.
V gives

.
H = −(κ/2)

.
φ

2
, (2.12)

or
.
φ = − (2/κ)H′, (2.13)

where H′ = dH/dφ =
.

H/
.
φ > 0 since

.
H < 0 according to Equation (2.12), and

.
φ < 0 because the

inflaton field rolls down the potential. It follows from Equations (2.2) and (2.13) that

κ2V = 3κH2 − 2H′2. (2.14)

Equation (2.12) shows that the Hubble parameter is constant and there is exponential expansion
for a constant inflaton field. This represents the case where the inflaton field behaves like Lorentz
invariant vacuum energy (LIVE) with a constant density, which may be represented by a cosmological
constant. Equation (2.12) implies that the Hubble parameter is a decreasing function of time for a
variable scalar field.

During most of the inflationary era, i.e., except during the transient phases at the beginning and
the end of the era, the scalar field changes very slowly so that

..
φ << H

.
φ. Then Equation (2.5) reduces to

3H
.
φ + V′ = 0. (2.15)
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If the potential V is not too small, the condition
.
φ

2
<< V may also be satisfied. Then

Equations (2.2), (2.8) and (2.14) reduce to

κV ≈ 3H2, w ≈ −1, (2.16)

which means that the inflaton field behaves like LIVE with approximately constant energy density,
and with exponential expansion of the space during most of the inflationary era. It follows from
Equations (2.15) and (2.16) that

.
φ = − 2√

3κ

(
V1/2

)′
. (2.17)

Equations (2.9) and (2.12) give
.

H = −κ V
1 + w
1− w

. (2.18)

It follows from Equations (2.2) and (2.12) that

κV =
.

H + 3H2. (2.19)

Hence .
H = − (3/2)(1 + w)H2. (2.20)

This equation is exact. In general, i.e., for most inflation models, the equation of state parameter w
is not constant. However in the special case with constant w 6= −1 integration of Equation (2.20) gives

a = a1

(
t
t1

) 2
3(1+w)

. (2.21)

Hence, power law expansion corresponds to a constant equation of state parameter w 6= −1
during the inflationary era, and exponential expansion to w = − 1. Inserting the first of Equation (2.8)
into Equation (2.3) gives

.
ρ = −

√
3κρ(1 + w)ρ. (2.22)

Integrating this equation for w 6= −1 with ρ(0) = ρ0 leads to

ρ =
ρ0[

1 + (1/2)(1 + w)
√

3κρ0 t
]2 . (2.23)

Hence for
√

ρ0 t >> MP the energy density of an inflaton field with constant equation of state
parameter w 6= −1 decreases approximately inversely proportionally to the square of time. As shown
by Equation (2.22) the density is constant if w = −1.

In the case of a flat potential Equations (2.6) and (2.21) give

.
φ = K1t−

2
1+w , (2.24)

where K1 is a positive constant. Integration leads to

φ = K2 − K1
1 + w
1− w

t−(1−w)/(1+w). (2.25)

In this case the inflaton field increases for all values of p. For p > 0, i.e., for −1 < w < 1 the
inflaton field then approaches the constant value K2 for large values of t.



Universe 2018, 4, 15 7 of 163

3. The Slow Roll Parameters

In the theory of the inflationary universe models three different types of slow roll parameters
have been commonly in use. The first set of parameters is defined in terms of the derivatives of the
potential with respect to the inflaton field. They may be called the potential slow roll parameters.

3.1. The Potential Slow Roll Parameters

The standard definitions of the potential slow roll parameters are

ε ≡ 1
2κ

(
V′

V

)2

, η ≡ 1
κ

V′′

V
, ξ ≡ 1

κ2
V′V′′′

V2 , σ ≡ 1
κ3

V′2V′′′′

V3 . (3.1)

It is usual to write ξ2 instead of ξ in the third expression, but we will not put any restriction upon
the sign of V′V′′′ here. The absolute values of the slow roll parameters are much less than one during
the slow roll period. This means that during a slow-roll period the graph of V(φ) is very flat and has
small curvature.

If ε = constant, integration of the first Equation (3.1) gives

V = V0e
√

2εφ̂. (3.2)

In this case η = 2ε , ξ = η2 , σ = η3. This represents power law inflation with an exponential
potential which will be considered later in relation to the Planck observations [1,6,7].

If η = constant integration of the second Equation (3.1) gives

V = V0sinh
(√

ηφ̂ + φ̂0
)
. (3.3)

This corresponds to hyperbolic inflation which will be considered in Section 6.9.
In the slow roll approximation we shall assume that

..
φ << H

.
φ. From Equations (2.5), (2.16) and (3.1)

we then get
.
φ

2
≈ V′2

9H2 ≈
V′2

3κV
=

2
3

ε V. (3.4)

Hence the term (1/2)
.
φ

2
in Equation (2.1) and

.
φ

2
in Equation (2.8) can be neglected in the slow

roll era, giving ρ ≈ V , p ≈ −V. Thus, with a positive potential the inflaton field has negative
pressure giving a repulsive gravitational contribution to the cosmic acceleration (2.7), which according
to Equation (2.11) is

..
a ≈ (κ/3)aV.

With the present accuracy of the measurements of the optical parameters and that expected in
the coming years, it is sufficient to perform the calculations of the optical parameters for different
inflationary models to first order in the slow roll parameters. Hence we are not discussing second
order corrections here.

We shall later need the derivatives of the slow roll parameters with respect to the inflaton field.
They can be expressed as√

2ε

κ
ε′ = 2ε(η− 2ε) ,

√
2ε

κ
η′ = ξ − 2εη ,

√
2ε

κ
ξ′ = σ− (4ε− η)ξ. (3.5)

The second derivatives of ε and η are [8]

ε′′ = κ
[
ξ − 2ηε− 4ε(η− 2ε) + (η− 2ε)2

]
, η′′ = κ

[ σ

2ε
+ η(4ε− η)− 2ξ

]
. (3.6)
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3.2. The Hubble Slow Roll Parameters

Secondly, one defines Hubble slow roll parameters, εH , ηH and ξH , in terms of the Hubble parameter
and its derivatives with respect to the inflaton field [9,10],

εH =
2
κ

(
H′

H

)2

, ηH =
2
κ

H′′

H
, ξH =

4
κ2

H′ H′′′

H2 . (3.7)

Since H′ > 0 it follows from the first of these expressions that

H′ = H
√

κ εH
2

. (3.8)

nserting the first of the expressions (3.7) into Equation (2.14) we get for the inflaton potential

κ V = (3− εH)H2. (3.9)

It follows from Equations (2.13) and (3.8) that during the slow roll era differentiation with respect
to time and with respect to the inflaton field are related by

d
dt

= − 2
κ

H′
d

dφ
= −

√
2εH

κ
H

d
dφ

. (3.10)

Hence

H′2 = − κ

2

.
H , H′′ = − κ

4

..
H
.

H
, H′H′′′ =

κ2

8

( ..
H
.

H

)·
. (3.11)

sing this in the definitions (3.7) we get simple expressions for εH , ηH and ξH ,

εH ≡ −
.

H
H2 , ηH = − 1

2

..
H

H
.

H
, ξH =

...
H

2H2
.

H
− 2η2

H . (3.12)

t may be noted that εH = 1+ q, where q is the decelation parameter. The expression for ηH may be written

ηH = εH −
.
εH

2HεH
. (3.13)

Since H =
.
a/a the first Equation (3.12) takes the form

εH = 1− a
..
a

.
a2 or

..
a
a
= H2(1− εH). (3.14)

A requirement for inflation is that there is accelerated expansion,
..
a > 0. Hence a necessary condition

for inflation is that εH < 1. Schwarz and Terrero-Escalante [11] have defined graceful exit from the
inflationary era as the moment when εH crosses unity.

It follows from Equation (2.12) that
..
φ
.
φ
=

1
2

..
H
.

H
. (3.15)

Hence

εH =
κ

2

( .
φ

H

)2

, ηH = −
..
φ

H
.
φ

, ξH =

...
φ

H2
.
φ
− η2

H . (3.16)
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The equation for ηH may be written[
(1/2)

.
φ

2
] ·

= −ηH H
.
φ

2
. (3.17)

Hence the sign of the parameter ηH decides whether the kinetic energy of the inflaton field
increases, ηH < 0, or decreases, ηH > 0. The kinetic energy is constant for ηH = 0.

It may be noted that the slow roll approximation should not be applied uncritically when
calculating ηH . Inserting for H

.
φ from Equation (2.5) into Equation (3.16) gives

ηH =
3

..
φ

..
φ + V′

. (3.18)

Hence if the term with
.
φ

2
is neglected in Equation (2.1) meaning that

..
φ ≈ 0, one obtains ηH ≈ 0.

There is a simple relationship between ε, εH and ηH . Inserting the expression (2.1) for V and (2.4)
for V′ into the expression (3.1) for ε we get

ε =
1

2κ

 3H
.
φ +

..
φ

(3/κ)H2 − (1/2)
.
φ

2

2

. (3.19)

Using this together with Equations (3.13), (3.16) and (3.1) leads to

ε = εH

(
3− ηH
3− εH

)2
. (3.20)

This relationship is exact and does not depend upon the slow roll approximation. Often εH ≈ ε

will be a good approximation. Differentiating the slow roll Equation (2.16) gives

V′

V
= 2

H′′

H
+ 2
(

H′

H

)2

. (3.21)

From this equation together with Equations (3.1) and (3.7) it follows that

η = ηH + εH (3.22)

which is a slow roll relationship. The corresponding exact expressions for η and ξ are [9,12,13]

η =
3(εH+ηH)−η2

H−ξH
3−εH

,

ξ = 3 3−ηH

(3−εH)2

(
3εHηH + ξH(1− ηH)− 1

6 σH

)
, σH = 4M4

PεH
H′′′′

H .
(3.23)

To lowest order this gives
ξ ≈ ξH + 3εHηH . (3.24)

In the slow roll approximation the inverse relationships are

εH = ε− 4
3

ε2 +
2
3

εη , ηH = (η − ε)

(
1− 8

3
ε

)
+

1
3

(
ξ + η2

)
, ξH = ξ − 3ε(η − ε). (3.25)

Hence to lowest order

εH = ε =
1

2κ

V′2

V2 , ηH = η − ε =
1
κ

(
V′′

V
− 1

2
V′2

V2

)
. (3.26)
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From Equations (3.5), (3.20), and (3.22) we get

ε′H =
√

2κεH(ηH − εH) , η′H =

√
κ

2εH
(ξH − εHηH). (3.27)

Using Equation (3.10) we then have

.
εH = 2HεH(εH − ηH) ,

.
ηH = H(εHηH − ξH). (3.28)

Differentiating Equation (3.9) and using Equations (3.28) and (3.12) gives

.
V = −H

.
φ

2
(3− ηH). (3.29)

Normally |ηH | < 1, and then the inflaton potential is a decreasing function of time. However,
the potential is constant if ηH = 3. According to Equation (3.12) this gives

..
H + 6H

.
H = 0. (3.30)

Solving this equation with H(0) = H0 leads to

H(t) = H0tanh[3H0(t− t0)]. (3.31)

As seen from Equation (3.26) ηH = 3 corresponds to η − ε = 3, or

V′′

V
− 1

2
V′2

V2 =
3

M2
P

. (3.32)

The general solution of this equation is

V(φ) =
[

Asinh
(√

3/2 φ̂
)
+ B cosh

(√
3/2 φ̂

)]2
(3.33)

It should be noted that the relationships (3.26) are not exact. They are only valid in the slow roll
approximation. Hence Equation (3.32) and its solution is not generally valid. Equation (3.18), however,
is exact, and inserting ηH = 3 into this equation implies V′ = 0 or V(φ) = constant.

We further have
..
a
a
= H2 +

.
H = H2

(
1 +

.
H
H2

)
= H2(1− εH) (3.34)

Integration of this equation or the first of the Equation (3.12) with a constant value of εH gives

a =

{
K1(εHt + K)− 1/εH , εH 6= 0 ,
a0eH0t , εH = 0 .

(3.35)

where K1 and K are constants of integration. If εHt << K during the slow roll period, H will be
approximately constant. Then there will be approximately exponential expansion.

Equations (2.10) and (3.14) give

εH = (3/2)(1 + w). (3.36)

or
w = − 1 + (2/3)εH . (3.37)
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Hence a universe with εH = 0 is dominated by a Lorentz invariant vacuum energy (LIVE) with
equation of state parameter w = − 1 and a constant energy density which can be represented by a
cosmological constant.

Inserting Equations (2.11) and (2.2) into Equation (3.14) we get

εH = 3
.
φ

2
/2

.
φ

2
/2 + V

. (3.38)

Hence the parameter εH represents 3 times the ratio of the kinetic energy and the total energy of
the inflaton field. This is exact. It does not require the slow roll approximation. From Equation (3.38) is
seen that the condition εH << 1 means that the kinetic energy of the inflaton field is much smaller
than its potential energy.

In the slow roll approximation Equations (2.2) and (2.5) reduce, respectively, to (2.15) and

V′ ≈ −3H
.
φ. (3.39)

Hence
V′′ = κηV ≈ 3ηH2. (3.40)

Inserting Equations (3.39) and (3.40) into Equation (3.21) gives

..
φ ≈ H(ε− η)

.
φ. (3.41)

This equation has an interesting consequence. In the slow roll approximation we neglect
..
φ in

Equation (2.4), and Equation (3.41) is a slow roll version of Equation (2.4). Hence we expect that
..
φ ≈ 0

in the slow roll era. According to Equation (3.41) this means ε ≈ η which corresponds to

2VV′′ = V′2. (3.42)

Solving this equation with V(0) = 0 gives

V(φ) = Kφ2, (3.43)

where K is a constant of integration. This so called chaotic inflation model with a quadratic potential
will be discussed later. Note that this result appears in a model independent way, only as a result of
the slow roll approximation. Hence most of the inflationary models are not of a strictly slow roll type.

The end of the slow roll era is sometimes defined by the condition ε = 1 and sometimes by εH = 1.
Let us consider the latter case. Then Equation (3.14) gives a(t) ∝ t. This scale factor is the same as that
of the Milne universe, i.e., of the Minkowski spacetime as described in an expanding reference frame.
The reason for this seemingly strange relationship is found by considering Equations (2.8) and (2.11).

With
..
a = 0 Equation (2.11) gives

.
φ

2
= V. Inserting this into Equation (2.8) shows that this particular

inflaton field acts as a perfect fluid with equation of state

p = − (1/3)ρ. (3.44)

As seen from Equation (2.7) the gravitational mass density of this inflaton field vanishes.
Media with this property are sometimes called a K-fluid [14] and sometimes a texture gas [15,16].
They do not gravitate, and this is the reason for the Milne type scale factor.
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3.3. The Number of e-Folds

The ratio of the final value a f of the scale factor during the inflationary era and the initial value
a(N) is

a f

a(N)
= eN , (3.45)

where N is called the number of e-folds of the slow roll era. Hence

N = ln
(

a f /a
)

. (3.46)

Note that N = 0 at the end of inflation, so that N counts the number of e-folds until inflation ends
and increases as we go backward in time. This is the usual choice, but some authors (for example
Leach et al. [17] and Martin [18]) use ai where is the initial value of the scale factor during the slow roll
era. We shall keep to the definition (3.45) in this article. It follows that

.
N = −H, (3.47)

or
d

dN
= − 1

H
d
dt

. (3.48)

Equation (2.16) implies

V′

V
= 2

H′

H
,V′′ = (6/κ)

(
H′2 + HH′′

)
. (3.49)

Using this together with Equations (3.48), (2.12), (3.49) and (3.1) and
.

N = N′
.
φ, we have

dN = − H
.
φ

dφ =
κ

2
H
H′

dφ = κ
V
V′

dφ =

√
κ

2ε
dφ. (3.50)

This equation can be used to relate the derivative with respect to N and the derivative with respect
to φ as

d
dN

=

√
2ε

κ

d
dφ

, (3.51)

which may be written

ε =
κ

2
φ,2N , (3.52)

showing that ε > 0. We use the notation ,N for differentiation with respect to N. From Equations (3.7)
and (3.51) and the approximation εH ≈ ε we have

εH ≈
H,N
H

. (3.53)

It follows from Equation (3.53) that H,N > 0. Differentiating this equation gives

H,NN
H,N

≈ εH +
εH ,N
εH

. (3.54)

Also, from the definition (3.1) and Equation (3.51) we get

ε =
1
2

V,N
V

. (3.55)

This shows that V,N > 0. Since N increases backwards in time, this means that V decreases with
time in the slow roll era.
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It follows from Equations (3.52) and (3.55) that

[ln V(N)],N = κφ,2N . (3.56)

From the definition (3.1), Equations (3.51), (3.49) and (3.55) we obtain

η = 2ε +
ε,N
2ε

, ξ = 2εη + η,N = 4ε2 + ε,N +η,N . (3.57)

Using Equation (3.51) we can write Equation (3.5) as

ε,N = 2ε(η − 2ε) , η,N = ξ − 2εη , ξ,N = σ− (4ε− η)ξ. (3.58)

The first two equations are identical to those in Equation (3.57) which has been deduced in a
different way. Inserting ε ≈ εH and (3.22) into Equation (3.58) we obtain [19,20]

εH ,N = 2εH(ηH − εH) , ηH ,N = ξH − εHηH , (3.59)

where the first equation is in agreement with Equation (A10) of Peiris et al. [10].
Integration of Equation (3.50) between the value of φ when the CMB scale cross the horizon,

which will be our definition of the beginning of the slow roll era, and the final value φ f of the inflaton
field during the slow roll era, gives

N ≈ κ

φ∫
φ f

V
V′

dφ =

φ∫
φ f

√
κ

2ε
dφ <

√
κ

2εmin

(
φ− φ f

)
. (3.60)

Note that if V′ > 0 we must have φ f < φ in order that N > 0, and if V′ < 0 we must have
φ f > φ. Equation (3.60) implies a bound on the change of the value of the scalar field during the
inflationary era,

∆φ > N

√
2εmin

κ
= N MP

√
2εmin. (3.61)

This is a first form of the so-called Lyth bound [21–24], which we shall come back to below.
Note also from Equation (3.50) that the number of e-folds is given by

N =

t f∫
t∗

H dt, (3.62)

where t∗ is the initial point of time of the slow roll era, and t f the final point of time which is usually

defined by ε
(

t f

)
= 1.

3.4. The Horizon-Flow Slow Roll Parameters

There exists a third type of slow roll parameters. They have been called the horizon-flow parameters
by Schwarz [11], but were called the Hubble flow parameters (or functions) by Coone et al. [25] and
Martin [18]. They are defined by

ε1 = εH , εn+1 = −(ln|εn|),N . (3.63)

The minus signs are not present in the definitions of Liddle et al. [9] and Leach et al. [17], but they
have used the opposite sign of the usual one in their definition of the number of N-folds. Therefore the
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minus sign is included here in order to have the same definition of the slow roll parameters εn as they
have. Using Equation (3.48) we have

.
εn = Hεnεn+1, (3.64)

or
εn, N = − εnεn+1. (3.65)

From Equations (3.64), (3.12) and (3.28) we find

ε2 =

.
ε1

Hε1
=

..
H

H
.

H
− 2

.
H
H2 = 2(εH − ηH). (3.66)

Differentiating Equation (2.12) and using Equation (2.5) leads to

M2
P

..
H =

.
φ V′ + 3H

.
φ

2
. (3.67)

Inserting this into Equation (3.65) and using once more Equation (2.12) gives [11]

ε2 = 2

(
ε1 −

V′

H
.
φ
− 3

)
. (3.68)

The conditions |ε1| << 1 , |ε2| << 1 thus implies that to first order during slow roll,
3H

.
φ ' −V′. From Equation (2.5) it then follows that

..
φ ≈ 0. Not surprisingly we again see that

the inflaton field must have a flat potential during the slow roll era.
Using first Equations (3.66) and (3.26), and then (3.64) and (3.28) we get

ε2 = 2(2ε− η) , ε2ε3 = 2
(

ξ + 8ε2 − 6εη
)

(3.69)

Inserting the definitions (3.1), we get [17,18,26,27]

κ

2
ε2 =

(
V′

V

)2

− V′′

V
= −

(
V′

V

)′
,

κ2

2
ε2ε3 = 2

(
V′

V

)4

− 3
V′2V′′

V3 +
V′V′′′

V2 (3.70)

These expressions are valid only in the slow roll approximation. They are different from those
given by Steer and Vernizzi [28]. Using Equations (3.39) and (3.49) together with the approximation
εH ≈ ε the Hubble flow parameters can be expressed in terms of the Hubble parameter as

κ

2
ε1 =

(
H′

H

)2

,
κ

4
ε2 =

(
H′

H

)2

− H′′

H
,

κ2

8
ε2ε3 = 2

(
H′

H

)4

− 3
H′2H′′

H3 +
H′H′′′

H2 . (3.71)

It was noted by Vennin [26] that these expressions are exact. They follow directly from
Equations (3.51) and (3.63).

The inverse of the relationships (3.69) are

ε ≈ ε1 , η ≈ 2ε1 − ε2/2 , ξ = 4ε2
1 − 3ε1ε2 + ε2ε3/2, (3.72)

which may be written

MP
V′

V
=
√

2ε1 , M2
P

V′′

V
= 2ε1 −

ε2

2
, M3

P
V′′′

V
=

4ε2
1 − 3ε1ε2 + ε2ε3/2√

2ε1
. (3.73)

The corresponding formulae for the Hubble slow roll parameters are

εH = ε1 , ηH = ε1 −
ε2

2
, ξH = ε2

1 −
3
2

ε1ε2 +
1
2

ε2ε3. (3.74)
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Inserting the expressions (3.73) into Equations (3.20) and (3.22) we obtain the relationships

ε = ε1

[
1− ε2

2(3− ε1)

]2
, η =

24ε1 − 6ε2 − 8ε2
1 + 10ε1ε2 − ε2

2 − 2ε2ε3

4(3− ε1)
. (3.75)

Using Equations (3.38), (3.64), (3.42) and (3.72) the ratio of 3 times the kinetic energy and the total
energy, and the rate of change of this ratio, and of two times the kinetic energy, can be rewritten in
terms of the horizon-flow parameters as follows

ε1 =
3

.
φ

2

.
φ

2
+ 2V

,
.
ε1 = Hε1ε2,

(
.
φ

2
)·

= − (2ε1 − ε2) H
.
φ

2
. (3.76)

Schwarz et al. [11] have constructed a classification of inflation models based upon these equations.
It should be noted that the validity of their classification is restricted to first order in the slow roll
parameters, but does not work in general. They write:

• ε2 = 2ε1: Kinetic energy is constant. For slow roll models this is realized to 1, order in the slow
roll parameters for chaotic inflation with a quadratic potential, V(φ) ∝ φ2.

It was noted by Schwarz et al. [11] that a model with a constant ratio of kinetic and total energy
density has ε2 = 0. Equation (3.70) then gives

VV′′ −V′2 = 0 (3.77)

with general solution
V = V0eAφ, (3.78)

where V0 and A are integration constants. Inflation with such an exponential potential will be
considered later.

V. Vennin [26] has calculated the second order corrections to the first order horizon flow parameter,
and found

εS1 = εF1

(
1− εF2

3

)
, εS2 = εF2

(
1− εF2

6
− εF3

3

)
, (3.79)

where εF are first order parameters.
The parameters εn have been used by Myrzakulov et al. [29] in order to reconstruct viable

inflationary models starting from the measured values of nS and r. Their point of departure comes
from an article by Mukhanov [30]. Let us first follow Mukhanov’s deduction. From Equations (2.1)
and (2.2) we get

H2 =
2κV

3(1− w)
. (3.80)

Mukhanov makes the slow roll assumption that
.
φ

2
<< V. It then follows from Equation (2.8)

that w ≈ − 1. Hence 1 − w ≈ 2, and Equation (3.80) can be approximated by Equation (2.15).
Similarly when w ≈ − 1 Equation (2.9) reduces to

.
φ

2
= (1 + w)V. (3.81)

With ε ≈ εH we have from Equation (3.36) that

ε = (3/2)(1 + w). (3.82)
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This is the relationship between the first slow roll parameter and the equation of state parameter
for the dominating cosmic fluid during the inflationary era. Combining this with Equation (3.80)
we get

ε ≈ 3 − κ V
H2 . (3.83)

Ballesteros and Casas [31] have given a general argument which shows that a relatively large value
of r and αS lead to problems for many inflation models. The argument goes as follows. The potential is
normalized as

V̂ = V/V∗ , V∗ = V(φ∗), (3.84)

where φ ∗ is the value of the inflaton field at the horizon crossing scale k∗. Here k∗ is called the pivot
scale and was chosen by the Planck project as k∗ = 0.05 Mpc−1 (1 Mpc = 3.26 × 106 light years).
Using Equation (3.1) the derivatives of the normalized potential is given by the slow roll parameters as

V̂,φ̂ =
√

2ε , V̂,φ̂φ̂ = η , V̂,φ̂φ̂φ̂ = ξ/
√

2ε, (3.85)

where φ̂ = φ/MP. Typical values for the slow roll parameters coming from the Planck 2015 results
are ε = −5η = (4/3)ξ = 6× 10−3 which gives V̂,φ̂φ̂ = − 0.01V̂,φ̂ and V̂,φ̂φ̂φ̂ = 0.36V̂,φ̂ with V̂,φ̂ = 0.11.

This means that
∣∣∣V̂,φ̂

∣∣∣ >>
∣∣∣V̂,φ̂φ̂

∣∣∣ <<

∣∣∣∣V̂,
φ̂φ̂

_
φ

∣∣∣∣. These inequalities require a very special shape of

the inflaton potential. Ballesteros and Casas [31] have pointed out that a value of ξ which has not
a sufficiently small absolute value, may trigger the breakdown of slow roll, and thus of inflation,
too early.

3.5. Ultra Slow-Roll Inflation

Some authors have investigated a situation where the early universe enters an era with constant
potential, V = V0 for a while [32–34]. This has been termed ultra slow-roll inflation.

We shall here calculate the different slow roll parameters in such an era, illustrating that they
can be rather different. We have met with this case a few times above. The relationship between the
scale factor and the rate of change of the inflaton field is given in Equation (2.6). Furthermore based
upon the approximate Equation (2.19) the time dependency of the inflaton field for a flat potential was
calculated in Equation (2.25). We shall now give a more general approach.

Integrating the exact Equation (2.14) for a constant potential gives

H =

√
κV0

3
cosh

(√
3κ

2
φ

)
, H′ = κ

√
V0

2
sinh

(√
3κ

2
φ

)
, H′′ =

κ

2

√
3κV0 cosh

(√
3κ

2
φ

)
(3.86)

Inserting the expression for H′ into Equation (2.13) gives

.
φ = −

√
2V0 sinh

(√
3κ

2
φ

)
. (3.87)

Integration leads to

tanh

(
1
2

√
3κ

2
φ

)
= K1e−

√
3κV0 t, (3.88)

where K1 is an arbitrary constant. Combining this with the expression for H in Equation (3.86) and
using that

cosh x =
1 + tanh2(x/2)
1− tanh2(x/2)

, (3.89)
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we obtain

H(t) =

√
κV0

3
e2
√

3κV0 t + K2
1

e2
√

3κV0 t − K2
1

. (3.90)

In order to give a simple illustration of the behavior of this class of models, and of the differences
of the slow roll parameters, we choose K1 = 1. Then

H(t) =
√

κV0
3 coth

(√
3κV0 t

)
,

.
H = − κV0

sinh2(
√

3κV0 t)
,

..
H = 2

√
3(κV0)

3
2

cosh(
√

3κV0 t)
sinh3(

√
3κV0 t)

(3.91)

The scale factor is
a(t) = a1sinh

(√
3κV0 t

)
, (3.92)

where a1 is an arbitrary constant. In this case Equation (3.88) can be written as

cosh

(√
3κ

2
φ

)
= coth

(√
3κV0 t

)
. (3.93)

The number of e-folds of the super slow-roll era is found by inserting the expression (3.92) of the
Hubble parameter into Equation (3.62) and performing the integration

N = ln
sinh

(√
3κV0 t

)
sinh

(√
3κV0 t f

) , (3.94)

where t f is the point of time of the end of this era.
The potential slow roll parameters, defined in Equation (3.1), the Hubble slow roll parameters,

defined in Equation (3.7), and the horizontal slow roll parameter 3, defined in Equation (6.63) and
calculated from Equation (3.66), are

ε = η = 0 , εH = 3

cosh2
(

1
2

√
3κ
2 φ

) , ηH = 3 , ε1 = εH , ε2 = −6 tanh2
(

1
2

√
3κ
2 φ

)
(3.95)

Using Equation (3.12) and once more Equation (3.66) we get

εH = 3tanh2
(√

3κV0 t
)

, ε2 = − 6
cosh2(√3κV0 t

) . (3.96)

Due to Equation (3.94) these expressions are equivalent to those in Equation (3.96). Hence in this
case we have part of an inflationary era with large values of the slow roll parameters. These values are
not related to the observable spectral parameters. They illustrate, however, how different the potential-,
the Hubble-, and the horizontal slow roll parameters can be.

4. Power Spectra of Primordial Fluctuations

4.1. Spectral Parameters

We shall here review the mathematical quantities that are used to describe the temperature
fluctuations in the CMB. The power spectra of scalar and tensor fluctuations are represented by [5]

PS = AS(k∗)
(

k
k∗

)nS−1+(1/2)αS ln (k/k∗)+···
, PT = AT(k∗)

(
k

k∗

)nT+(1/2)αT ln (k/k∗)+···
,

AS = V
24π2ε M4

P
=

(
H2

2 π
.
φ

)2
, A T = 2V

3π2 M4
P
= ε

(
2 H2

π
.
φ

)2 (4.1)

Here k is the wave number of the perturbation that is a measure of the average spatial extension
for a perturbation with a given power, and k∗ is the value of k at a reference scale usually chosen as the
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scale at horizon crossing, called the pivot scale. One often writes k =
.
a = aH, where a is the scale factor

representing the ratio of the physical distance between reference particles in the universe relative to
their present distance. The quantities AS and AT are amplitudes at the pivot scale, and nS and nT are
the spectral indices of the scalar and tensor fluctuations. The quantity δns ≡ 1− ns is called the tilt of
the power spectrum of curvature perturbations because it represents the deviation of the value nS = 1
which represents a scale invariant spectrum. In the present article we shall represent nS by δns.

Furthermore αS and αT are factors representing the k-dependence of the spectral indices. They are
called the running of the spectral indices and are defined by

αS =
dnS

d ln k
, αT =

dnT
d ln k

. (4.2)

If nS = 1 the spectrum of the scalar fluctuations is said to be scale invariant. An invariant
mass-density power spectrum is called a Harrison-Zel’dovich spectrum. One of the predictions of
the inflationary universe models is that the cosmic mass distribution has a spectrum that is nearly
scale invariant, but not exactly. The observations and analysis of the Planck team [1,7,35,36] have
given nS = 0.968± 0.006. Hence we shall use nS = 0.968 as the preferred value of nS. Furthermore,
they have obtained αS = − 0.003± 0.007. Adding data from other measurements Huang [37] gives
αS = − 0.006± 0.007. Different inflationary models will be evaluated against the Planck 2015 value of
the tilt of the curvature fluctuations, δns = 0.032. A combination of all the relevant experiments gives
the restriction nt < 0.36.

The tensor-to-scalar ratio r is defined by

r ≡ PT(k∗)
PS(k∗)

=
A T
A S

. (4.3)

As noted by Baumann [38], the tensor-to-scalar ratio is a measure of the energy scale of inflation,
V1/4 = (100 r)1/41016 GeV. From Equations (4.1) and (4.3) we have

r = 16ε. (4.4)

4.2. The BICEP2 Announcment

The seventeenth of March 2014 the BICEP2 team announced [39] the possible discovery of
B-mode signals in the cosmic microwave radiation corresponding to a tensor-to-scalar ratio r = 0.20.
They estimated that 20% of the signal came from dust in the Milky way, and hence that there was a
contribution of magnitude r = 0.16 from primordial gravitational waves that were produced in the
inflationary era.

This inspired researchers working in this field to produce a great number of papers on this topic,
several hundred in one year. However one year later, after having made a thorough analysis of the
observational data together, the Planck and BICEP2 teams published a report together [2] concluding
that all of the detected signal might be due to galactic dust. But the uncertainty is still so large that a
signal representing a value of r of the order of a few percent may be hidden behind the galactic curtain
of dust.

Some of the results that were produced partly as a result of the original BICEP2 announcement
will here be reviewed. The first observational result that was discussed was the discrepancy between
the Planck result that had been established prior to the BICEP2 announcement, that r < 0.12 and the
BICEP2 result. This was overcome in several ways.

The researchers immediately noted that the observations of Planck and BICEP were performed
at different scales. Hence the problem of reconciling the results could be solved by a sufficiently
large scale dependence of the value of r. For example Ashoorioon and coworkers [40] noted that
agreement could be obtained if αT ≥ 0.16. They constructed an inflationary scenario in agreement
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with the BICEP2-Planck 2014 resultsthat were based upon a non Bunch-Davis initial state for cosmic
perturbations. Due to the BICEP2-Planck 2015 result we will not consider this here.

The tensor-to-scalar ratio can be determined from observations of the B-mode of the polarization
of the CMB. In the measured wavelength region this B-mode pattern is partly due to radiation from
galactic dust and partly to imprints on the CMB at the time 380,000 years after the Big Bang, when the
universe became transparent for the CMB, from relic gravitational waves that were produced by
quantum fluctuations in the inflationary era.

As mentioned above the BICEP2 team recently announced [1,40] that they have measured the
B-mode in the CMB-polarization. Disregarding a possible contribution from the foreground they
obtained a best fit value r = 0.20. Subtracting a contribution r f = 0.04 due to the foreground according
to a preferred model, they arrived at r = 0.16. In September 2014 the experimental bounds on nS,
r and αS were summarized as follows [41–43]: nS = 0.957± 0.015, r = 0.16+0.06

− 0.05, αS = − 0.022+0.020
− 0.021.

In October 2016 Benetti and Ramos [44] gave αs = 0.011± 0.014 while Ballesteros and Casas [31]
gave a smaller uncertainty, αS = − 0.018± 0.009, excluding values very close to zero. In January
2016 Bamba et al. [45] gave, nS = 0.968± 0.006, r < 0.11, αS = − 0.003± 0.007. When considering
the consequences for the inflationary models of the observations we shall here mostly use the center
values given in [35,36], namely nS = 0.968, i.e., δns = 0.032, αS = − 0.003 and r = 0.05. With
r = 0.05 Equation (4.4) gives ε = 0.003. These will be called the BPK-values (BICEP2, Planck, Keck).
The most recent analysis [46] of the BKP-data concludes that r < 0.04, which will also be used in the
confrontation of different inflationary models with observational data.

It follows from Equations (3.82) and (4.4) that the equation of state parameter during the slow roll
era is given in terms of the tensor-to-scalar ratio as

1 + w = r/24. (4.5)

With r = 0.05 this gives 1 + w = 0.002 during the slow roll era. According to Equation (2.21) this
corresponds to power law expansion with an extremely large exponent, a = a1(t/t1)

16/r = a1(t/t1)
320

during the slow roll era.

4.3. The Lyth Bound

Assuming that εmin in Equation (3.61) is equal to the value of ε at the slow roll period we can use
Equation (4.4) to express the Lyth bound in terms of the scalar to-tensor ratio [23],

r < 2
(

2∆φ

N MP

)2
. (4.6)

This form of the Lyth bound tells that in general r will have very small values for small field
inflation with ∆φ < MP. Lyth [21] and Minor and Kaplinghat [47] have argued that the right hand
side of Equation (4.6) gives an estimate of the order of magnitude of r predicted by different classes of
inflationary models.

The Lyth bound can also be written [48,49]

∆φ > N
√

r/8 MP, (4.7)

where ∆φ is the change of the value of the scalar field during the slow roll era. Hence small field
inflation requires N

√
r/8 < 1 or r < 8/N2. In order to solve the horizon problem the number of e-fold

must be at least N ' 50. Then small field inflation demands r < 0.003 [50].
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4.4. Relationships between the Spectral Indices and the Slow Roll Parameters

We shall now find how the spectral indices depend upon the slow roll parameters. From
Equation (4.1) it follows that they are given by

δns = −
[

d ln PS(k)
d ln k

]
k= aH

, nT =

[
d ln PT(k)

d ln k

]
k= aH

. (4.8)

The quantities inside the brackets are evaluated at the horizon crossing where k = k∗, and the
wave number is equal to the scale factor times the Hubble parameter. It will be useful to write

d
d ln k

=
d

dN
× dN

d ln k
. (4.9)

Hence, using that AS ∝ H2/ε, the scalar spectral indices may be written as

δns =

(
d ln ε

dN
− 2

d ln H
dN

)
dN

d ln k
, nT = 2

d ln H
dN

dN
d ln k

. (4.10)

Using Equations (3.48) and (3.12), we get in the slow roll approximation

d ln H
dN

= −
.

H
H2 = εH . (4.11)

From the condition that the spectral indices are calculated at the horizon crossing we have
k = aH. Equation (3.46) gives dN = − d ln a. Hence d ln k = d ln a + d ln H = − dN + d ln H. Since H
is approximately constant during the slow roll inflationary era, it follows that

d
d ln k

≈ − d
dN

. (4.12)

Inserting this together with Equations (3.58) and (4.11) into Equation (4.10) leads to

δns = 2(3ε− η). (4.13)

Using Equation (3.5) this equation can be written as

δns = 2
[

ε−
(√

2ε/κ
)′]

. (4.14)

Equations (3.26) and (4.10)–(4.13) give

nT ≈ − 2ε (4.15)

A consistency relation between r and nT follows from Equations (4.4) and (4.15)

nT = − r
8

. (4.16)

This relationship is model independent, and must be taken into account by inflationary models
in general. According to this relationship the BICEP2/Planck preferred value 0 < r < 0.05 gives
− 0.006 < nT < 0. This is not in agreement with the combined BICEP2/Planck and LIGO data
which give nT = − 0.76+ 1.37

− 0.52 [51]. However the BICEP/Planck data alone constrain the tensor tilt
to nT = 0.66+ 1.83

− 1.44, so the actual value of nT is presently quite uncertain. However if it turns out that
future observations imply a large absolute value of nT , say |nT | > 2, then most present inflationary
models are in trouble. While inflationary models obeying the consistency relationship (4.16) predict
a small absolute value of nT , the ekpyrotic universe model with colliding branes has an opposite
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problem. Huang and Wang [51] noted that such models predicts nT = 2, and that observational data,
including the LIGO data, rule out the ekpyrotic universe model.

Martin [19] has noted that in general we have six independent spectral quantities, nS (or δns),
nT , αS, αT , βS, βT , where

βS =
dαS

d ln k
, βT =

dαT
d ln k

. (4.17)

The quantities β are called the running of the running. Martin further pointed out that the
predictions of slow roll inflation can be expressed in terms of 3 slow roll parameters. Hence, there exist
three consistency relations between the spectral parameters. The three parameters describing the
tensor sector can be expressed in terms of those describing the scalar sector.

In Section 5.1 we shall need the generalizations of Equations (4.4), (4.14), and (4.15) that are
accurate to second order in the slow roll parameters [52],

δns = 2(3ε− η) + 2ε(7ε− 3η) + 8Cε(3ε− 2η) + 2Cξ, (4.18)

r = 16ε[1 + 2C(2ε− η)] , nT = −2ε[1 + ε + 2(1 + C)(2ε− η)], (4.19)

where C = − 0.73. Using the approximate version ε ≈ εH of Equation (3.26) δns, nT and r can to lowest
order be expressed in terms of the Hubble slow roll parameters as ([14] with σ→ − δns )

δns = 2(2εH − ηH) , nT = − 2εH , r = 16εH . (4.20)

Inserting the expressions (3.20) and (3.22) into Equations (4.18) and (4.19), we have to second
order [53]

δns = 2
[
2εH − ηH + Cξ + 4(1 + C)ε2

H + (3 + 5C)εHηH

]
, r = 16εH [1 + 2C(εH − ηH)]. (4.21)

From Equations (4.14), (3.27), and (3.22) we obtain

δns,N = 2
(

12ε2 − ξ − 4ε δns

)
. (4.22)

Combining this with Equation (3.24) we get [14]

δns,N = 12ε2
H − 2ξH − 5εHδns. (4.23)

From Equations (4.4) and (4.14) we have

ε =
r

16
, η =

1
16

(3r− 8δns) . (4.24)

Inserting the Planck and BICEP2 values δns = 0.032 and r = 0.05 gives ε = 0.003 , η = − 0.007.
With r < 0.04 we have ε < 0.0025. For r = (8/3)δns we have η ≈ 0 which happens if the inflaton
potential is V(φ) = Aφ + B. It may be noted that r = 0 gives η = − 0.016. The corresponding formulae
for the Hubble slow roll parameters are

εH =
r

16
, ηH =

1
8
(r− 4δns). (4.25)

Equation (4.13) implies that an inflationary universe model with a scale invariant spectrum has
η = 3ε or equivalently ηH = 2εH [54]. Inserting the expressions (3.1) we get the differential equation

2 V V′′ − 3 V′2 = 0 (4.26)
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with general solution
V(φ) = (A φ + B)−2, (4.27)

where A and B are arbitrary constants [55].
The running of the spectral index of scalar fluctuations may also be expressed in terms of the

slow roll parameters. From Equations (4.2), (4.12), and (3.51), the first of Equations (3.1), and (3.11) it
follows that

αS = − 1
κ

V′

V
dnS
dφ

= −
√

2ε

κ
n′s =

1
H

.
nS = − 1

H

.
δns (4.28)

with—for V′ > 0 and + for V′ < 0. Using this together with Equations (4.22) and (3.48) and then (3.22),
(3.24) we obtain,

αS = 8ε(2η − 3ε)− 2ξ = 2εH(5ηH − 4ηH)− 2ξH . (4.29)

From Equations (3.5), (3.6) and (4.24) we get

ε′′ = ξ − 1
8

(
9
32

r2 − rδns − 2δ2
ns

)
. (4.30)

With more accurate observations than we have presently it may also be possible to falsify
inflationary models by considering the running of the running of the scalar spectral index, βS.
This quantity is given in terms of the slow roll parameters and the fourth derivative of the inflaton
potential by [27,56],

βS = −32ε
(

6ε2 − 6εη + η2
)
− 2ξ(12ε− η) + 2σ, (4.31)

or by using Equations (3.5) and (3.11),

βS = −32ε
(

6ε2 − 6εη + η2
)
− 16εξ − 2

.
ξ/H. (4.32)

Huang [37] have pointed out that observational data already lead some restrictions on βS.
From the Planck-data he found βS ' 0.025± 0.013. This is in good agreement with the analysis
of Benetti and Ramos [44], giving βs ' 0.029± 0.015. Inserting (4.4) and (4.13) into Equation (4.29)
gives ξ in terms of observable quantities,

ξ =
r

64
(3 r− 16 δns)−

αS
2

. (4.33)

The Planck/BICEP2 data are δns = 0.032± 0.005 , r < 0.04 , αS = − 0.003± 0.007. The value of
r giving the smallest value of ξ is

r1 = (8/3)δns = 0.085± 0.013. (4.34)

The corresponding minimum value of ξ is

ξmin = − (1/2)αS − (1/3)δ2
ns. (4.35)

Inserting the Planck/BICEP2 data gives − 0.002 < ξmin < 0.005. Thus, inflationary models that
predict ξ << − 0.002 are disfavored by the Planck/BICEP2 data.

From Equations (4.30) and (4.33) we have

ε′′ =
1

256
(r− 8δns)(3r− 8δns)−

αs

2
. (4.36)
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Using Equations (4.22) and (4.31) the running of the running of the spectral index nS can be written

βS =
1
2

αSδns +
9

16
αSr− r

4

(
δ2

ns −
15
16

δnsr +
15
128

r2
)
+ 2σ. (4.37)

It may also be noted that during the slow roll inflationary era the running of the spectral index of
scalar fluctuations may be written

αS ≈ − nS,N = δns,N . (4.38)

From Equations (3.25) and (4.30) we have

ξH = (1/128)
(

3r2 − 20r δns − 64αS

)
. (4.39)

The rate of change of the slow roll parameters can now be expressed in terms of observable
quantities. From Equations (3.5) and (4.24) we obtain√

2ε

κ
ε′ =

1
128

r(r− 8δns) ,

√
2ε

κ
η′ =

1
128

(
3r2 − 24 rδns − 64αS

)
. (4.40)

Correspondingly we find using Equations (3.26) and (4.40) for the rate of change of the Hubble
slow roll parameters,√

2ε

κ
ε′H =

1
128

r(r− 8δns) ,

√
2ε

κ
η′H =

1
64

(
r2 − 8rδns − 32αS

)
. (4.41)

The running of the spectral index of tensor fluctuations is

αT = −
√

2ε

κ
(nT)

′ = 2

√
2ε

κ
ε′. (4.42)

Inserting the expression for ε′ from Equation (3.5) we get [57]

αT = 4ε(η − 2ε). (4.43)

Applying the approximation ε ≈ εH and using Equations (3.20), (3.22), and (3.72), we get to
second order in the slow roll parameters

αT ' 4εH(ηH − εH) ' 4ε1

(
ε1 −

3
2

ε2

)
. (4.44)

A constant spectral index of the tensor fluctuations require η = 2ε which corresponds to

V V′′ −V′2 = 0. (4.45)

The general solution of this equation is

V(φ) = V0eA φ, (4.46)

where A is an arbitrary constant and V0 = V(0).
We also have

αT ≈ − nT ,N . (4.47)
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A second consistency relation, this time between αT, r and δns follows from Equations (4.20) and (4.43)
as was shown by Carrillo-González et al. [58],

αT = − r
64

(8 δns − r). (4.48)

Inserting the Planck—BICEP2 values δns = 0.032 , 0 < r < 0.04 gives − 0.00014 < αT < 0. Due to
the great observational uncertainty in the value of nT, it is at the present time not possible to give a
restriction on the value of αT directly from observations.

Ballesteros and Casas [31] have defined a running of the tensor-to-scalar ratio,

αr ≡
dr

d ln k
. (4.49)

It follows from Equations (4.42) and (4.49) that

αr =
(

δns −
r
8

)
r. (4.50)

A related quantity was considered by Ashoorioon and coworkers [40],

α̂r ≡
d ln r
d ln k

. (4.51)

It follows from Equation (4.3) that

α̂r =
d ln PT
d ln k

− d ln PS
d ln k

. (4.52)

From Equation (4.8) it now follows that

α̂r = nT + δns. (4.53)

Using Equation (4.17) we have

α̂r = δns −
r
8

. (4.54)

It may be noted that models with r = 8δns has no running of the tensor-to-scalar ratio or the tilt of
the tensor fluctuations. These models are ruled out by the BPK-observations.

It follows from Equation (4.16) and the BICEP2 result that the tilt of the power spectrum of the
tensor modes of the CMB-spectrum should have a negative value, nT = − 0.005. This has been further
discussed by Chen and Huang [59,60].

It follows from Equation (4.47) that the expressions in Equation (4.40) may be written√
2εH

κ
ε′H(φ) =

αT
2

,

√
2εH

κ
η′H(φ) = αT −

αS
2

. (4.55)

From Equations (4.13), (4.4), (4.15), (4.17) and (4.42) and using Equation (3.72) we have to first
order in the slow roll parameters

δns = 2ε1 + ε2 , nT = − 2ε1 , r = 16ε1 , αS = −2ε1ε2− ε2ε3 , αT = −2ε1ε2. (4.56)

The inverse equations are

ε1 =
r

16
, ε2 = δns −

r
8
= − 8

αT
r

, ε2 ε3 = αT − αS. (4.57)
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Furthermore, the running of the running for the tensor mode is [19]

βT = − 2ε1ε2(ε2 + ε3). (4.58)

Inserting the expressions (4.57) into Equation (4.58) gives the third consistency relation

βT =
r
8

[
αS −

(
δns −

r
4

)(
δns −

r
8

)]
. (4.59)

It may be noted that the BKP-values give the very small value βT = 2× 10−5. A confrontation
against observations is presently not possible.

As pointed out by Martin [19], inserting the BICEP2/Planck data gives the following constraints,
ε1 < 0.007 and ε2 = 0.030+0.007

−0.006, and almost no constraints on ε3. This has consequences for the shape of
the inflaton potential. From ε1 ≈ ε and Equation (3.70) we get

V′(φ) =
√

2ε1(V/MP) , V′′(φ) = (2ε1− ε2/2)
(

V/M2
P

)
. (4.60)

The BICEP2/Planck constraints on ε1 and ε2 then lead to |v′(φ)| < 0.14(V/MP) and
− 0.03

(
V/M2

P
)
< V′′(φ) < 0.008

(
V/M2

P
)
.

To second order in the slow roll parameters the expressions of the spectral parameters in terms
of the horizon-flow parameters are found by inserting the transformations in Equation (3.72) into
Equations (4.18) and (4.19). This gives

δns = 2ε1 + ε2 + 2ε2
1 + (3+ 2C)ε1ε2 +Cε2ε3 ,

r = 16ε1(1+Cε2) , nT = −2ε1[1+ ε1 + (1+C)ε2]

αs = −ε2(2ε1 + ε3) , αT = −2ε1ε2

. (4.61)

The first two expressions are slightly different from those of Barbosa-Candejas et al. [61].

4.5. Inflection-Point Inflation

As an illustration of the application of the formalism we shall here consider inflection-point
inflation, which is a model of inflation near an inflection point. Inflation near inflection points have
been investigated by several researchers [62–64].

Close to the inflection point with φ = φ0 the inflaton potential can be written

V = V0 + λ1(φ− φ0) +
1
2

λ2(φ− φ0)
2 +

1
6

λ1(φ− φ0)
3, (4.62)

where V0 = V(φ0). Then the potential slow roll parameters are

ε =
M2

P
2

(
λ1+λ2(φ−φ0)+(λ3/2)(φ−φ0)

2

V0+λ1(φ−φ0)+
1
2 λ2(φ−φ0)

2+ 1
6 λ1(φ−φ0)

3

)2
,

η = M2
P

λ2+λ2(φ−φ0)

V0+λ1(φ−φ0)+
1
2 λ2(φ−φ0)

2+ 1
6 λ1(φ−φ0)

3 .
(4.63)

We shall first follow Okada et al. [64] and evaluate the tensor-to-scalar ratio at the inflection point.
At this point the slow roll parameters reduce to

ε(φ0) =
M2

P
2

(
λ1

V0

)2
, η(φ0) = M2

P
λ2

V0
. (4.64)



Universe 2018, 4, 15 26 of 163

They then used the Planck data to obtain

λ1

φ3
0
≈ 2× 103

(
φ0

MP

)3
(

V0

φ4
0

)3/2

,
λ2

φ2
0
≈ − 0.5δns

(
φ0

MP

)2 V0

φ4
0

. (4.65)

Hence
ε(φ0) ≈ 2× 106 V0

M4
P

, η(φ0) ≈ − 0.5δns. (4.66)

From (4.4) and (4.13) we have

r = 16ε =
8
3
(δns + 2η). (4.67)

This leads to an inconsistency. Together with the last of the Equations (4.66) it gives r = 0,
which together with (4.64) and (4.66) requires λ1 = V0 = 0. Hence with these values it does not work
to evaluate the spectral parameters at the inflection point.

We will now briefly review the more general treatment of inflection point inflation given by
Choi and Lee [63]. They calculated the spectral parameters from the expressions (4.63) and found the
r, δns− relation

r =
1
3

[
8δns + 4

√
rλ3

λ1
sin(2θ)

]
, (4.68)

where the value of sin(2θ) must either be assumed or determined from measured values of the spectral
parameters, and

λ1

λ3
= 91

(
Nmax

120

)2
r cos4 θ. (4.69)

For θ = 0 the tensor-to-scalar ratio is

r0 =
8
3

δns (4.70)

With the Planck value δns = 0.032 we have r0 = 0.085. Inserting Equation (4.69) with Nmax = 115
into Equation (4.68) gives

tan θ = 3(r− r0). (4.71)

Recent analysis of the BICEP2, Planck and Keck data [46] indicate that r < 0.04 and hence that
r < r0. Then tan θ < 0. According to Choi and Lee

tan θ =

√
λ3

2λ1
(φ∗ − φ0). (4.72)

Hence, this requires that φ∗ < φ0.
Choi and Lee have further shown that

V0 = 3.25× 10− 8r , λ1 = 1.26× 10− 10
(

120
Nmax

)2√
r sec2 θ , λ2 = 1.15× 10− 8r3/2 cos2 θ. (4.73)

Inserting Equation (4.71) and using the value Nmax = 115 gives

λ1 =
1.15× 10− 8r3/2

1+ 9(r− r0)
2 , λ3 = 1.37× 10− 10√r

[
1+ 9(r− r0)

2
]

. (4.74)

With r < 0.04 we get V0 < 1.3× 10−9 , λ1 < 9.2× 10− 11 , λ3 >> 2.7× 10− 11.
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5. The N-Formalism

K. Bamba, S. Nojiri and S. D. Odintsov [65], and Garcia-Bellido and Roest [66,67] have
independently of each other introduced a new so-called N-formalism, which is useful in calculating
the physical parameters characterizing the observable properties of the CMB-radiation. It has been
further developed by Bamba and Odintsov [68]. In this formalism the spectral quantities are expressed
by the slow roll parameter ε and its derivatives with respect to the number of e-folds, N. From the first
of the Equation (3.58), together with the Equations (4.4), (4.13), and (4.15), we have

δns = 2ε− (ln ε),N , r = 16ε , nT = −2ε, (5.1)

where ,N means derivative with respect to N. It may be noted from Equation (4.40) that if
ε = constant then

r = 8δns, (5.2)

which is larger than allowed by the Planck data.
Using Equations (4.28), (3.50) and (4.42) give for the running of the spectral indices

αS = δns,N , αT = 2ε,N . (5.3)

These expressions are different from those in Equation (II.13) of Bamba et al. [68]. It follows from
Equation (3.55), which is valid in the slow roll approximation, that when ε is given as a function of N
the potential V is found as a function of N from

V(N) = exp
[

2
∫

ε(N)dN
]

. (5.4)

It may be noted that the inverse procedure of Chiba [69] for calculating the potential from the
spectral index nS by means of the formulae (5.1) and (5.4) is not mathematically equivalent to the
calculation of nS from the potential. These procedures give the same result only in the large N limit.

Barbosa-Cendejas et al. [61] have expressed this formalism in terms of the parameter ε1 = εH.
From Equation (3.53) we have

H(N) = H0 exp

 0∫
N

ε1(N)dN

. (5.5)

Equations (3.65) and (3.70) give

ε2 = −
ε1,N
ε1

, ε2ε3 =
ε1,NN

ε1
−
(

ε1,N
ε1

)2
. (5.6)

From these equations and Equation (4.61) it follows that all the cosmological observables can be
expressed by the ε1(N) parameter.

The inflaton field as a function of N can be found by writing Equation (3.50) as

φ(N) =

√
2
κ

∫ √
ε1(N) dN. (5.7)

Using the N-formalism Roest [70], Mukhanov [71], and Garcia-Bellido et al. [66,67] have recently
classified a large number of inflationary universe models into so-called universality classes. In these
classes the slow roll parameters ε, η and ξ have an asymptotic power law dependence on the number
N of e-folds. They consider several inflationary models of this type.
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5.1. Constant ε Class

This class of inflationary models has constant value of the slow roll parameter ε = ε0. Then the
spectral parameters as calculated from Equations (4.14), (4.28) and (4.42) are

δns = 2ε0 , r = 16ε0 , nT = −2ε0 , αS = αT = 0. (5.8)

The Planck value δns = 0.032 gives ε0 = δns/2 = 0.016. Hence this class of models predicts
r = 0.256, which is larger than permitted by the BPK-data.

The potential is given as a function of the inflaton field by Equation (3.2) and as a function of the
number of e-foldings by performing the integral in Equation (5.4), giving

V(N) = V0e2ε0N. (5.9)

From Equation (5.7) we have in this case

N =
√

κ/2ε0

(
φ− φ f

)
, (5.10)

and hence that
V(φ) = Vf e

√
2κε0(φ−φ f ). (5.11)

5.2. Perturbative Class

In this class of models ε is given by a power function of N,

ε = β/Nn. (5.12)

A similar parametrization has been considered by Huang [43] and by Lin, Gao and Gong [72]. This
parametrization is not meant to describe the end of the inflationary models when N = 0, but represents
the slow roll era with N >> 1.

It will be shown below that for n << N, β = n/4 , n = 1 this corresponds respectively to
polynomial chaotic inflation, brane inflation, tachyon inflation, DBI-inflation and loop inflation, for n =

4/3 to arctan inflation, for n = 3/2 to inflation with fractional potential, for n = 2 to Hilltop, mutated
Hilltop and Kähler moduli inflation, and with N >> 1 to Higgs inflation and supergravity motivated
inflation, and for n = 3 approximately to Coleman-Weinberg inflation (see Table 1).

Table 1. Values of spectroscopic parameters according to the chaotic inflation model.

n nS nT r αs αT

2/3 0.973 −0.007 0.045 −0.0005 −0.00013
1 0.97 −0.01 0.08 −0.0006 −0.0002
2 0.96 −0.02 0.16 −0.0008 −0.0004
3 0.95 −0.03 0.24 −0.0010 −0.0006
4 0.94 −0.04 0.32 −0.0012 −0.0008

Combining Equation (3.52) with Equation (5.12) we have

φ,N = MP
√

2β N− n/2. (5.13)

Integrating with φ(1) = φ f gives

φ(N) =

 φ f +
2
√

2β MP
2−n

(
N1−n/2 − 1

)
= φ f +

2
√

2β MP
n−2

[
1− (1/N)n/2−1

]
, n 6= 2

φ f + MP
√

2β ln N, n = 2
. (5.14)
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Note that increasing N means going backwards in time, since φ(N) is the value of the inflaton
field N e-folds before the end of the slow roll era. Hence the fact that φ(N) increases with N means
that the inflaton field decreases with time.

At a large part of the slow roll era N >> 1. Then the expressions for the inflaton field can be
approximated by

φ(N) =


2
√

2β MP
2−n N1−n/2 , 0 < n < 2

2
√

2β MP
n−2 , n > 2

MP
√

2β ln N, n = 2

(5.15)

It follow from Equations (3.20) and (3.53) that to lowest order

ε ≈ εH = (ln H),N . (5.16)

Equations (2.16), (5.16) and (5.12) give

(ln V),N = 2(ln H),N = 2ε =
2β

Nn . (5.17)

Integration with V(0) = 0 gives

V(N) =

{
V0N2β , n = 1,

V0 −V0e−
2β

n−1 (
1
N )

n−1

, n > 1.
(5.18)

From Equations (5.15) and (5.18) we obtain

V(φ) =


V0φ4β , n = 1

V0 −V0 exp
[
− 2β exp

(
φ

MP
√

2β

)]
, n = 2

V0 −V0 exp
[
− 2β

n−1

(
φ
M

)p]
, p = 2(1−n)

2−n , M =
2
√

2β

2−n MP , n > 1 , n 6= 2

. (5.19)

V(φ) =


V0φ4β , n = 1

V0 −V0 exp
[
− 2β exp

(
φ

MP
√

2β

)]
, n = 2

V0 −V0 exp
[
− 2β

n−1

(
φ
M

)p]
, p = 2(1−n)

2−n , M =
2
√

2β

2−n MP , n > 1 , n 6= 2

. (5.20)

The spectral parameters as calculated from Equations (5.1), (5.2), and (5.12) are to lowest order
in N,

δns =
2β+1

N , r = 16β
N , nT = − 2β

N , αS = − 2β+1
N2 , αT = − 2β

N2 , n = 1

δns =
n
N + 2β

Nn , r = 16β
Nn , nT = − 2β

N , αS = − n
N2

(
1 + 2β

Nn−1

)
, αT = − 2β

N2 , n > 1

}
. (5.21)

The expressions (5.20) imply the following relationships

r = 16β
1+2β δns = 8

(
δns − 1

N

)
, αS = − δ2

ns
1+2β , αT = − 2β

(1+2β)2 δ2
ns , N = − δns

αS
, n = 1

r = 8
(
δns − n

N
)

, nT = β
4n (r− 8δns) , n = N

(
δns − r

8
)

, n > 1

, (5.22)

or
β = r

2(8δns−r) , n = 1

β = 4nnT
r−8δns

or β = 1
2 Nn(δns − n

N
)

= Nn r
16 , n > 1

}
. (5.23)

With δns = 0.032, r = 0.10 and N = 50 we get from the last expressions in Equations (5.21) and
(5.22) n = 1.0 and β = 0.31, showing that for this class of models polynomial inflation is favored.
Furthermore these values of δns and N gives αS = − 0.0006. This class of inflationary models has been
considered by L. Barranco, L. Boubekeur and O. Mena [73] with N replaced by N + 1, and by Gao and
Gong [74] with n = 2 and N replaced by N + N0.
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A related parametrization has been considered by Lin, Gao and Gong [72] and Q. Fei et al. [75],

δns =
p

N + α
. (5.24)

The same parametrization with α = 0 has been discussed by P. Creminelli et al. [76],
R. Gobetti et al. [77]. Here the constant α accounts for the contribution from the scalar field φe = φ(0)
at the end of inflation where N = 0. Inserting Equation (5.24) into the first of Equation (5.1) gives

ε′ = ε
(

2ε− p
x

)
, (5.25)

where x = N + α. Introducing y = 1/ε Equation (5.25) may be written(
x−py

)′
= −2x−p. (5.26)

From the solution of this equation with ε(0) = 1 and α 6= 0 together with r = 16ε we get

r =


16(p−1)

(1+ N
α )
[
2α+(p−1−2α)(1+ N

α )
p−1] , p 6= 1 ,

16
(1+ N

α )[1−2α ln(1+ N
α )]

, p = 1
. (5.27)

Since ε > 0 and the last term in the denominator dominates, the constant p must fullfill p ≥ 1+ 2α

for p 6= 1. In the case p = 1 we must have α > 0. From Equation (5.24) this requires Nδns < 1.
However N = 50 , δns = 0.032 gives Nδns = 1.6 so this case is in conflict with the Planck data and
the requirements of a sufficiently long inflationary era to solve the horizon problem. Combining
Equations (5.24) and (5.27) gives

r =
16(p− 1)δns

2p + [2(Nδns − p) + (p− 1)δns]
(

p
Nδns−p

)p . (5.28)

In order to have r > 0 the constant p must be restricted to 1 < p < Nδns unless p = 1 + 2α. Using
Equation (5.24) we have

α =
p− Nδns

δns
, (5.29)

So in the special case that p = 1 + 2α we have

p =
(2N − 1)δns

2− δns
. (5.30)

Hence
2(Nδns − p) = −(p− 1)δns = −2αδns < 0. (5.31)

So p > Nδns, but in this case this is allowed because now the last term in the denominator of the
first Equation (5.28) vanishes.

The tensor-to-scalar ratio r is plotted as a function of p from Equation (5.28) in Figure 1 for
N = 60 , δns = 0.032 which gives Nδns = 1.92.

We see from Figure 1 that for inflationary models with a scalar tilt given in terms of the N-fold by
an equation of the form (5.24), the present ‘standard’ values of the number of N-folds and the scalar
tilt, N = 60 , δns = 0.032, lead to acceptable values of the tensor-to-scalar ratio, r < 0.03.
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Figure 1. The tensor-to-scalar-ratio plotted as a function of p for an inflationary model with N = 60,
δns = 0.032.

Equations (5.4) and (5.27) now give the potential as a function of the number of N-folds,

V(N) =

(
1 + N

α

)p−1

(
1− 2α

p−1

)(
1 + N

α

)p−1
+ 2α

p−1

V(0) , (5.32)

where V(0) = 1/(p− 1).
For the special case p = 1 + 2α Equation (5.27) for the tensor to scalar ratio gives

r =
8α

N + α
. (5.33)

Using once more Equation (5.24) we get

r =
8(p− 1)

p
δns, (5.34)

which may be written

p =
8δns

8δns − r
. (5.35)

The Planck results δns = 0.032 , r < 0.04 give p < 1, 016 corresponding to α < 0.008. In this case
Equation (5.32) reduces to

V(N) = V(0)
(

1 +
N
α

)2α

. (5.36)

Inserting Equation (5.33) into Equation (5.7) and integrating gives

φ(N) = φ(0) + 2
√

2 MPα

(√
1 +

N
α
− 1

)
(5.37)

Hence
V(φ) = V0(φ− φ0)

4α, (5.38)

where
V0 = V(0)/2

√
2MPα,φ0 =

(
φ(0)/2

√
2MPα

)
− 1. (5.39)

If the constant φ0 is chosen to be zero, the constant α is represents the potential at the end of
inflation as follows

α = φe/2
√

2 Mp. (5.40)
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With N > 50 we have φ > MP so this model corresponds to power law large field inflation.
Lin, Gao and Gong [72] have shown that this model is only marginally compatible with the
Planck results.

Koh et al. [78] have considered a class of models with

δns =
2

N + α
, r =

q
N2 + γN + α

. (5.41)

This corresponds to p = 2 in Equation (5.24).

5.3. Reconstructing the Inflaton Potential from the Spectral Parameters

T. Chiba [69] has shown how one can find the inflaton potential from the spectral index.
The formalism has recently been generalized to inflationary models with a Gauss-Bonnet term by
Koh et al. [78].

Using Equations (3.1) and (3.51) we have

V′ =
1

MP
(V V,N)

1/2. (5.42)

Differentiating once more we get

V′′ =
V V,N
M2

PV′
=

V
M2

P

1

(V V,N )1/2

[
(V V,N )1/2

]
,N =

V
2M2

P
[ln V V,N ],N . (5.43)

Hence, the slow roll parameters ε and η are

ε =
1
2
(ln V),N , η =

1
2
[ln(V V,N)],N . (5.44)

This, together with the definitions (4.4), (4.13) and (4.29), gives

δns =

{
ln
[(
− 1

V

)
,N

]}
,N , r = 8(ln V),N , αS = δns,N . (5.45)

The potential as a function of N is given by the first of these equations. It can be written

V(N) = − 1/
∫

e−
∫

δns(N) dNdN. (5.46)

Knowing V as a function of N the relationship between φ and N is found by integrating
Equation (3.56) in the form

φ = MP

∫ √
(ln V),N dN =

MP

2
√

2

∫ √
r(N) dN. (5.47)

Chiba [69] has illustrated the method by considering a class of inflationary models where

δns = 2/N. (5.48)

This corresponds to the parametrization (5.24) with p = 2, α = 0. With N = 60 this
gives δns = 0.033 in agreement with the Planck data. Inserting this into equation the first of
Equation (5.46) gives

V(N) =
N

α + βN
, (5.49)
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where α and β are constants of integration. Inserting this into the two last equations in (5.45) and
introducing γ ≡ β/α gives

r =
8

N(1 + γN)
, αS = − 2

N2 . (5.50)

N = 60 gives αS = − 0.0006 which is allowed by the Planck data. For this model the r, δns-relation,
and the corresponding relations involving αs, are

r =
4δ2

ns
δns + 2γ

, αs = −
r
6
= − 1

2
δ2

ns. (5.51)

From the first of these equations we get

γ =
1
2

(
4

δns

r
− 1
)

δns. (5.51)

Inserting δns = 0.032 and r < 0.04 gives γ > 0.035.
Inserting (5.49) into Equation (5.42) gives

φ =
∫ dN√

γN2 + N
. (5.52)

Integration with N(0) = 0 leads to

N =


(1/γ)sinh2

(
1
2
√

γφ
)

, γ > 0

φ2/4 , γ = 0

(1/γ) sin2
(

1
2
√
−γφ

)
, γ < 0

. (5.53)

Inserting these expressions into Equation (5.46) gives

V(φ) =


(1/β)tanh2((1/2)

√
γ φ
)

, γ > 0
φ2/4α , γ = 0
− (1/β) tan2((1/2)

√
−γ φ) , γ < 0

. (5.54)

Inflationary universe models with these potentials for the inflaton field will be considered in
detail later in this article and have also been studied by Kallosh and Linde [79]. The case β > 0 gives
inflationary models of the type motivated by supergravity, for example so-called α− attractor models,
and will be considered in Section 6.11. The case β = 0 represents the simplest chaotic inflationary
models and will be presented in Section 6.1. The case β < 0 will also be considered in Section 6.11.

5.4. S-Dual and Hyperbolic Inflation

Lin, Gao and Gong [72] have also considered the parametrization

ε(N) =
α

1 + s e− β N , (5.55)

where s = ±1 with α > 0 , β > 0. For this class of inflationary models

δns =
2α− β s e− βN

1 + se− βN , r =
16α

1 + se− βN . (5.56)

It follows from these equations that

r =
16α(δns + β)

2α + β
. (5.57)



Universe 2018, 4, 15 34 of 163

and that
8sβ = (r− 8δns)

(
s + eβN

)
. (5.58)

Inserting the Planck values δns = 0.032 , r < 0.04 gives r − 8δns < 0. Hence β > 0 requires
s = −1.

Inserting the first of the expressions (5.56) into Equation (5.45) and performing the
integration gives

V(N) = C
(

s + eβ N
)2α/β

, (5.59)

where C is a constant. Inserting the expression (5.59) into Equation (5.46) and integrating gives

φ = φ0 +
2
√

2α
β arsinh

(
eβ N/2

)
, s = 1

φ = φ0 +
2
√

2α
β arcosh

(
eβ N/2

)
, s = −1

 , (5.60)

Inserting this into Equation (5.59) gives

V(φ) = V0 cosh4α/β
(

β φ

2
√

2α

)
, s = 1

V(φ) = V0sinh4α/β
(

β φ

2
√

2α

)
, s = −1

. (5.61)

Lin, Gao and Gong [72] have shown that these inflationary models do not satisfy the
Planck/BICEP2 constraints at the 99.8% confidence level. It may be shown, for example, that with the
Planck values for δns , r and N Equation (5.58) has no positive, real solution for β.

The same authors have also investigated some inflationary models with the parametrization

φ(N) = κ−1/2(N + N0)
√

2γ, (5.62)

where N0 is a positive constant and I have replaced their β by
√

2γ to simplify later expressions.
Equation (5.46) may be written

V(N) = exp
{

κ
∫ [

φ′(N)
]2dN

}
. (5.63)

For γ 6= 0 , γ 6= 1/8 integration of this equation gives

V(N) = C exp
[

2γ

2
√

2γ− 1
(N + N0)

2
√

2γ−1
]

. (5.64)

Inserting Equation (5.62) gives

V(φ) = K exp

(
κ1/
√

2γ2γ

2
√

2γ− 1
φ2−1/

√
2γ

)
. (5.65)

This leads to
δns =

2γ

(N + N0)
p +

p
N + N0

, r =
16γ

(N + N0)
p , (5.66)

where p = 2
(
1−
√

2γ
)
. The usual condition for a graceful exit of the slow roll era is ε(0) = 1,

hence r(0) = 16, which gives γ = Np
0 . Equation (5.66) gives the δns, r relationship

δns =
r
8
+

p

(16γ)1/p r1/p. (5.67)

The Planck values δns = 0.032 , r = 0.05 have δns > r/8 which requires γ < 1/2. Assuming that
p = 1 and solving Equation (5.67) with these values of δns and r, give γ = r/2(8δns − r) ≈ 0.12. In this
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case N0 ≈ (2/r)− N. A positive value of N0 requires r < 2/N. For N = 60 this leads to the prediction
r < 0.033.

Lin, Gao and Gong [72] have furthermore considered the parametrization

φ(N) = β ln(N + N0). (5.68)

This leads to

V(N) = K exp
(
− β2

N + N0

)
, (5.69)

and
V(φ) = K exp

[
− β2 exp(− φ/β)

]
. (5.70)

Hence,

δns =
2

N + N0
+

β2

(N + N0)
2 , r =

8 β2

(N + N0)
2 . (5.71)

This is similar to Equation (5.66) with p = 2. In this case the δns, r relationship takes the form

δns =
r
8
+

1
β

√
r
2

. (5.72)

Thus, β can be expressed in terms of δns and r as

β =

√
8r

8 δns − r
. (5.73)

Inserting the Planck/BICEP2 data gives β < 7.2.
Finally Lin, Gao and Gong [72] considered the parametrization

φ(N) = exp(βN + N0) (5.74)

with β < 0. Then
V = V0 exp

(
βφ2/2

)
, (5.75)

giving
δns = β2 exp(2βN + 2N0) − 2β , r = 8β2 exp(2βN + 2N0). (5.76)

The δns, r relationship can then be written

β =
1
16

(r− 8 δns). (5.77)

Here δns = 0.032 , r < 0.04 gives β < − 0.016.
If the end of the slow roll era is defined by ε(N = 0) = 1, i.e., r(N = 0) = 16 we get

β2 exp(2N0) = 2 giving
δns = 2

(
e2β N − β

)
, r = 16e2β N . (5.78)

It follows from Equation (5.78) that

N =
8

8δns − r
ln
(

16
r

)
. (5.79)

With δns = 0.032 this function has a minimum for r1 = 0.036 giving N(r1) = 222. Hence this
class of inflationary models has N > 222, which is not a realistic scenario.
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5.5. The Equation of State Parameter during the Slow Roll Era

We shall now follow Mukhanov [30]. Equation (4.5) can be written

r = 24(1 + w). (5.80)

Inserting Equation (3.57) into Equation (4.13) leads to

δns = 3(1 + w)− (ln w),N . (5.81)

The quantity 1 + w must have a small value during the inflationary era, but not zero. A zero
value means that the dominating fluid is LIVE which has constant density during the exponentially
expanding era which can be represented in Einstein’s field equations by a cosmological constant.
This does not provide any mechanism for a graceful exit from the inflationary era. One needs a time
dependent equation of state parameter. Mukhanov [30] writes that from the very beginning of the
inflationary era there should be a small deviation of the value of 1 + w from zero, and the value of
1 + w should be monotonously increasing during the inflation, ending with an absolute value of order
1 at the end of the era.

The usual condition for a graceful exit of the slow roll era is to require that ε = r/16 = 1 at the end
of inflation. This implies that 1 + w = 2/3 at the end of inflation. Mukhanov has therefore proposed
the ansatz

1 + w =
β

(N + 1)α , (5.82)

where α and β are positive constants of order unity. The condition 1 + w = 2/3 at the end of inflation
with N = 0 gives β = 2/3. Gao and Gong [74] have considered inflationary models obeying the ansatz
(5.82) with α = 2 and N + 1 replaced by N + N0.

Equations (5.80)–(5.82) give

δns =
3β

(N + 1)α +
α

N + 1
, r =

24β

(N + 1)α . (5.83)

The condition ε(0) = 1 at the end of inflation requires β = 2/3.
We have the following cases

δns ≈


3β+1
N+1 , r = 24β

3β+1 δns , α = 1 ,
α

N+1 , r = 24β
(

δns
α

)α
, α > 1 ,

3β

(N+1)α , r = 8δns , α < 1 .

(5.84)

It follows from Equation (5.83) that

α =
(

δns −
r
8

)
(N + 1). (5.85)

independent of the value of β. A positive value of r requires α < (N + 1)δns. Inserting δns = 0.032,
N = 60 gives α < 1.95, while δns = 0.032, r = 0.05, N = 60 in Equation (5.85) gives α = 1.6,
and inserting this value into the second of Equation (5.83) gives β = 1.3 which is a little higher than
required by the condition for a graceful exit of the slow roll era. Also the value of α is smaller than that
assumed by Gao and Gong [74].

However replacing N + 1 by N + N0 permits the choice α = 2 of Gao and Gong. Then the
modified Equation (5.85) gives

N0 =
16

8δns − r
− N. (5.86)

Hence r > 0 implies N0 > 2.5, and δns = 0.032 , r = 0.05 , N = 60 gives N0 = 17.7.
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As an illustration, choosing β = 1/3 in Equation (5.83) gives

δns =
r
8
+
( r

8

)1/α
α. (5.87)

Since |r| << 1 the first term dominates for α < 1 and the second one for α > 1. Note that the
value α = 1 gives r = 4δns = 0.128 which is larger than allowed by the BICEP2/Planck result. Also as
seen from Equation (5.84), α < 1 gives too high value of r. The parameter δns is plotted as a function of
α for r = 0.05 in Figure 2.Universe 2018, 4, 17  39 of 167 
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Together with Equation (5.45) this gives 

( )20 0

2 3
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Figure 2. The parameter δns plotted as a function of α for 1.20 < α < 1.35 with r = 0.05.

Gao and Gong [74] have applied the N-formalism and deduced the potential with
the parametrization

ε =
3β

2(N + N0)
2 . (5.88)

At the end of inflation ε(0) = 1 which leads to

N0 =

√
3β

2
or β =

2
3

N2
0 . (5.89)

Inserting the expression (5.86) into (5.89) gives

β =
2
3

(
16

8δns − r
− N

)2
. (5.90)

The value β = 2/3 required by graceful exit of inflation, gives N0 = 1 and

r = 8
(

δns −
2

N + 1

)
. (5.91)

Hence with the values δns = 0.032 , N = 60 this class of models predicts r ≈ 0. A positive value
of r requires

N >
2

δns
− 1. (5.92)

Thus δns = 0.032 gives N > 61.5.
Inserting the parametrization (5.88) into the first of Equations (5.44) and (5.47) and

integrating gives

V(N) = V0 exp
(
− 3β

N + N0

)
. (5.93)
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Together with Equation (5.45) this gives

δns =
2

N + N0
+

3β

(N + N0)
2 , (5.94)

and

φ = φ0 +
√

3β ln
(

1 +
N
N0

)
, φ0 =

√
3β

4
ln

3β

2
. (5.95)

The graceful exit value β = 2/3 and N0 = 1 gives φ0 = 0 and

φ =
√

2 ln(N + 1). (5.96)

It follows from Equations (5.93) and (5.95) that for this class of inflationary models the potential is

V(φ) = V0 exp
(
−2e−φ

)
. (5.97)

Myrzakulov et al. [29] have followed up the analysis of Mukhanov [30] and investigated how one
can construct viable inflationary models starting from the measured values of nS and r and assuming
the ansatz (5.82). In particular they have considered the cases α = 1 and α = 2.

From the second of Equation (2.9) we have

1 + w =
2

.
φ

2

.
φ

2
+ 2V

. (5.98)

Myrzakulov et al. [29] assume that

1 + w = β(ρ0/ρ)1/3β, (5.99)

where ρ0 is the energy density at the end of inflation. From Equations (2.1), (5.82) and (5.83) we have

.
φ

2
= (β/2)(2ρ0)

1/3β
(

.
φ

2
+ 2V

)1− 1
3β

. (5.100)

With the slow roll approximation
.
φ

2
<< V this equation reduces to

.
φ =

√
βρ

1/6β
0

V
1−3β

6β

. (5.101)

Equation (3.4) can be written
V− 1/2V′ =

√
3 κ

.
φ. (5.102)

Inserting the expression (5.101) for
.
φ one obtains

V
1

6β−1V′ =
√

3βκρ
1/6β
0 . (5.103)

Integrating with V(0) = 0 leads to

V(φ) =

(
3κ2

β

)3β

ρ0

(
φ

6

)6β

. (5.104)

The preferred value of β is β = 1/3 which gives

V(φ) = (κ/2)2ρ0φ2. (5.105)
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Following Davis et al. [80] we shall now deduce some general results for inflationary models
where the inflaton field has a potential of the form

V(φ) = V0
[
1− f

(
φ̃
)]

, φ̃ = φ/φ0. (5.106)

Assuming that f
(
φ̃
)
<< 1 during the slow roll era we may approximate ε, η and ξ by

ε ≈ 1
2κ

(
V′

V0

)2

, η ≈ 1
κ

V′′

V0
, ξ ≈ 1

κ2
V′V′′′

V2
0

. (5.107)

The expressions for the standard slow roll parameters then take the form

ε '
M2

P
2φ2

0

[
f ′
(
φ̃
)]2 , η '

M2
P

φ2
0

f ′′
(
φ̃
)

, ξ '
M4

P
φ4

0
f ′
(
φ̃
)

f ′′′
(
φ̃
)
. (5.108)

This gives

δns '
M

2

P
φ2

0

(
3 f ′2 − 2 f ′′

)
, r = 8

M
2

P
φ2

0
f ′2 , ξ = − 2

M4
P

φ4
0

(
3 f ′4 − 4 f ′2 + f ′ f ′′′

)
. (5.109)

The number of N-folds during the slow roll era is

N = −
φ2

0
M2

P

φ̃∫
φ̃ f

dφ̃

f ′
(
φ̃
) . (5.110)

It is usual to define the end of the slow roll era by the condition that ε
(

φ̃ f

)
= 1. Hence the value

of the inflaton field at the end of the slow roll era is given by

f ′
(

φ̃ f

)
=
√

2 φ0/MP. (5.111)

Finally we shall consider implications of a vanishing tensor-to-scalar-ratio. Biagetti et al. [81]
asked “What We Can Learn from the Running of the Spectral Index if no Tensors are Detected in the
Cosmic Microwave Background Anisotropy”. Here we shall consider the implications of a vanishing
value of r in general for the inflationary models.

It follows immediately from Equation (4.4) that ε = 0 if r = 0 and hence, from Equation (4.15),
nT = 0. From the first of the Equation (3.1) it then follows that the potential V has an extremum at
the horizon crossing. It cannot be constant because that leads to a scale invariant spectrum, δns = 0,
which is not allowed by the Planck data.

With r = 0 Equations (4.13) and (4.29) give

δns = − 2 η, αS = − 2 ξ (5.112)

Since the Planck data give δns > 0 this equation implies that η < 0. Hence the second derivative
of the potential must be negative, and the potential has a maximum at horizon crossing. Also there will
be a running of the scalar spectral index only if the third derivative of the potential is non vanishing.

5.6. The β-Function Formalism

This formalism was introduced in 2015 by P. Binétruy and coworkers [82]. It was inspired by
the fact that the dynamical equations of the inflationary models can be given a form similar to the
renormalization group equations.
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They defined a new function

β(φ) = −2
κ

H′

H
. (5.113)

Combining this with Equation (2.12) we obtain

.
H = −(κ/2)H2β2(φ). (5.114)

Hence the acceleration of the scale factor is

..
a = a

(
H2 +

.
H
)
= aH2

[
1− κ

2
β2(φ)

]
, (5.115)

showing that accelerated expansion requires |β| <
√

2 MP. Combining Equations (2.20) and (5.113)
we get

β2(φ) =
3
κ
(1 + w). (5.116)

In the N-formalism the Hubble parameter and hence the function β(φ) = β̂(N) is given as a
function of the number of e-folds, N. In this connection it is useful to note from Equations (3.7), (3.20)
and (5.113) that

β̂2(N) =
κ

2
εH ≈

κ

2
ε. (5.117)

It follows from Equations (3.50) and (5.113) that the number of e-folds is

N =

φ f∫
φ

dφ

β(φ)
. (5.118)

The inflaton field can be expressed as a function of the number of e-folds, as given in
Equation (3.50), as

φ = φ f +

0∫
N

β̂(N)dN. (5.119)

In this formalism the value of the inflaton field at the end of the slow roll period is determined
from the condition

β
(

φ f

)
= 1. (5.120)

Let us consider an example. With Mukhanov’s choice (5.82), Equation (5.116) gives (choosing the
positive square root)

β̂(N) =

√
3β/κ

(N + 1)α/2 , (5.121)

where β without an argument is a constant. Inserting this into Equation (5.119) and performing the
integration gives

φ(N) =

 φ0 − 2
2−α

√
3β
κ (N + 1)

2−α
2 , φ0 = φ f +

2
2−α

√
3β
κ , α 6= 2

φ f +
√

3β
κ ln(N + 1) , α = 2

. (5.122)

Hence

β(φ) =


(

κ
3β

) 1
α−2 [ 2−α

2 (φ− φ0)
] α

α−2 , α 6= 2

exp
[
−
√

κ
3β

(
φ− φ f

)]
, α = 2

. (5.123)
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Inserting this into Equation (5.113) and integrating gives for α 6= 1 , 2,

H =


H0 exp

[
− 3β

2(α−1) φ̃2 α−1
α−2

]
, φ̃ ≡

√
κ

3β
2−α

2 (φ− φ0) , α 6= 1 , 2

H1(φ− φ0)
3β , α = 1

H f exp
{√

3β
κ

[
e
−
√

κ
3β (φ−φ f ) − 1

]}
, α = 2

. (5.124)

Combining Equations (2.14) and (5.113) the potential of the inflaton field is given by

κV = H2
(

3− κ

2
β2(φ)

)
. (5.125)

Inserting the expressions (5.123) and (5.124) we get

V(φ) =


H2

0

[
3− κ

2

(
κ

3β

)− 2 α−1
α−2

φ̃
2α

α−2

]
exp

[
− 3β

α−1 φ̃2 α−1
α−2

]
, α 6= 1 , 2

H2
1(φ− φ0)

6β
[
3− 9β2

4κ (φ− φ0)
−2
]

, α = 1[
3− κ

2 exp
(
−2
√

κ
3β

(
φ− φ f

))]
exp

{
2
√

3β
κ exp

[
−
√

κ
3β

(
φ− φ f

)]}
, α = 2

(5.126)

Differentiating Equation (5.113) and using the definitions (3.7) Binétruy et al. have calculated the
Hubble slow roll parameters in terms of the β− function and its derivatives with the result

εH =
1
2

β2 , ηH =
1
2

β2 − β′

κ
, ξH =

1
4

β4 − β3′

2κ
+

ββ′′

κ2 . (5.127)

Inserting these expressions into Equations (4.20), (4.29) and (4.44) the optical parameters may be
expressed in terms of the β− function and its derivatives as follows

δns = β2 + 2β′

κ , r = 8β2 , nt = − β2 ,
αs = − 2β

κ (ββ′ + β′′) , αt = − 2
κ β2β′.

(5.128)

We see that β2 is of the same order of magnitude as εH which is usually of the order 10−2.
Assuming that the derivatives of β is of the same order of magnitude as β, it follows that εH << ηH
and that we can use the approximations

κηH ≈ −β′ , κ2ξH ≈ ββ′′. (5.129)

With these approximations we have

κδns ≈ 2β′ , καs ≈ − 2ββ′′. (5.130)

According to Equations (3.50) and (5.113) the relationship between derivatives with respect to N
and φ are

d
dN

= −β(φ)
d

dφ
. (5.131)

Using this the Hubble slow roll parameters can be expressed as functions of N as

εH = 1
2 β̂2 , ηH = 1

2 β̂2 +
(
ln
∣∣β̂∣∣),N , ξH = 1

4 β̂4 − 1
2 β̂2,N + 5

2 β̂2(ln∣∣β̂∣∣),N +
(
ln
∣∣β̂∣∣),NN . (5.132)

To lowest order in β̂ we have

ηH ≈
(
ln
∣∣β̂∣∣),N , ξH ≈

(
ln
∣∣β̂∣∣),NN = ηH ,N . (5.133)
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The optical parameters can be expressed as functions of N as

δns ≈ β̂2 − 2
(
ln
∣∣β̂∣∣),N , r = 8β̂2 , nT = − β̂2 , αS ≈ β̂2,N − 2

(
ln
∣∣β̂∣∣),NN , αT ≈ β̂2,N . (5.134)

Using the approximations (5.130) we have

δns ≈ −2
(
ln
∣∣β̂∣∣),N , αS ≈ −2

(
ln
∣∣β̂∣∣),NN . (5.135)

Note from Equation (5.132) that
αS = δns,N . (5.136)

In order to give a classification of inflationary models Binétruy et al. now assume that the
potential is close to an extremal point where the field has the value φ0, so that the β-function has the
following expansion,

β(φ) = β1φ̂q, (5.137)

where β1 is a constant and φ̂ = (φ− φ0)/MP. Inserting this into Equation (5.113) and integrating gives

H =

{
H0 exp

[
− β1

√
κ

2(1+q) φ̂1+q
]

, q 6= −1

H1φ̂− κβ1/2 , q = − 1
, (5.138)

where H0 = H(φ0). Inserting these expressions for β and H into Equation (5.125) gives

V(φ) =

 H2
0

(
3− κβ2

1
2 φ̂2q

)
exp

(
− β1

√
κ

1+q φ̂1+q
)

, q 6= − 1

H2
1 φ̂− κβ1

(
3− κ

2 φ̂− 2) , q = − 1
. (5.139)

Sufficiently near the extremal point
[
β1
√

κ/(1 + q)
]
φ̂1+q << 1 for q > − 1. Binétruy et al. [82]

have therefore used the approximation

V(φ) ≈ H2
0

(
3−

κβ2
1

2
φ̂2q

)(
1− β1

√
κ

1 + q
φ̂1+q

)
. (5.140)

They made a classification with seven classes of inflationary models.

1. Monomial model. q > 1. Then 2q > 1 + q and we can make the further simplification

V(φ) ≈ 3H2
0

(
1− β1

√
κ

1 + q
φ̂1+q

)
. (5.141)

Calculating the number of e-folds from Equation (5.118) then gives

N =
1

β1(q− 1)φ̂q−1 − N f , N f =
1

β1(q− 1)φ̂q−1
f

. (5.142)

According to Equations (5.119) and (5.137) the value of the inflaton field at the end of the slow
roll era is

φ̂ f = β
− 1/q
1 , (5.143)

Giving

N f =
1

(q− 1)β
1/q
1

. (5.144)
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Inserting this into Equation (5.142) gives

φ̂(N) =
1

β
1/q
1

[
(q− 1)β

1/q
1 N + 1

]1/(q−1)
. (5.145)

From this equation together with Equation (5.129) we obtain

β̂(N) =
1[

(q− 1)β
1/q
1 N + 1

]q/(q−1)
. (5.146)

Assuming that (q− 1)β
1/q
1 N >> 1 this can be approximated by

β̂(N) ≈ 1

β
1/(q−1)
1 [(q− 1)N]q/(q−1)

. (5.147)

Using this expression in Equation (5.134) we obtain for δns , r and αS

δns ≈
2q

q− 1
1
N

, r ≈ 8

β
2/(q−1)
1 [(q− 1)N]2q/(q−1)

, αS ≈ −
2q

q− 1
1

N2 . (5.148)

Hence

r ≈ 8
(

δns

2β1q

)2q/(q−1)
, αS ≈ −

q− 1
2q

δ2
ns. (5.149)

The function r(q) as given in Equation (5.147) is plotted in Figure 3 for 4 < q < 12.

We see that r < 5.5× 10− 6. Hence the monomial class of models predicts a practically speaking
vanishing tensor-to-scalar ratio. Furthermore αS decreases from zero to −(1/2)δ2

ns when q
increases from 1 to infinity.

2. The linear class. q = 1. From Equations (5.138) and (5.139) we then have

β(φ) = β1φ̂, (5.150)

H(φ) = H0 exp
(
− β1

√
κ

4
φ̂2
)

, (5.151)

V(φ) ≈ 3H2
0

(
1− β1

√
κ

2
φ̂2
)

. (5.152)

Using Equation (5.118) the number of e-folds is

N = − 1
β1

ln
(

β1φ̂
)
. (5.153)

Hence
β̂(N) = e− β1 N (5.154)

Note that with the expression (5.154) it follows that
(
ln β̂

)
,NN = 0, so in this case we need the

accurate expressions (5.133). This gives the optical parameters

δns = 2β1 + e− 2β1 N , r = 8 e− 2β1 N , αS = − 2β1e− 2β1 N . (5.155)



Universe 2018, 4, 15 44 of 163

If e− 2β1 N << β1 then
δns ≈ 2β1, (5.156)

and we have the consistency relationships

r = 8e−Nδns , αS = − δnse−Nδns . (5.157)

Inserting N = 60 , δns = 0.032 gives r = 1.18 which is much too large compared with
the BPK-observations.

3. Inverse field monomial class. φ0 = 0 , q < −p , p > 1. This is an example of large field inflation.
The leading term of the β− function is now

β(φ) ' − β2

φ̂p . (5.158)

In this case the r, δns− relationship takes the form

r ≈ 8
(

δns

2β1 p

)2p/(p+1)
, (5.159)

which is plotted as a function of p in Figure 4. We see that r < 0.04 requires p > 1.5.

Furthermore
αS ≈ −

p + 1
2p

δ2
ns. (5.160)

Hence αS increases from − δ2
ns to − (1/2)δ2

ns when p increases from 1 to infinity.
4. Chaotic class, p = 1. Then

β(φ) ' − β2

φ̂
(5.161)

where 0 < β2 < 1. In this case integration of Equation (5.113) gives the Hubble parameter

H(φ) = H1φ̂κβ2/2. (5.162)

From Equation (5.125) we then find the potential

κV(φ) = H2
1 φ̂κβ2

(
3−

κβ2
2

2φ̂2

)
. (5.163)

In the large field case κβ2
2/2φ̂2 << 1, and the potential can be approximated by

V(φ) ≈ 3H2
1 φ̂κβ2 . (5.164)

Using Equation (5.118) the number of e-folds is

N =
1

2β2

(
φ̂2 − φ̂2

f

)
. (5.165)

Combining this equation with Equation (5.161) gives

β̂(N) = − β2√
φ2

f + 2β2N
. (5.166)
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The slow roll era ends when β
(

φ f

)
= 1 giving φ2

f = β2
2. Hence

β̂(N) = −
(

1 +
2
β2

N
)− 1/2

. (5.167)

With β2 < 1 we have 2N/β2 >> 1, so we can approximate β̂ by

β̂2(N) ≈
√

β2/2N. (5.168)

Using this in Equation (5.134) gives the optical parameters

δns ≈
1 + β2/2

N
, r ≈ 4β2

N
, αS ≈ −

1 + β2/2
N2 . (5.169)

It follows from these relationships that

β2 = 2(Nδns − 1) (5.170)

and
r = 8(δns − 1/N) , αS = − δns

(
δns −

r
8

)
= − δns

N
. (5.171)

Inserting N = 60 , δns = 0.032 gives β 2 = 1.8, r = 0.13 and αS = − 0.0005. The value of the
tensor-to-scalar ratio is too large to be compatible with the BPK-observations.

5. Fractional class, 0 < p < 1. For this class of inflationary models

r = 8δns =
β

2/(p+1)
2

[(p + 1)N]2p/(p+1)
, αS = −

2pβ
2/(p+1)
2

[(p + 1)N](3p+1)/(p+1)
. (5.172)

Hence δns = 0.032 gives r = 0.256. This prediction is in conflict with the BPK-data.
6. Power law class, p→ 0 . In this limit the β− function is constant, β(φ) = β2. Integration of

Equation (5.113) then gives the Hubble parameter as a function of the inflaton field

H = H2e(κβ2/2)φ. (5.173)

Equation (5.125) then gives the potential

V(φ) =
(

3− κ

2
β2

2

)
eκβ2φ. (5.174)

Integration of Equation (5.114) gives the Hubble parameter as a function of time

H =
1

H0 +
(
κβ2

2/2
)
t
. (5.175)

Letting H0 = 0 we have a Big Bang with infinitely great Hubble parameter at the initial moment,
H(0) = ∞. In this case the scale factor is

a(t) = a1(t/t1)
2/κβ2

2 . (5.176)
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Hence there is power law expansion, which is the reason for the name “power law class” of this
case. For this class of inflationary models the optical parameters are

δns =
β2

2
1− β2

2/2
, r = 8 β2

2 , αS = 0, (5.177)

giving

r =
8δns

1 + δns
≈ 8δns. (5.178)

Like the previous class of inflationary models those of this class are ruled out by the BPK-data.
7. Exponential class

β(φ) = − β2 exp
(
−γ φ̂

)
, (5.179)

where γ is a positive constant. This has the same form as the β− function of Equation (5.122) for
α = 2. In this case the optical parameters are

δns ≈
2
N

, r ≈ 8
γ2N2 , αS = − 2

N2 . (5.180)

For this class of models
r =

(
2/γ2

)
δns , αS = − (1/2) δ2

ns. (5.181)

The BPK-data, δns = 0.032 , r < 0.04 requires γ > 1.3.
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Figure 3. The tensor-to-scalar ratio plotted as function of q for β = 1 and δns = 0.032.
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Figure 4. The tensor-to-scalar ratio plotted as function of p for β = 1 and δns = 0.032.
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6. Predictions from Different Inflationary Models

Different inflation models have different physical motivations. However the calculations of the
predictions of the models for observable quantities are usually calculated in the same way using
the slow roll formalism. One often calculates numerically nS versus r diagrams (see for example
Okada et al., 2014). Then the differences between the models cook down to specifying the potential
by different functions of the potential, V(φ). In this connection one often classifies the models in
three classes:

Large field inflation: In these models the field strength at the end of the inflation is larger than an
order of magnitude less than the Planck energy. Small field inflation: Models where the field strength
at the end of the inflation is several orders of magnitude less than the Planck energy. Hybrid inflation:
This is a class of models where the inflationary era ends due to an extra field different from the inflaton
field that dominates during the slow roll era.

For the models that are considered in the present article we shall calculate all or some of the
expressions for the spectral parameters nS, nT , r, αS, αT that may be used to judge how successful the
models are in relation to the Planck- and BICEP2 data and future data coming the next years. Particular
focus will be put on the δns, r− relationship which is well constrained by the latest observations.

There has not yet been any general agreement as to how the different inflation models should be
named. I suggest that the models are given names after the mathematical form of the potential as a
function of the inflaton field.

6.1. Polynomial Chaotic Inflation

The so-called chaotic inflation [83] was proposed by A. Linde [84], and is a class of polynomial
inflation models. They are large field inflation models. The potential of the inflaton field in this type
of inflationary models is of the large field inflation type and has a potential (Martin et al. [27] and
Clesse [85],

V = M4φ̂p (6.1.1)

where φ̂ = φ/MP, and M is the energy scale of the potential when the inflaton field has Planck mass.
It is assumed that p is constant and that φ > 0. The class of models with n = −p and n > 0 is called
the inverse power-law inflation and has been investigated by J. D. Barrow and A. R. Liddle [86] and by
K. Rezazadeh, K. Karami and S. Hashemi [87] in the context of tachyon inflation.

For this potential Equation (2.17) leads to

.
φ̂ = A φ̂

p
2−1, A = − p M2

√
3

. (6.1.2)

The solution of this equation with the inflaton field equal to the Planck mass at the Planck time
gives the time evolution of the inflaton field during the slow roll era.

φ(t) = MP

(
1 +

4− p
2MP

A (t− tP)

) 2
4−p

, p 6= 4. (6.1.3)

Hence, the inflaton field depends linearly upon time for p = 2. Inserting this into Equation (6.1.1)
gives the time evolution of the potential,

V(t) = M4
(

1− 4− p
2MP

A (t− tP)

) 2p
4−p

, p 6= 4. (6.1.4)

For p = 4 the time evolution of the inflaton field and the potential is

φ(t) = MPe(A/MP)(t−tP) (6.1.5)



Universe 2018, 4, 15 48 of 163

and
V(t) = M4e(2A/MP)(t−tP). (6.1.6)

From Equation (2.16) it then follows that the time evolution of the Hubble parameter is

H(t) =

 1√
3

M2

MP

[
1 + 4−p

2MP
A(t− tP)

] p
4−p , p 6= 4

1√
3

M2

MP
e(A/MP)(t−tP) , p = 4

. (6.1.7)

We shall now deduce expressions for the spectroscopic parameters of this model in terms of the
number of e-folds. Differentiating the potential we get

V′

V
=

p
φ̂

,
V′′

V
=

p(p− 1)
φ̂2 ,

V′′′

V
=

p(p− 1)(p− 2)
φ̂3 . (6.1.8)

The potential slow roll parameters for this model are

ε =
1
2

(
p
φ̂

)2
, η =

p(p− 1)
φ̂2 , ξ =

p2(p− 1)(p− 2)
φ̂4 , (6.1.9)

For this class of inflationary universe models we therefore have

η =
2(p− 1)

p
ε , ξ =

4(p− 1)(p− 2)
p2 ε2, (6.1.10)

Note that η = ξ = 0 for p = 1. From Equation (3.22) we then get

ηH = − εH (6.1.11)

which has been called the linear model by Kinney et al. [88]. The definition (3.7) gives in this case
the equation

H′′

H′
+

H′

H
= 0 (6.1.12)

with the general solution
H(φ) = (C1φ + C2)

1/2, (6.1.13)

where C1 and C2 are constants of integration. Using Equation (2.16), we then obtain the
linear relationship

V(φ) =
(

3M2
P

)
(C1φ + C2). (6.1.14)

Equation (3.12), on the other hand, gives in this case

..
H
.

H
+ 2

.
H
H

= 0 (6.1.15)

with the solution
H(t) = (C3t + C4)

1/3. (6.1.16)

Inserting the expressions (6.1.9) into Equations (4.4), (4.13), and (4.29) we get

δns =
p(p + 2)

φ̂2 , r =
8p2

φ̂2 , αS = − 2p2(p + 2)
φ̂4 . (6.1.17)
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For this model there is also a simple expression for βS as given in Equation (4.32) (Amorós and
Haro [56])

βS = − 8p3(p + 2)
φ̂6 . (6.1.18)

When comparing with the first of the expressions (6.1.17) we obtain

βS = − 8

(p + 2)2 δ3
ns. (6.1.19)

Equation (6.1.17) gives the δns, r− and r, αS− relations

r =
8p

p + 2
δns , αS = − 2

p + 2
δ2

ns = −
1
32

p + 2
p2 r2 =

( r
8
− δns

)
δns , p =

2r
8δns − r

. (6.1.20)

With δns = 0.032 and for example p = 2 we get r = 0.128, αS = − 0.0005 and βns = − 0.000016.
This value of r is larger than admitted by the by the BPK-data. Also these data prefer larger absolute
values of αS and βS. However smaller values of p may give acceptable values of r. Inserting for
example r = 0.05 , δns = 0.032 in the expression (6.1.20) for p gives p = 0.64. Ballesteros and
Casas [31] conclude that the single field inflationary model with a quadratic potential predicts too little
running of the spectral index.

It follows from Equations (4.54) and (6.1.20) that for this class of inflationary models the running
of the tensor-to-scalar ratio is

α̂r =
2

p + 2
δns. (6.1.21)

Hence

p = 2
(

δns

α̂r
− 1
)

. (6.1.22)

For inflationary models with the standard Bunch-Davis initial conditions for cosmic perturbations
the B2014-Planck results required α̂r ≥ 0.16 which gives p ≤ − 1.6, corresponding to inverse power
law inflation.

One may also try to determine the value of p from observable data. Solving the expressions
(6.1.20) with respect to p we get

p =
2r

8δns − r
= − 2δ2

ns
αS
− 2 = − rδns

4αS
. (6.1.23)

Due to the large uncertainties in the measured value of r and αS one may obtain different values
of p from these expressions. With the Planck/BICEP2 2015 center values δns = 0.032, r = 0.05 the first
expression gives p ≈ 0.5.

Note for p = 2 one obtains ε = η = 2/φ̂2, and the slow roll condition ε, η << 1 takes the form
φ̂ >>

√
2 , i.e., the inflaton field is larger than the Planck energy, making this inflationary model rather

speculative as long as we lack a generally accepted quantum gravity theory.
Equation (6.1.9) gives the consistency relation (Chiba and Kohri [89])

ξ = 2η(η − ε). (6.1.24)

Inserting the expressions (3.1) for the slow roll parameters one obtains the differential equation

V V′V′′′ + V′2V′′ − 2V V′′2 = 0. (6.1.25)

The general solution of this equation is

V(φ) = (K2φ + K3)
K1 , (6.1.26)
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where K1, K2, K3 are integrations constants. Hence the consistency relation (6.1.24) is valid for all
inflationary mono-field models with potential of this form.

It follows from the expressions (6.1.17) that

αS = ε2 − (5ε− 2η)2. (6.1.27)

Hence for this class of universe models αS < ε2. Using Equation (4.24), Equation (6.1.27) may be
written as a relation between observables

αS = −δns(δns − r/8), (6.1.28)

or
r = (8/δns)

(
δ2

ns + αS

)
. (6.1.29)

Together with the Planck data this formula shows that there is a problem with the polynomial
inflation model. The ratio r must be positive, which requires αS > − δns

2. However the best fit Planck
data are δns = 0.032, giving δns

2 = 0.001, and αS = − 0.003, which is less than − δns
2. Hence the

Planck data and Equation (6.1.29) gives a negative value of r. As noted by Ade et al. [36] this class of
inflationary models is now ruled out by the observational data.

It follows from Equations (3.43) and (6.1.28) that the ratio of the running of the spectral index of
tensor and scalar fluctuations is

αT
αS

=
r

8 δns
. (6.1.30)

for the polynomial inflationary models.
It is usual to define the end of the inflationary era by ε

(
φ f

)
= 1. Using that κ = 1/M2

P, it then
follows that the value of the inflaton field at the end of the slow roll era is (Remmen and Carroll, 1985)

φ f =
(

p/
√

2
)

MP. (6.1.31)

From the first of Equation (4.1.9) we have

φ =
pMP√

2ε
. (6.1.32)

Hence φ/φ f = 1/
√

ε, and during the slow roll era with ε, η << 1 the inflaton field is φ >> φ f
and φ >> MP.

From Equations (3.50) and (6.1.9) we have

dN =
κ

p
φ dφ. (6.1.33)

Integrating through the slow roll inflationary era, we get

N =
κ

2p

(
φ2 − φ2

f

)
. (6.1.34)

where φ = φ(N) is the value of the field strength when the slow roll era with N e-folds begins.
Inserting the expression (6.1.25) for φ f into Equation (6.1.27) it follows that the initial value of the field
strength is

φ =

√
p
2
(p + 4N) MP. (6.1.35)
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It then follows from Equations (6.1.9) and (6.1.34) that for an inflationary era in which the potential
of the dark energy is a power of the scalar field, the slow roll parameters are

ε =
p

p + 4N
, η =

2(p− 1)
p + 4N

, ξ =
4(p− 1)(p− 2)

(p + 4N)2 . (6.1.36)

From Equations (4.13), (4.15), (4.4), (4.29) and (4.43) respectively, we then get

δns =
2(p + 2)
p + 4N

, nT = − 2p
p + 4N

, r =
16p

p + 4N
, αS = − 8(p + 2)

(p + 4N)2 , αT = − 8p

(p + 4N)2 .

(6.1.37)
Hence

r
δns

=
8p

p + 2
, − nT

δns
=

αT
αS

=
p

p + 2
. (6.1.38)

There is an arbitrariness in this inflationary model, because there is no mechanism determining
when the inflationary era starts or ends. A start with field strength much larger than the Planck
energy such as in Equation (6.1.32), does not seem very natural in the domain of a non-quantum
theory. Hence, there has been proposed that the chaotic inflation period starts at the Planck time with
V(φ1) = M 4

P and ends with φ f << φ so that φ f can be neglected in Equation (6.1.34). Equation (6.1.35)
then reduces to

φ = (2pN)1/2MP. (6.1.39)

Equation (6.1.1) with V(φ) = M 4
P together with Equation (6.1.37) gives

M = MP/(2pN)p/8. (6.1.40)

The most simple chaotic inflationary universe model has p = 2. Typically one requires about
50-fold increase of the scale factor during the slow roll era in order to solve the monopole, horizon and
flatness problems, giving M = 0.26 MP.

Calculating the spectroscopic parameters, one finds that putting φ f = 0 corresponds to neglecting
p in the denominator in the expressions (6.1.36). Usual values for p and N are 2 and 50. With these
values the slow roll parameters and the spectroscopic parameters will be changed only by about one
per cent if p is neglected in the denominator. Therefore, the arbitrariness of the final point of time of
the slow roll era in this model does not influence the predicted values of the spectroscopic parameters
seriously. The expressions are then simplified to

ε ≈ p
4N

, η ≈ p− 1
2N

, ξ ≈ (p− 1)(p− 2)
4N2 , (6.1.41)

and

δns =
p + 2
2N

, nT = − p
2N

, r =
4p
N

, αS = − p + 2
2N2 , αT = − p

2N2 . (6.1.42)

The values of these quantities for N = 50 and different values of p are shown in Table 1.
The values of nS predicted by polynomial inflation are roughly in agreement with the value from

the Planck data, nS = 0.968 but the predicted value of αS is more than ten times smaller than the value
αS = − 0.003 from the Planck data except for large values of p. Also, the quartic potential inflation
model and models with higher powers of the inflaton field, are in conflict within observational data
with too small predicted values of nS and too large values of r. The value of p can be determined by

p =
4(Nδns − 1)

1 + nS
≈ 2(Nδns − 1), (6.1.43)
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where the first expression is calculated from Equation (6.1.37) and the second from Equation (6.1.42).
For the Planck data in combination with N = 50 this gives p = 1.2 leading to a value of αS in conflict
with the Planck data. Similarly r can be expressed in terms of N and δns by

r =
8p

p + 2
δns =

16(Nδns − 1)
2N − 1

≈ 8
(

δns −
1
N

)
, (6.1.44)

giving r = 0.10 which is larger than the value favored by the BPK-analysis (Ade et al., 2015 A).
The equations above are accurate to first order in ε. Creminelli et al. [12] have considered more

accurate relationships valid to second order in ε for the case of a quadratic potential. With p = 2 the
expressions (6.1.37) gives η = ε , ξ = 0. Then Equations (4.18) and (4.19) give

δns = 4ε +
2
3
(7 + 12C)ε2 , r = 16ε− 32

3
(1− 3C)ε2. (6.1.45)

From these equations we get
δns − r/4 = (22/3)ε2. (6.1.46)

Hence the quantity δns − r/4 is small to second order in ε. In order to obtain an nS, r-relation
accurate to second order in ε we can therefore substitute for ε from the first order approximations
of Equation (6.1.45) where we neglect the second order terms, i.e., ε ≈ (1/4)δns and ε ≈ (1/16)r.
This gives the alternative relationships

δns − r/4 = (11/24)δ2
ns = (11/384)r2. (6.1.47)

The corresponding expressions with an arbitrary value of p are

δsn =
2(p + 2)

p
ε +

8(p + 2)C
p2 ε2 +

2
(
3p2 + 14p− 12

)
3p2 ε2 , r = 16ε− 64(1− 3C)

3p
ε2, (6.1.48)

and

δns −
p + 2

8p
r =

2
(
3p2 + 18p− 4

)
3p2 ε2, (6.1.49)

giving

δns −
p + 2

8p
r =

3p2 + 18p− 4

6(p + 2)2 δ2
ns =

3p2 + 18p− 4
384p2 r2. (6.1.50)

Kobayashi and Seto [90] and Martin et al. [33] have considered inflationary models with potentials

V(φ) = (1/2)m2φ̂2 + (1/4)σ φ̂4, (6.1.51)

and
V = V0 − (1/2)m2φ̂2 + (1/4)σ φ̂4. (6.1.52)

They showed that with suitable values of m and λ such models predict values of the spectroscopic
parameters in accordance with observations.

Trinomial inflation with

V(φ) =
m2

2
φ̂2 +

mg
3

φ̂3 +
σ

4
φ̂4 (6.1.53)

has been thoroughly discussed by Destri et al. [91] and Martin et al. [33].
J. de Haro, J. Amorós and S. Pan [92] have studied inflationary models with the potential

V(φ) = 3(HE MP)
2
(

φ

φE

) 2α
2−α

[(
φ

φE

)2
− 1

]
, φ < φE , V(φ) = 0 , φ > φE, (6.1.54)
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where HE = H(0) is a fixed value of the Hubble parameter at the chosen origin of time,
φE

2 = 8M2
P/3(2− α)2, and we have put the cosmological constant equal to zero in their expressions.

They have deduced this form of the potential from the assumption that the rate of change of the
Hubble parameter with time is given by

.
H = −3H2−α

E Hα , H > HE. (6.1.55)

Hence the Hubble slow roll parameters εH and ηH given in Equation (3.12) are

εH = 3
(

H∗
HE

)α−2
, ηH =

α

2
εH . (6.1.56)

where H∗ is the value of the Hubble parameter at the initial moment of the slow roll era. Inserting
the expressions (6.1.55) and (6.1.56) into Equation (3.12) and then using Equations (4.20) and (4.29),
the spectral index parameter δns its running αs and the tensor-to-scalar ratio r are

δns = (4− α)εH , αs = (α− 2)(4− α)ε2
H , r = 16εH . (6.1.57)

Hence, we have the relationships

r =
16

4− α
δns , αs =

α− 2
4− α

δ2
ns. (6.1.58)

For these models
.

H is given in Equation (6.1.55) as a function of H. Then it will be advantageous
to write Equation (3.62) for the number of e-folds as

N =

Hend∫
H∗

H
.

H
dH. (6.1.59)

where Hend is the value of H at the end of the slow roll era. Inserting the expression (6.1.55) for
.

H and
performing the integration gives

N =
1

2− α

(
1
ε∗
− 1

3

)
, ε∗ = 3

(
H∗
HE

)α−2
(6.1.60)

with Hend = HE. Solving this equation with respect to ε∗ gives

ε∗ =
1

1/3 + (2− α)N
. (6.1.61)

Inserting this into Equation (6.1.57) gives

δns =
4− α

1/3 + (2− α)N
, r =

16α

1/3 + (2− α)N
, αs =

(α− 2)(4− α)

[1/3 + (2− α)N]2
. (6.1.62)

The first of the Equations (6.1.58) and (6.1.62) may be written, respectively, as

α = 4
(

1− 4
δns

r

)
, (6.1.63)

and
α = 2

Nδns − 2
Nδns − 1

. (6.1.64)
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Compatibility of these equations requires

r = 8(δns − 1/N), (6.1.65)

or
N =

1
δns − r/8

. (6.1.66)

J. de Haro, J. Amorós and S. Pan [92] required 0 ≤ α ≤ 1. It is usual to require that the inflationary
last for between 50 and 60 e-folds in order to solve the horizon- and flatness problems adequately.
In order to make some estimates we will therefore assume that 50 < N < 60. Also we will use the
Planck value of the scalar optical parameter, i.e., δns = 0.032. With these values Equation (6.1.65) gives
0.010 < r < 0.012 which is allowed by the BPK-observations. Equations (5.1.63) and (5.1.64) then give
respectively −1.12 < α < −0.27 and −1.33 < α < −0.17. Hence positive values of α are not allowed
by the observational data.

6.2. Hilltop Inflation

Think of the curve describing the potential as a function of a scalar field. The name hilltop inflation
(Boubekeur and Lyth [93]) refers to the case that inflation occurs near a local maximum of this curve,
i.e., near a point where V′(φ) = 0. With local symmetry around this point, having V(0) = M4,
the most simple version of the potential is written (Kohri, Lin and Lyth [94])

V(φ) ≈ M4
(

1− 1
2

η0φ̂2
)

, η0 > 0. (6.2.1)

where η0 is a positive constant.
Inflationary models with this potential have also been called “New inflation”. Here η0 is the

absolute value of the slow roll parameter η at the maximum of the potential. Hill-top inflation occurs
for small η0.

Hilltop inflationary models may appear as the result of considering models where the
potential is a more complicated function of the inflaton field and then making a series expansion.
S. Basilakos et al. [95], for example, have considered a Starobinsky-like inflationary scenario
with potential

V(φ) = M4 1 + (1/3)sinh2(n φ̂/2
)

cosh2(n+2)/n(n φ̂/2
) . (6.2.2)

Assuming that nφ << 1 and performing a Taylor expansion to second order in nφ one obtains

V(φ) ≈ M4
[

1− n(n + 3)
6

φ̂2
]

. (6.2.3)

This potential has the Hilltop form (6.2.1) with

η0 = (1/3)n(n + 3). (6.2.4)

Also it is sometimes assumed that

φ̂ = φ/MP << 1, (6.2.5)

which may not be a good approximation in light of the Lyth relationship (4.7). With this assumption
it is usual to calculate the slow roll parameters with the approximation V ≈ M4 in the numerator.
This leads to

ε ≈ 1
2
(
η0φ̂
)2 , η = − η0 , ξ = 0. (6.2.6)
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Hence, the slow roll condition |η| << 1 requires that |η0| << 1.
It follows from Equation (6.2.6) that in the small field case, when φ < MP, then ε << η. In this

case it is usual to neglect ε in the expressions (4.13), (4.16), (4.29) and (4.43) for r, αS and αT . This gives

δns ≈ 2η0 , nT = −
(
η0φ̂
)2, r = 8

(
η0φ̂
)2, αS = −8η0

(
η0φ̂
)2, αT = −2η0

(
η0φ̂
)2 (6.2.7)

With this approximation there is no running of the spectral index of the scalar fluctuation spectrum,
αS = 0. For this model the Planck result δns = 0.032 gives η0 ≈ 0, 016.

With the potential (6.2.1) the number of e-folds is approximately given by

N ≈ M4

M2
P

φ∫
φ f

1
V′

dφ =
1
η0

ln
φ f

φ
. (6.2.8)

The end of the slow roll era is given by ε
(

φ f

)
= 1. With Equation (6.2.6) this gives

φ f =

√
2MP
η0

. (6.2.9)

Hence

φ =

√
2 MP
η0

e− η0 N . (6.2.10)

Inserting this into Equation (6.2.6) gives

ε ≈ e− 2 η0 N . (6.2.11)

The tensor-to-scalar ratio r, the spectral index nT and its running αT for this model are

r ≈ 16e− 2 η0 N = 16e− δns N , nT = − 2e− 2 η0 N , αS = − 16η0e− 2 η0 N , αT = − 4η0e− 2 η0 N . (6.2.12)

For nS = 0.096 , 50 < N < 60 this gives 2.2 < r < 3.2 which is much larger than the value
r < 0.04 suggested by the BPK-data even when foreground dust is neglected, and − 0.3 < nT < − 0.2,
−0.04 < αS < − 0.02, − 0.01 < αT < − 0.007.

We have seen that the small field Hilltop inflation does not give a realistic scenario. Let us therefore
investigate the large field Hilltop inflation scenario in the remainder of this section. Hence, we shall now
present a more accurate calculation, not making the assumption φ/MP << 1. Then it is useful to write
the potential as

V = M4
(

1− φ̃2
)

, φ̃ =

√
η0

2
φ̂. (6.2.13)

Here φ is the magnitude of the inflaton field, while φ̃ is a convenient, dimensionless field variable.
The slow roll parameters are

ε =
η0φ̃2(

1− φ̃2
)2 , η = − η0

1− φ̃2
. (6.2.14)

These expressions imply that

ε− η =
η0(

1− φ̃2
)2 . (6.2.15)

This shows that ε > η in large field Hilltop inflation, which is opposite to the small field Hilltop
inflation. Combining this with the second of the Equation (6.2.14) we have

η0 =
η2

ε− η
, (6.2.16)
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which confirms that η0 << 1. From the expressions (5.2.14) it also follows that

ε = φ̃2η2/η0. (6.2.17)

The ‘spectral index’ δns and the tensor-to-scalar ratio r are

δns = 2η0
1 + 2φ̃2(
1− φ̃2

)2 , r = 16η0
φ̃2(

1− φ̃2
)2 . (6.2.18)

Hence

r =
8φ̃2

1 + 2φ̃2
δns. (6.2.19)

This relationship is shown graphically in Figure 5.
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Figure 5. The tensor-to-scalar ratio as a function of the magnitude of the inflaton field of the Hilltop
inflation for ns = 0.968, η0 = 0.016 and 0 < φ̃ < 2 MP. For larger inflaton field r approaches the
value 0.128.

This equation is valid for arbitrary values of φ̃ while Equation (6.2.17) is valid only for φ̃2 << 1.
Equation (6.2.19) may be written

φ̃2 =
r/2

4 δns − r
, (6.2.20)

which requires r < 4 δns. The Planck and BICEP2 data, δns = 0.032 and r = 0.05 corresponds to the
largest allowed value of r in this inflationary model. The BICEP2/Planck data give φ̃ = 0.56.

It may be noted that this model will be ruled out if one discovers a large running of the
tensor-to-scalar ration. This is seen as follows. Equations (4.50) and (6.2.19) gives

αr =
1 + φ̃2

1 + 2φ̃2
δns, (6.2.21)

or
φ̃2 = − αr − δns

2αr − δns
, (6.2.22)

which requires (1/2)δns < αr < δns. With δns = 0.032 the running of the tensor-to-scalar ration must
obey 0.016 < αr < 0.032. Hence, for example the Planck-BICEP-2014 result would rule out this class of
inflationary models.
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The number of e-folds is

N =

φ∫
φ f

V
V′

dφ =
1

2η0

(
φ̃2 − φ̃2

f

)
− 1

η0
ln

φ̃

φ̃ f
, (6.2.23)

where φ f is the final value of the inflaton potential at the end of the slow roll era. The value of φ̃ f is

usually determined by the condition ε
(

φ̃ f

)
= 1 which gives

φ̃ f =
1

1−√η0
≈ 1. (6.2.24)

The corresponding final value of the inflaton field is

φ f =

√
2
η0

MP
1−√η0

≈
√

2
η0

MP. (6.2.25)

which is much larger than the Planck energy.
We now assume that the initial value of the inflaton field is much smaller than the final value so

that the first term at the right hand side of Equation (6.2.23) can be neglected. Solving the resulting
equation with respect to φ̃ and using Equation (6.2.24) we get

φ̃ = φ̃ f e−(1/2)(1+3 fN) , fN = (2/3)η0 N. (6.2.26)

Inserting this into the expressions (6.2.18) and using the approximation φ f ≈ 1, gives

δns =
η0(e1+3 fN + 2)

2 sinh2
[

1
2 (1 + 3 fN)

] , r =
4η0

sinh2
[

1
2 (1 + 3 fN)

] , (6.2.27)

which is different from the expressions in Equation (8) in Basilakos et al. [95]. It follows from the
expressions in Equation (6.2.27) that

e1+3 fN = (2/r)(4 δns − r), (6.2.28)

or
r =

4 δns

1 + (1/2)e1+3 fN
. (6.2.29)

Hence, there is a linear relationship between r and nS in this inflationary model.
Since e1+(1/3) fN > 1, Equation (6.2.29) requires that (using δns = 0.032)

r < (8/3)δns = 0.085. (6.2.30)

This is the main prediction of the large field hilltop model. It is in agreement with the
BICEP2/Planck data.

Inserting the expression (6.2.28) into the second of the expressions (6.2.27) gives η0 in terms of
observable quantities

η0 =
1

32
(8 δns − 3 r)2

4δns − r
. (6.2.31)
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Seemingly this allows a large value of η0 since 0 < η0 < ∞ for (8/3) δns < r < 4 δns. However, as
was shown in Equation (6.2.30), this region of r is not allowed. Inserting the expression (4.2.29) for r
into Equation (6.2.31) gives

η0 =
δns

8

[
1− 4e− (1+3 fN)

]2

1 + 2e− (1+3 fN)
. (6.2.32)

This shows that η0 < (1/8)δns. With the Planck value this gives η0 < 0.004.
Basilakos et al. [95] have considered the case n = 2 , N = 50, giving fN = 103. However,

the model in combination with the Planck results does not permit so large value of n. Inserting
Equation (6.2.19) into Equation (6.2.26) and then using Equation (6.2.14) we have

fN =
2
3

Nη2

ε− η
=

4
3

N M2
P η

φ2η − 2 M2
P

, (6.2.33)

showing again that in this inflationary model the inflaton field must be large, φ >
√

2/η MP.
A more general form of the Hilltop inflaton potential has also been considered (Kinney et al. [88,96],

Zarei [97] and Barenboim et al. [50]),

V(φ) ≈ V0
(
1− φ̃p) , φ̃ = φ/φ0 , p 6= 1 & p 6= 2, (6.2.34)

where φ0 is the value of the inflaton field at the extremum of the potential. It is usually assumed that
φ̃ << 1. We shall first consider this case, which permits the approximation V ≈ V0 in the numerator
in the expressions for the slow roll parameters. This gives

ε =
p2

2
φ̂−2

0 φ̃2(p−1) , η = − p(p− 1)φ̂−2
0 φ̃p−2 , ξ = p2(p− 1)(p− 2)φ̂−4

0 φ̃2(p−2) , (6.2.35)

where φ̂0 = φ0/MP. Hence ε << η. We shall now assume that p 6= 1 and p 6= 2. Then it follows that

ξ =
p− 2
p− 1

η2. (6.2.36)

Inserting the expression (6.2.35) into Equations (4.13) and (4.29) we get

δns = 2p(p− 1)φ̂−2
0 φ̃p−2, r = 8p2φ̂−2

0 φ̃2(p−1) ,
αS = − 2p2(p− 1)(p− 2)φ̂−4

0 φ̃2(p−2) (6.2.37)

It follows that for this class of inflationary models the (δns, r) and (δns, αS) relationships can
be written

r ≈ 4p
p− 1

δ
2(p−1)

p−2
ns[

2p(p− 1)φ̂2
0
] p

p−2
, αS = − 1

2
p− 2
p− 1

δ2
ns. (6.2.38)

Hence that r has a value close to zero in these inflation models for p > 1.
The number of e-folds is

N =
1

M2
P

φ∫
φ f

V
V′

dφ = −
φ

p
0

pM2
P

φ∫
φ f

φ1−pdφ =
φ̂2

0
p(p− 2)

 1
φ̃p−2

− 1

φ̃
p−2
f

. (6.2.39)

We shall here consider a slow roll era with φ̃ << φ̃ f , so we can neglect the last term in
Equation (6.2.39), which gives

φ̂2
0
(
φ̃
)2−p ≈ p(p− 2)N. (6.2.40)
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Hence
η ≈ − p− 1

p− 2
1
N

, ξ ≈ p− 2
p− 1

1
N2 . (6.2.41)

From this we get [98,99]

r =
2φ̂

2p
p−2
0

[p(p− 2)N]
2(p−1)

p−2

→
8p2φ̂

2p
p−2
0

[p(p− 2)N]
2(p−1)

p−2

. (6.2.42)

It may be noted that for these models it is possible to obtain sufficiently small values by choosing
φ̂0 << 1, which are then small field models. The r, δns− relation takes the form

r =
(

φ0

2

) 2p
p−2
[

δns

p(p− 1)

] 2(p−1)
p−2
→ 8p2φ̂

2p
p−2
0

[
δns

2p(p− 1)

] 2(p−1)
p−2

(6.2.43)

It follows from the expressions (6.2.42) that the running of the spectral index of scalar fluctuations
can be written

αS = − 1
2

p− 2
p− 1

δ2
ns = −

1
N

δns. (6.2.44)

With δns = 0.032 and N = 50 this gives αS = − 0.0006 which is permitted by the Planck 2015
results. Furthermore we get

p =
2(Nδns − 1)

Nδns − 2
, (6.2.45)

giving p = − 3. Inserting this, together with δns = 0.032, into Equation (6.2.43) gives r ≈ 3× 10−5φ1.2
0 .

For φ̂0 << 1 this gives a very small value the tensor-to-scalar ratio.
Again we shall make a more accurate calculation, this time not making the assumption φ̃ << 1.

Then the slow roll parameters are

ε = p2

2 φ̂−2
0

φ̃2(p−1)

(1−φ̃p)
2 , η = − p(p− 1)φ̂−2

0
φ̃p−2

1−φ̃p ,

ξ = p2(p− 1)(p− 2)φ̂−4
0

φ̃2(p−2)

(1−φ̃p)
2

(6.2.46)

It follows from these expressions that

ξ =
p− 2
p− 1

η2. (6.2.47)

The corresponding differential equation is

V′V′′′ =
p− 2
p− 1

V′′ 2 (6.2.48)

with general solution
V(φ) = (A φ + B)p + C, (6.2.49)

where A, B and C are arbitrary constants. This generalizes the potential (6.2.34).
J. Garcia-Bellido and D. Roest [70] have called the corresponding inflationary universe model

with negative value of p for the inverse hilltop model, while Shiu and Tye [100] and Drees et al. [101]
have called it inverse power law inflation. Such a model has also been investigated by Z. Lu [102]
with p = − 2. Steer and Vernizzi [28] have considered an inflationary model with inverse power
law potential,

V
(
φ̂
)
=

V0

1 + φ̂4 . (6.2.50)
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With the approximation (4.2.5) their predictions are δns = 3/N, and the δns, r-relation is
r = (1/3)φ̃4δns.

6.3. Symmetry Breaking Inflation

There exists a so-called symmetry breaking inflation model with potential (Chiba and Khori, 2014)

V(φ) = M4
(

φ2 −M2
)2

. (6.3.1)

This has also been called double-well inflation by Martin et al. (2013), hilltop inflation by Chiba and
Khori [89], topological inflation by Chung and Lin [103], and Higgs-like by and Escudero et al. [104].
Here M represents a symmetry breaking energy scale where the potential has a minimum. In the weak
field case the potential (6.3.1) is often called a Higgs potential (Rehman et al. [105], but this term will
here be reserved for the potential in Section 6.7.

Inserting the potential (6.3.1) into Equation (2.17) and integrating gives the time evolution of the
inflaton field during the slow roll era

φ = φ0e4MP
√

V0/3 t. (6.3.2)

which is similar to that of polynomial inflation with p = 4.
For the potential (6.3.1) the slow roll parameters are

ε =
8 M2

Pφ2

(φ2 −M2)
2 , η =

4 M2
P
(
3φ2 −M2)

(φ2 −M2)
2 , ξ =

96 M4
Pφ2

(φ2 −M2)
3 . (6.3.3)

The number of e-folds for this model is (Qiu, 2014)

N =
1

8M2
P

(
φ2 − φ2

f

)
− M2

4M2
P

ln
φ

φ f
, (6.3.4)

where the final value of the inflaton field is determined by ε
(

φ f

)
= 1 which leads to

φ2
f = 4M2

P + M2 ±
√

16M4
P + 8M2

P M2. (6.3.5)

There is a consistency relation for this model,

ξ = 3ε(η − ε). (6.3.6)

Inserting the expressions (3.1) for the slow roll parameters leads to the differential equation

V V′′′

V′2
− 3

2
V′′

V′
+

3
4

V′

V
= 0, (6.3.7)

which may be written (
V1/2

)′′′
= 0. (6.3.8)

Hence the general form of the potential for mono-field inflationary models fulfilling the
consistency condition (6.3.6) is

V =
(

A φ2 + Bφ + C
)2

. (6.3.9)

where A, B, C are integration constants.
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Inserting the relation (6.3.6) into Equation (4.29) and using Equation (4.24) gives

αS =
r

64
(3 r− 20 δns). (6.3.10)

With δns = 0.032 and r = 0.05 we get αS = − 0.0004 which is permitted by the Planck 2015 data
giving αS = 0.003± 0.007 [35].

Using the expressions (6.3.3), we find that δns and r are

δns = 8 M2
P

3φ2 + M2

(φ2 −M2)
2 , r = 128 M2

P
φ2

(φ2 −M2)
2 . (6.3.11)

It follows that
r = 4

(
δns − 3x2 + x

√
2 δns + 9x2

)
, x = MP/M. (6.3.12)

A plot of this relationship for δns = 0.032 and 0 < x < 0.1 is shown in Figure 6.
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Figure 6. Predicted values of r given in Equation (6.3.12) as a function of M for M > 10 MP and
nS = 0.968.

Equation (6.3.10) gives limr
x→∞

= 5δns. Hence this inflationary model predicts that 4δns < r < 5δns or

with the Planck data, 0.128 < r < 0.16. This is larger than the values, r < 0.04, favored by the BPK-data.
Solving Equation (6.3.12) with respect to M we find for the symmetry breaking inflationary models

M = 2
√

2 MP

√
16δns − 3r
4δns − r

(6.3.13)

Here δns = 0.032 , r = 0.04 gives M ≈ 20MP. Hence this is an example of large field inflation.
The potential (6.3.1) can be generalized by including a non-minimal coupling to the Ricci

scalar [104]. In this case the potential takes the form

V(φ) =
M4(φ2 −M2)2(

1 + ξφ̂2
)2 , (6.3.14)

where ξ is the coupling constant. Escudero et al. [104] have shown that this model gives agreement
with the Planck data if ξ > 100.

6.4. Exponential Potential and Power Law Inflation

In these inflationary universe models the potential is an exponential function of the scalar
field [106],

V(φ) = M4e− λφ̂. (6.4.1)
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Inserting this potential into Equation (2.17) and integrating with φ(0) = 0 gives the time
dependence of the inflaton field

φ =
2MP

λ
ln
(

1 +
λ2

6
M2

MP
t
)

. (6.4.2)

With this expression in Equation (6.4.1) we get the time dependence of the potential

V(t) =
M4(

1 + λ2

6
M2

MP
t
)2 . (6.4.3)

Differentiating Equation (6.4.2) gives

.
φ =

(λ/3)M2

1 + λ2

6
M2

MP
t

,
..
φ =

λ3 M4

18MP

(
1 + λ2

6
M2

MP
t
)2 . (6.4.4)

Inserting Equation (6.4.3) and the first of the expressions (6.4.4) into Equation (2.2) gives

H =
M2
√

3 MP

√
1 + λ2

18

1 + λ2

6
M2

MP
t
. (6.4.5)

This gives for the rate of roll,
..
φ

H
.
φ
=

√
3

2(18 + λ2)
λ2, (6.4.6)

which is constant. The class of inflationary models with a constant rate of roll has been further studied
by Motohashi et al. [107].

Integrating Equation (6.4.5) with a(0) = a0 shows that the scale factor is a power function of the
cosmic time,

a(t) = a0

(
1 +

λ2

6
M2

MP
t
) 2

λ2

√
1+ λ2

18

. (6.4.7)

Therefore this inflationary model has been called power law inflation [108].
Amorós and Haro [56] have noted that the potential of these inflationary models obey the

condition ξ = η2. Inserting the definitions (3.1) for ξ and η we get the differential equation

V′V′′′ −V′′2 = 0 (6.4.8)

with general solution
V(φ) = AeBφ + C, (6.4.9)

where A, B and C are constants of integration.
For this class of inflationary models the slow roll parameters are independent of the duration of

the inflation era and have values

ε = (1/2)λ2 , η = λ2 , ξ = λ4, (6.4.10)

giving
δns = λ2 , nT = − λ2 , r = 8λ2 , αS = 0. (6.4.11)

Hence there is no running of the scalar spectral index. Equation (6.4.11) implies the relationship

r = 8 δns , nT = − δns (6.4.12)
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In this model there is no running of the spectral indices or the tensor-to-scalar ratio. With the value
δns = 0.032 from the Planck measurements we get λ2 = 0.032 and r = 0.256. Exponential inflationary
models with power law expansion have mainly been considered with values of the exponent 6/λ2

smaller than 2, which is in conflict with the Planck data. Furthermore the value of r is much too high.
Such exponential inflationary models are ruled out by the BPK-data, that indicate r < 0.04. This type
of inflationary models is an example of models that fitted the preliminary BICEP2 result with a high
value of r quite well [59], but that are ruled out by the recent combined BPK-results [109].

Furthermore, is should be noted that there is no natural exit of the slow roll era in the original
version of the exponential inflation model.

However, in light of the Planck results S. Unnikrishnan and V. Sahni [110] have constructed
a revised power law model in which inflation is driven by a scalar field with an inverse power
law potential.

Geng et al. [111] have recently generalized these types of inflationary models by including an
additional free parameter p so that the potential is given the form

V = V0e− λφ̂p
. (6.4.13)

Drees et al. [101] have considered an inflationary model with a potential having the same form,
but with plus in the exponent. For the potential (6.4.13) the slow roll parameters are

ε = (1/2)p2λ2φ̂2(p−1) , η = − pλφ̂p−2(p− 1− pλφ̂p)
ξ = p2λ2φ̂2p−4[(p− 1)(p− 2)− 3p(p− 1)λφ̂p + p2λ2φ̂2p] . (6.4.14)

Hence the scalar tilt δns and the scalar-to-tensor ratio r are

δns = p2λ2φ̂2p−2 + 2p(p− 1)λφ̂p−2 , r = 8p2λ2φ̂2p−2

αS = −2p2(p− 1)λ2
(

r
8p2λ2

) p−2
p−1
[

pλ
(

r
8p2λ2

) 1
2(p−1) − (p− 2)

]
, (6.4.15)

for p 6= 1. It follows that

δns =
r
8
+ (p− 1)(2pλ)

1
p−1
( r

2

) p−2
2p−2 , (6.4.16)

and

αS = − (p− 1)(pλ)
2

p−1
( r

8

) p−2
p−1

[
(pλ)

p−2
p−1
( r

8

) 1
2(p−1) − (p− 2)

]
. (6.4.17)

Geng et al. [111] have chosen λ = 10−8.
In the special case with p = 2 we have

V = V0e− λφ̂2
, (6.4.18)

ε = 2λ2φ̂2 , η = − 2λ
(

1− 2λφ̂2
)

, ξ = 8λ3φ̂2
(

2λφ̂2 − 3
)

, (6.4.19)

δns = 4λ
(

λφ̂2 + 1
)

, r = 32λ2φ̂2 , (6.4.20)

δns =
r
8
+ 4λ , αS = −λ2(2r)1/2. (6.4.21)

Hence
λ =

1
4

(
δns −

r
8

)
. (6.4.22)

Inserting δns = 0.032 and r < 0.04 gives the requirement λ > 0.007.
Other members of the class of exponential inflationary models are the β-exponential inflationary

models [112,113]. In these models the usual exponential function in the potential is replaces by the
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general exponential function. This introduces a new parameter which may be adjusted in order that
the models shall agree with the observational data.

The hubble slow roll parameters are

εH =
λ2

2
1

(βλφ− 1)2 , ηH =
λ2

2
1− 2β

(βλφ− 1)2 . (6.4.23)

The scalar spectral tilt and the tensor-to-scalar ratio are

δns = λ2 1 + 2β

(βλφ− 1)2 , r = 8λ2 1

(βλφ− 1)2 . (6.4.24)

Hence
r =

8δns

1 + 2β
, (6.4.25)

which may be written

β =
1
2

(
8

δns

r
− 1
)

. (6.4.26)

Inserting δns = 0.032 and r < 0.04 gives β = 2.7.
The value of the inflaton field, φ f , is given by εH

(
φ f

)
= 1 which leads to

φ f =
1
β

(
1
λ
− 1√

2

)
. (6.4.27)

For β 6= 0 the number of e-folds of the inflationary era is

N =

φ∫
φ f

dφ√
2εH(φ)

=
1
λ

(
1
2

βλφ2 − φ

)
+

1
2β

(
1

λ2 −
1
2

)
. (6.4.28)

Inserting this into Equation (6.4.24) some nice cancellations happen, which lead to very simple,
λ− independent expressions for the spectral parameters in terms of the number of e-folds,

δns =
2(1 + 2β)

4βN + 1
, r =

16
4βN + 1

. (6.4.29)

The last of these equations can be written

β =
16− r
4Nr

. (6.4.30)

Inserting N = 50 , r = 0.04 gives β ≈ 2. It follows from Equations (6.4.26) and (6.4.30) that

r = 16
Nδns − 1
2N − 1

. (6.4.31)

With N = 50 , δns = 0, 32 we get r ≈ 0.10 which is a little larger than permitted by the Planck data.

6.5. Natural Inflation

The original natural inflation potential was presented by K. Freese et al. [114] and has been further
developed and compared with observational data by Freese and Kinney [115,116]. In the original
model there are two variants of the potential of the scalar field generating the dark energy, given by

V−(φ) = V0
(
1− cos φ̃

)
= 2V0 sin2(φ̃/2

)
, V+(φ) = V0

(
1 + cos φ̃

)
= 2V0 cos2(φ̃/2

)
(6.5.1)
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Here φ̃ = φ/M, and M is the spontaneous symmetry breaking scale. In order for inflation to
occur, we must have M > MP [117]. The constant V0 is a characteristic energy scale for the model.
The potential V− has a minimum at φ̃ = 0 and V+ at φ̃ = π.

Inserting the potential V+ into Equation (2.17) and integrating we find the time evolution of the
inflaton field during the slow roll era,

φ(t) = 4M arctan
(

K e
MP
M

√
2V0

3 t
)

, (6.5.2)

where K is an integration constant. We here chose K = 1. Then φ̃0 = φ̃(0) = π. This boundary
condition will be chosen both for V−(φ) and V+(φ). Then V−(φ0) = 2V0 and V+(φ0) = 0.

Using the identity

cos(4θ) = 1− 8 tan2 θ(
1 + tan2 θ

)2 , (6.5.3)

the time evolution of the potential V_ is found to be

V_(t) =
2V0

cosh2
(

MP
M

√
2V0

3 t
) . (6.5.4)

Differentiating the expression (6.5.2) gives

.
φ̃ =

2MP
√

2V0/3

cosh
(

MP
M

√
2V0

3 t
) . (6.5.5)

The slow roll era starts at a flat upper part of the curve, for example at φ = 0 (small field inflation)
or at φ = 2πM (large field inflation). The slow roll parameters are (with the upper sign corresponding
to V_)

ε± =
b
2

1± cφ

1∓ cφ
, η± = ∓ b

cφ

1∓ cφ
, ξ± = − b2 1± cφ

1∓ cφ
, b =

(
MP
M

)2
, cφ ≡ cos φ̃. (6.5.6)

where φ is the initial value of the field giving rise to N e-folds. The parameter b represents the symmetry
breaking scale and b < 1 for M > MP. It follows from these relations that

cφ = ± η±
η± − 2ε±

. (6.5.7)

The expressions (6.5.6) may be given the alternative forms

ε− = b
2

(
sφ

1−cφ

)2
= b

2 cotan2 φ̃
2 , ε+ = b

2

(
sφ

1+cφ

)2
= b

2 tan2 φ̃
2 , sφ ≡ sin φ̃

η− = b
2

(
cot an2 φ̃

2 − 1
)
= ε− − b

2 , η+ = b
2

(
tan2 φ̃

2 − 1
)
= ε+ − b

2 ,

ξ− = − b2cotan2 φ̃
2 = − 2bε− , ξ+ = − b2 tan2 φ̃

2 = − 2bε+

. (6.5.8)

For both signs the expressions (6.5.3) give

c2
φ =

η2

η2 + 2bε
, (6.5.9)

and the consistency relations
η − ε = −b/2 , ξ = −bε (6.5.10)
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and
ξ = 4ε(η − ε). (6.5.11)

From the last relation and Equation (4.29) we have

αS = 8ε(η − 2ε). (6.5.12)

Inserting the expressions (4.24) for ε and η gives a relation between observables for the natural
inflation models

αS =
r

32
(r− 8 δns). (6.5.13)

It follows from Equations (4.48), (4.50) and (6.5.10) that for this class of inflationary
universe models

αT =
αS
2

= − αr

8
=

r
64

(r− 8 δns). (6.5.14)

With δns = 0.032 and r = 0.05 we get αS = − 0.00032, αT = − 0.00016.
Inserting the expressions for ε and η in Equation (3.1) into the first of Equation (6.5.10) gives the

differential equation
V′′

V
− 1

2
V′2

V2 = − 1
2 f 2 (6.5.15)

which may be written (
V1/2

)′′
+ (1/2 f )2V1/2 = 0. (6.5.16)

The general solution is

V(φ) =
(

A cos
(
φ̂/2

)
+ B sin

(
φ̂/2

))2. (6.5.17)

The two potentials in Equation (6.5.1) corresponds to the special cases A =
√

2V0 , B = 0 and
A = 0 , B =

√
2V0, respectively.

The last of the Equation (6.5.10) on the other hand, corresponds to the differential equation

V′′′ = −
(

1/M2
)

V′. (6.5.18)

Integration gives
V′′ +

(
1/M2

)
V = A, (6.5.19)

where A is an integration constant. The general solution is

V(φ) = AM2 + B sin
(
φ̃
)
+ C cos

(
φ̃
)
, (6.5.20)

where A, B, C are integration constants.
Equation (6.5.11) leads to

V V′′′

V′2
= 2

V′′

V′
− V′

V
, (6.5.21)

which may be written (
V1/2

)′′′
(
V1/2

)′′ =

(
V1/2

)′
V1/2 . (6.5.22)

Integration gives ∣∣∣∣∣∣∣
(

V1/2
)′′

V1/2

∣∣∣∣∣∣∣ = K. (6.5.23)
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where K is a positive constant. Hence, (
V1/2

)′′
± K V1/2 = 0. (6.5.24)

With K = 1/M2 and the plus sign this is identical to Equation (6.5.16). With the minus sign the
trigonometric functions in Equation (6.5.17) are replaced by hyperbolic functions.

The spectral parameters are

δns± = b
3± cφ

1∓ cφ
, nT± = − b

1± cφ

1∓ cφ
, r± = 8 b

1± cφ

1∓ cφ
. (6.5.25)

It follows from these equations that

r = 4(δns − b) , cφ = ±8 δns± − 3r±
8 δns± − r±

, nT = − r
8

, (6.5.26)

where the relationship for nT is the same as Equation (4.16). Since −1 ≤ cφ ≤ 1 and b > 0 these
equations require 0 ≤ r ≤ 4 δns. With the value δns = 0.032 from the Planck measurements, a prediction
of the natural inflation model is that r ≤ 0.128. Inserting the BICEP2/Planck value r = 0.05 gives
cφ = ∓ 0.5.

The symmetry breaking parameter b can be determined from observations from the first of the
relationships (6.5.26),

b = δns −
r
4

. (6.5.27)

With δns = 0.032 and r = 0.05 we have b = 0.02, giving M = 7MP. Hence the symmetry breaking
energy is much higher than the Planck energy.

Using successively Equations (4.29), (4.24), and (6.5.10) the slow roll parameter ξ can also be
determined from observations,

ξ = − r
32

(4 δns − r). (6.5.28)

Hence, for r < 4 δns this parameter is negative. For the BICEP2/Planck data we get ξ = − 0.0001.
The number of e-folds, with + and −, respectively, in Equation (6.5.1), are

N+ =
2
b

ln

∣∣∣∣∣∣
sin
(

φ̃ f /2
)

sin
(
φ̃/2

)
∣∣∣∣∣∣ , N− =

2
b

ln

∣∣∣∣∣∣
cos
(

φ̃ f /2
)

cos
(
φ̃/2

)
∣∣∣∣∣∣. (6.5.29)

It is usual to specify that the inflationary era ends when ε = 1. Inserting φ = φ f in the first of the
Equation (6.5.1) with ε = 1 we get

cos
(

φ̃ f±
)
= ±2− b

2 + b
. (6.5.30)

Inserting this into the two expressions (6.5.29) gives

cφ± = ±
(

1− 4
2 + b

e− b N
)

, (6.5.31)

or
sin
(
φ̃φ+/2

)
= cos

(
φ̃φ−/2

)
=
√

2/(2 + b) e−(b/2)N . (6.5.32)

Hence φ̃φ+ + φ̃φ− = π. It follows from Equations (6.5.25) and (6.5.32) that

δns = b
(2 + b)eb N + 2
(2 + b)eb N − 2

, r =
16b

(2 + b)eb N − 2
. (6.5.33)
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This shows that the models with + and − in the formula (4.5.1) for the potential have the same
empirical contents. These expressions are in agreement with the first of the Equation (4.5.23).

We have two limits [99],

A. bN >> 1. Then δns ≈ b and r ≈ [16b/(2 + b)] exp(−bN). This is similar to the Hilltop
predictions (4.2.7) and (4.2.12). In this limit δns >> 1/N ≈ 0.02 which is not favored by the
Planck measurements.

B. bN << 1. Then δns ≈ 2/N and r ≈ 8/N ≈ 4δns. This is similar to the predictions of chaotic
inflation with p = 2. With the Planck value δns = 0.032 the prediction for the tensor-to-scalar
ratio is r ≈ 0.128, which is larger than favored by the Planck data.

Márián et al. [118] have recently considered Psudo periodic Higgs inflation with a potential

V = (1/2)m2φ̂2 + V0
[
1− cos

(
φ̃
)]

, (6.5.38)

and shown that it corresponds well with the Planck data for a suitable value of V0/m2.

6.6. Hybrid Natural Inflation

A potential problem for the original natural inflation model is that to produce sufficient inflation,
the scale f of symmetry breaking must be larger than the Planck energy, and we have no accepted
theory to describe such conditions where quantum gravitation effects are expected to appear.

In order to cure this potential problem, and also to provide an inflationary model with one more
free parameter than the natural inflation model, thereby increasing the possibility of obtaining a model
in agreement with observations, a so-called hybrid natural inflation model has been introduced. In this
model the inflaton field is supplied by a second field, which is responsible for terminating inflation.
This model allows for a symmetry breaking scale that is less that the Planck scale. It is also assumed
that the symmetry breaking energy is not greater than the Planck energy, meaning that b ≥ 1.

Recent investigations of hybrid natural inflation have been performed by Ross and Germán [119],
Carrillo-González et al. [58], Hebecker et al. [120], Vázquez et al. [121], Ross et al. [122],
and G. Germán et al. [8]. For this model the inflaton potential is written as

V(φ) = V0
(
1 + a cos φ̃

)
. (6.6.1)

where a is a constant with a value either −1 ≤ a < 0 or 0 < a ≤ 1. Here a = ±1 represents the original
natural inflation. The slow roll parameters of the hybrid natural inflation model are

ε =
a2b
2

1− c2
φ(

1 + a cφ

)2 , η = − ab
cφ

1 + a cφ
, ξ = − a2 b2

1− c2
φ(

1 + a cφ

)2 = − 2bε, (6.6.2)

where b and cφ is defined in Equation (6.5.3). It may be noted that the relationship (6.5.6) is valid in
hybrid natural inflation while (6.5.4) is not. The scalar spectral tilt and the tensor-to-scalar-ratio are

δns = ab
3a + 2cφ − ac2

φ(
1 + acφ

)2 , r = 8a2b
1− c2

φ(
1 + acφ

)2 . (6.6.3)

It follows from Equations (4.29), (6.6.2), and (6.6.3) that the running of the scalar spectral index is
Carrillo-Gonzalez et al. [58] and Germán et al. [8],

αs =
r

32
(3r− 16δns + 8b). (6.6.4)

In order to avoid quantum corrections of the potential for which we have no reliable theory,
Ross and Germán [123] have considered the case that M < MP, i.e., b > 1. Then it follows from the
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first Equation (6.6.3) that in order to obtain a small δns, the parameter a must be small. Hence we can
use the approximation

δns ≈ 2abcφ. (6.6.5)

This shows that with cφ ≈ 1 (see below) we must have a < 0.016.
Hebecker et al. [124] have taken the initial value of the inflaton field to φ = (π/2)M in order to

maximize r = 16 ε, giving cφ = 0 and rm = 8β2b. However at this point the potential is maximally
steep, so this may be said to represent “fast roll inflation” [107] rather than slow roll inflation. For slow
roll inflation a more natural starting point is close to φ ≈ 0 where the potential is flat. This gives c2

φ ≈ 1
and hence a value of r very close to zero (Ross et al. [119,122,123]). Let us see how close to zero. From
the expressions (6.6.3) we get

r =
8a s2

φ

2cφ + a
(

3− c2
φ

) δns ≈ 4aφ̃2δns. (6.6.6)

With φ < MP we have φ̃2 < b. From Equation (6.6.5) with c2
φ ≈ 1 we also have 2a ≈ δns/b. Hence

Equation (6.6.6) lead to the inequality
r < 2δ2

ns. (6.6.7)

Inserting δns = 0.032 gives r < 0.002.
The initial value of the inflaton field can be determined in the usual way by using that the final

value of the inflaton field is given by ε
(

φ f

)
= 1 and the requirement that the slow roll era produces N

e-folds. This can be calculated analytically, but the expressions are not nice. We shall therefore follow a
similar procedure as that of Hebecker et al. [124], and find the initial value of the inflaton field from
dr/dφ = 0. This gives cφ = β leading to

rmax =
8a2b

1− a2 . (6.6.8)

Hebecker et al. have used a = − 0.1. With Equation (6.6.1) this corresponds to φ = (π/2.14)M
close to the value chosen by Hebecker et al. The slow roll parameters and the spectral parameters are
evaluated with this value of the inflaton field to first order in cφ and a (Ross et al. [122]). This gives

ε ≈ a2b
2

, η = − ab cφ , ξ = − 2 b ε, (6.6.9)

and
δns ≈ −2 η , r ≈ 8 a2b , αS ≈ 2a2b2. (6.6.10)

and hence,
αS ≈ (1/4)b r. (6.6.11)

With the values a = − 0.1 , b = 1 , r = 0.05, we obtain αS ≈ 0.0125 which is a somewhat larger
than the values preferred by the Planck 2015 results.

Equation (6.6.4) can be written

b = 2 δns −
3
8

r + 4
αS
r

. (6.6.12)

This expression is valid both for the original natural inflation model and the hybrid natural
inflation model. But the expression (6.5.9) for αS leading to Equation (6.5.23) for b, is only valid
for the original natural inflation model and is now replaced by the expression (6.6.12). With the
BICEP2/Planck values δns = 0.032 , r = 0.05 , αS = − 0.003 we get a negative value for b which
is not allowable. But there is a great uncertainty in the value of αS, namely αS = 0.003 ± 0.007.
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This encompasses αS = 0, so the observational data permit a value of αS close to zero, giving a positive
value of b. The BICEP2/Planck data then give b = 0.02 corresponding again to a symmetry breaking
energy larger than the Planck energy. Values b ≥ 1 corresponding to M < MP require approximately
αs > r/4. Hence taking account of the the most recent observational results, also the hybrid natural
inflation models seems to be in trouble unless αS > 0 and r < 4αs.

6.7. Higgs Inflation

Higgs inflation has recently been considered by Bezrukov et al. [125,126], by Gorbunov and
Tokareva [127] and by Zeynizadeh and Akbarieh [128] in connection with observations of spectral
properties of the cosmic microwave background radiation. Rubio [129] has given the Higgs potential as

V(φ) =


(
V0ξ2/M4

P
)(

φ̂2 − v2)2 , φ̂ << 1/ξ

V0

(
1− e−

√
2/3 φ̂

)2
, φ̂ >> 1/ξ

, (6.7.1)

where ξ is a dimensionless coupling constant with value ξ ∼ O
(
104), and v is the vacuum expectation

value of φ̂. The small field case has been discussed in Section 5.3.
Usually Higgs inflation is concerned with the large field potential in the second line of

Equation (6.7.1). It may be noted that the potential of the Starobinsky model has the same

form [97,130–132]. Multiplying by
(

1 + e−
√

2/3 φ̂
)2

/
(

1 + e−
√

2/3 φ̂
)2

and neglecting the term the

e− 2
√

2/3 φ̂ in the numerator, the Higgs potential is often approximated by

V = V0

(
1 + e−

√
2/3 φ̂

)− 2
(6.7.2)

Differentiation of the potential (4.7.2) gives

V′ = 4MPV0
ξ
√

6
h2−M2

P/ξ

h4 , V′′ = − 4V0
3ξ

h2−2M2
P/ξ

h4 , V′′′ = 8V0
3
√

6ξMP

h2−4M2
P/ξ

h4 , (6.7.3)

where h =
(

MP/
√

ξ
)

exp
(

φ̂/
√

6
)

. In the case of Higgs inflation one usually assumes that

h >> MP/
√

ξ. Hence
(

M2
P/ξ

)
/h2 << 1. One therefore approximates the derivatives of the

potential by

V′ =
4MPV0

ξ
√

6
1
h2 , V′′ ≈ − 4

3
V0

ξ

1
h2 , V′′′ ≈ 8

3
√

6
V0

ξMP

1
h2 , (6.7.4)

We then obtain

ε =
4M4

P
3ξ2

1
h4 , η = −

4M2
P

3ξ

1
h2 , ξ =

16M4
P

9ξ2
1
h4 . (6.7.5)

Hence
η = −

(
2
√

ε/3
)

, ξ = (4/3)ε = η2. (6.7.6)

Using the same approximations in the calculation of the number of e-folds we have

N ≈ − 1
M2

P

φ f∫
φ

V0

V′
dφ ≈ ξ

√
6

4M3
P

φ∫
φ f

e
√

2/3 φ̂dφ ≈ 3
4

h2 − h2
f

M2
P/ξ

. (6.7.7)

The field strength φ f at the end of the inflationary era is defined by ε
(

φ f

)
= 1, giving

h2
f =

2M2
P

ξ
√

3
. (6.7.8)
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Inserting this into Equation (6.7.7) gives

h2 =
2M2

P
3ξ

(
2N +

√
3
)

. (6.7.9)

Equation (6.7.5) then gives

ε =
3(

2N +
√

3
)2 , η = − 2

2N +
√

3
, ξ =

(
2

2N +
√

3

)2
, (6.7.10)

and Equations (4.13) and (4.4) then lead to

δns =
8N + 18 + 4

√
3(

2N +
√

3
)2 , r =

48(
2N +

√
3
)2 . (6.7.11)

Neglecting the numbers of order unity compared to N we get

ε ≈ 3
4N2 , η ≈ − 1

N
, ξ =

1
N2 , (6.7.12)

Equations (4.13), (4.15), (4.4), (4.29) and (4.43) now give

δns ≈
2
N

, nT ≈ −
3

2N2 , r ≈ 12
N2 , αS ≈ −

2
N2 , αT = − 3

N3 . (6.7.13)

Hence, with this approximation we have the relationships

N = 2/δns , r = 3δ2
ns , αS = − (1/2)δ2

ns ,
nT = − (3/8)δ2

ns = − r/8 , αT = − (3/8)δ3
ns

(6.7.14)

Inserting δns = 0.032 gives N = 62 , r = 0.003 , αS = 0005 , nT = − 0.0004 , αT = − 00001.
These are the predictions of the Higgs inflationary models, given the Planck 2015 value of nS. So far
these values are not in conflict with any observational results. The BICEP2/Planck results seem to
favor the Higgs inflationary models.

Lyth and Riotto [22] and later Drees et al. [101] and Sebastiani et al. [130] have investigated several
inflationary models with similar potentials as the one in Equation (6.7.1), for example

V(φ) = V0

(
1− e− q φ̂

)
. (6.7.15)

They assumed that the dimensionless number q is of order 1. With the same approximations as
for the Higgs potential and assuming that e−qφ̂ << 1 we then find

ε =
(

q2/2
)

e− 2 qφ̂ , η = − q2e− q φ̂ , ξ = q4e− 2 q φ̂, (6.7.16)

giving
δns = 2q2e− qφ̂ , r = 8q2e− 2qφ̂ , αs = − 2q4e− 2qφ̂. (6.7.17)

The number of e-folds is
N =

(
1/q2

)(
eq φ̂ − eq φ̂ f

)
. (6.7.18)

The value of the inflaton field as given by ε
(

φ f

)
= 1 is given by

eq φ̂ f = q/
√

2, (6.7.19)
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Hence the value of the inflaton field during the slow roll era is given by

eq φ̂ = q2N + q/
√

2 ≈ q2N. (6.7.20)

Inserting this into Equation (6.7.15) gives

δns ≈
2
N

, r ≈ 8
q2N2 , αS ≈ −

2
N2 . (6.7.21)

This leads to the consistency conditions

r ≈
(

2/q2
)

δ2
ns , αS ≈ −(1/2)δ2

ns. (6.7.22)

For this model the Planck/BICEP2 data with q = 1 give r = 0.002 , αS = 0.0005. It follows from
Equation (4.54) and (6.7.22) that for this class of inflationary models the running of the tensor-to-scalar
ratio is

α̂r =

(
1− 1

4q2

)
δns. (6.7.23)

6.8. S-Dual Inflation

This is a scenario [133] inspired by string theory. But like many other inflationary universe models
it has a certain ad hoc character with some free parameters that can be adjusted so that the model
cannot easily be falsified. Nevertheless the model has some nice mathematical properties. The potential
is given by

V(φ) =
V0

cosh φ̃
, (6.8.1)

where φ̃ = φ/M, and V0 is a free parameter. Here the mass M characterizes the energy scale where
the inflation begins. An inflationary model with this potential will be considered in Section 6.20 as an
example of tachyon inflationary models. It has recently been studied by Agarwal et al. [134].

We shall here consider the more general class of potentials

V = V0 coshp φ̃, (6.8.2)

where p is a real number. With p = 1 we have the potential

V = V0 cosh φ̃ (6.8.3)

which has been studied by Bamba et al. [65].
Calculating the slow roll parameters from the expressions (3.1) with the potential (6.8.2) gives

ε = (1/2)b p2tanh2φ̃ , η = b p
[
1 + (p− 1)tanh2φ̃

]
,

ξ = b2 p2
[
3p− 2 + (p− 1)(p− 2)tanh2φ̃

]
tanh2φ̃.

(6.8.4)

where b is given in Equation (6.5.3). Since tanh2φ̂ < 1 we have that ε <
(

p2/2
)

b. Hence, it is clear
that this class of inflationary universe models must be completed by adding a mechanism making it
possible to have a “graceful exit” from the inflationary era.

Inserting the expressions (6.8.4) into Equations (4.13), (4.15), (4.4), (4.29) and (4.43) we find that
the spectral indices of the scalar fluctuations, its running and the tensor-scalar ratio are

δns = bp
[
(p + 2)tanh2φ̃− 2

]
, nT = −bp2tanh2φ̃ , r = 8bp2tanh2φ̃,

αS = 2b2 p2(p + 2) tanh2φ̃

cosh2 φ̃
, αT = 2b2 p3 tanh2φ̃

cosh2 φ̃
.

(6.8.5)
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The expression for δns may be written

δns = bp
psinh2φ̃− 2

cosh2 φ̃
. (6.8.6)

Hence δns > 0 requires either psinh2φ̃ < 2 or p < 0. Note also that

αr =
p

2 + p
αs. (6.8.7)

Defining the end of inflation by ε
(

φ f

)
= 1 we have

bp2tanh2φ f = 2. (6.8.8)

Since tanh2φf < 1 Equation (6.8.8) leads to the requirement b > 2/p2 or M < (|p|/
√

2)Mp.
Integrating Equation (3.50) with the expression for ε in Equation (6.8.4) the number of e-folds is

N =
1

b p
ln

sinhφ̃

sinhφ̃ f
(6.8.9)

in agreement with Equation (6) of Anchordoqui et al. [133]. They have argued from this equation
that the requirement that there is roughly 50–60 e-folds of expansion during the inflationary era
implies that M > MP, i.e., that b < 1. It follows that the standard condition ε

(
φ f

)
= 1 for the final

value of the inflaton field, and a graceful exit of the slow roll era, cannot be fulfilled in this class of
inflationary models.

Note that φ̃ < φ̃ f if p < 0. The factor 1/b is the xpression for N is lacking in Equation (III.14) of
Bamba et al. [65]. It follows from Equation (6.8.9) that

sin hφ̃ = sin hφ̃ f ebp N . (6.8.10)

Inserting this equation into the first of the Equation (6.8.5) leads to

sinh2φ̃ f =
2bp + δns

bp2 − δns
e− 2b p N . (6.8.11)

which requires b > δns/p2. The last two equations give

sinh2φ̃ =
2bp + δns

p2b− δns
. (6.8.12)

Hence the inequality p sinh2φ̃ > 2 requires p > −2.
In their first example Bamba et al. have used the values N = 50 and φ̂ f ≈ 10−20 that represent the

small field regime. This leads to tanhφ̃ f ≈ sinhφ̃ f ≈ φ̃ f and cosh φ̂ f ≈ 1. Hence ε ≈
(

p2/2
)
b φ̃2

f and

η ≈ p(2p− 1)b giving ε ≈ [p/2(2p− 1)]φ̂2
f η << η and

δns ≈ −2η ≈ 2p(1− 2p)b, (6.8.13)

giving

p ≈ 1
4

(
1±

√
1− 4

δns

b

)
> 0, (6.8.14)

in conflict with the Planck data.
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It follows from the first and third of the Equation (6.8.5) that the r, δns− relationship for this class
of inflationary universe models has the form,

r =
8p

p + 2
(δns + 2bp). (6.8.15)

Solving this with respect to b gives

b =
(p + 2)r− 8pδns

16p2 , (6.8.16)

which requires

p <
2r

8δns − r
. (6.8.17)

For δns = 0.032 and r < 0.04 this gives the condition p < 0.37. The value p = 1, for example, is not
allowed by the PBK-data. The model with p = −1 must have b < 0.0185, i.e., M > 7.35Mp.

6.9. Hyperbolic Inflation

Basilakos and Barrow [135] have considered a class of models of inflation that is very similar to
S-dual inflation. They have called it hyperbolic inflation.

We shall here consider a flat universe model in this class with radiation and inflaton energy. In this
model the inflaton field has the potential

V(φ) = Asinhpφ̃, (6.9.1)

where

A = (3/2)(1− w)Ω1−p/2(1−Ω)p/2H2
0 , p =

6(1 + w)

1− 3w
, (6.9.2)

and w is the equation of state parameter of the inflaton energy and Ω its mass density parameter.
Furthermore φ̃ = φ/M, where M represents the energy scale during the slow roll era. The potential
(6.9.1) leads to the following expressions for the slow roll parameters

ε = (b/2)p2coth2φ̃ , η = bp
[
1 + (p− 1)coth2φ̃

]
ξ = b2 p2

[
3p− 2 + (p− 1)(p− 2)coth2φ̃

]
coth2φ̃

. (6.9.3)

where b = M2
P/M2. Since

∣∣cothφ̃
∣∣ > 1 this class of inflationary models does not have the exit problem

of the S-dual models. It follows from the expression (6.9.3) that

η =
2(p− 1)

p
ε + bp2 , ξ =

[
b(3p− 2) +

2(p− 1)(p− 2)
p2 ε

]
2ε. (6.9.4)

Hence the spectral parameters of the scalar fluctuations are

δns = bp
[
(p + 2)coth2φ̃− 2

]
, r = 8bp2coth2φ̃. (6.9.5)

The δns, r-relation is

r =
8p

2 + p
[δns + 2bp]. (6.9.6)

Solving this equation with respect to M we can estimate the energy scale where the inflation
begins in these models from the Planck and BICEP2 data,

M =
4p√

(2 + p)r− 8pδns
MP. (6.9.7)
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With for example p = 0.10 , δns = 0.032 , r = 0.04 Equation (6.9.7) gives M ≈ 1.7MP or
b = 0.35.

In this class of inflationary models the number of e-folds is

N =
1

bp
ln

cosh φ̃

cosh φ̃ f
. (6.9.8)

If the logarithmic factor is of order one, this requires that b is of the order b ' 1/pN and hence
M '

√
pN MP. For say p > 0.1 this gives M > 2.3 MP. Hence in order to be compatible with the

Planck/BICEP2 results the energy scale of this model must be larger than the Planck energy.
The value of the inflaton field at the end of the inflationary era is defined by ε

(
φ̃ f

)
= 1, giving

coth2φ̃ f =
2

bp2 . (6.9.9)

Hence there is a graceful exit of the inflationary era only if b < 2/p2 or M >
(

p/
√

2
)

MP which
is fulfilled in the case of large field inflation. Inserting Equation (6.9.9) into Equation (6.9.8) gives

cosh2 φ̃ =
e2bpN

1− (b/2)p2 . (6.9.10)

Inserting this into Equation (6.9.5) gives

δns = bp
p +

(
2− bp2)e− 2bpN

1 + [(b/2)p2 − 1]e− 2bpN , r =
8bp2

1 + [(b/2)p2 − 1]e− 2bpN . (6.9.11)

6.10. M-Flation

Another string theory motivated inflation model is called M-flation [39]. In this model the
potential is

V(φ) ∝ φ2(φ− µ)2, (6.10.1)

where µ > MP represent the energy per particle necessary to initiate inflation. The slow roll
parameters are

ε =
2
κ

(2φ− µ)2

φ2(φ− µ)2 , η =
1
κ

3(2φ− µ)2 − µ2

φ2(φ− µ)2 . (6.10.2)

This leads to

δns =
2
κ

3(2φ− µ)2 + µ2

φ2(φ− µ)2 , r = − 8nT =
32
κ

(2φ− µ)2

φ2(φ− µ)2 . (6.10.3)

The slow roll period ends when ε = 1. Inserting this into the first of the Equation (6.10.2) leads to
a fourth degree equation for φ f . This can be rewritten as a second degree equation by introducing a
new quantity representing the inflaton field, y ≡ φ(φ− µ), i.e., (2φ− µ)2 = 4y + µ2. Considering the
region φ > µ we have y > 0. Then the solution of the equation for φ f is

y f = 4M2
P

(
1 +
√

1 + x/8
)

, x = (µ/MP)
2. (6.10.4)

Expressing the number of e-folds in terms of y we obtain

N = κ

φ∫
φ f

V
V′

dφ =
κ

8

(
y− y f +

µ2

4
ln

4y + µ2

4y f + µ2

)
. (6.10.5)
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It follows from Equation (6.10.3) that

r =
16
3

(
δns −

2
κ

µ2

y2

)
. (6.10.6)

Hence, a prediction of the M-flation model is

r <
16
3

δns. (6.10.7)

With the Planck value δns = 0.032 this gives r < 0.17. In terms of y the expression (6.10.3) for δns

takes the form

δns = 8 M2
P

3y + µ2

y2 . (6.10.8)

Solving this equation with respect to y we get

y =
12 M2

P
δns

(
1 +

√
1 +

1
18

δns x

)
. (6.10.9)

Inserting this into Equation (6.10.6) we obtain

r =
16
3

δns

1− (1/72)δnsx(
1 +

√
1 + (1/18)δnsx

)2

. (6.10.10)

The function (6.10.10) is plotted in Figure 7 for δns = 0.032.
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Figure 7. The predicted values of the tensor-to-scalar ratio r by the M-flation model are here shown by
plotting r as a function of x = µ2/M2

P for 0 < µ < 100 MP.

The expression (6.10.10) gives lim
x→∞

r = 4δns. Hence with the Planck value of δns this inflationary

model predicts that r > 0.128 which is larger than the values allowed by the BICEP2/Planck 2015 result.

6.11. Supergravity Motivated Inflation

Kallosh et al. [79,132,136] have studied a class of inflationary models motivated from supergravity,
which they call α− attractor models. One version has potential

V(φ) = V0αp/2tanhpφ̃ , M = MP
√

6α, (6.11.1)
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where φ̃ = φ/M, p is an arbitrary constant, and M represents the characteristic energy per particle at
the beginning of the inflationary era. The parameter α can take any positive value. With the inflaton
potential (6.11.1) the spectral index nS and the tensor-to-scalar ratio are given by

δns = 4bp
p + 2 cosh

(
2φ̃
)

sinh2(2φ̃
) , r =

32bp2

sinh2(2φ̃
) , (6.11.2)

where b = M2
P/M2, and φ = φ(N) is the inflaton field at the beginning of the slow roll era, N e-folds

before it ends. Gong and Shin [137] have considered models with p = 2 in this class of models and
called them ‘natural cliff inflation’. In this case the expressions (6.11.2) lead to the δns, r− relationship

r =
4δns

1 + 8b/δns
. (6.11.3)

For the Planck 2015 value δns = 0.032 this gives r < 4δns = 0.128. Equation (6.3.11) may be written

b =
δns

8

(
4

δns

r
− 1
)

. (6.11.4)

Inserting δns = 0.032 , r = 0.04 gives b = 0.009 or M ≈ 10 MP.
The number of e-folds is

N = κ

φ∫
φ f

V
V′

dφ =
1

4bp

[
cosh

(
2φ̃
)
− cosh

(
2φ̃ f

)]
. (6.11.5)

The end of this era is determined by ε
(

φ f

)
= 1. This gives

sinh
(

2φ̃ f

)
=
√

2b p. (6.11.6)

Inserting Equations (6.11.4) and (6.11.5) into the expressions (6.11.2) leads to

δns =
2N+(3/2)α+(1/p)

√
3α(3α+p2)

N2+(N/p)
√

3α(3α+p2)+(3/4)α
,

r = 12α

N2+(N/p)
√

3α(3α+p2)+(3/4)α
.

(6.11.7)

For α << N and p << N the expressions (4.11.6) reduce to

δns =
2
N

, r =
12α

N2 . (6.11.8)

In this case the model allows small values of r in agreement with BPK-results. For α >> N2 and
α >> p2 we get

δns ≈ 2
p + 2

p + 4N
, r =

16p
p + 4N

. (6.11.9)

These are the same predictions as those of chaotic inflation in Equation (6.1.36), and are ruled out
by the BICEP2/Planck 2015 results.

The α− inflation models have more recently been discussed by Kallosh and Linde [138]. Among
others they considered a model where the inflaton field has a potential (6.1.11) with p = 2. They also
considered an α− attractor model with a potential similar to the one in Equation (6.7.1) for the Higgs
inflation, namely

V(φ) = V0

(
1− e−

√
2/3α φ̂

)2
. (6.11.10)
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In this case and making the approximation that we can put V ≈ V0 in the numerators of the
expressions for the slow roll parameters, the spectral parameters nS and r are

δns =
8N + 18α + 4

√
3α(

2N +
√

3α
)2 , r =

48α(
2N +

√
3α
)2 . (6.11.11)

which reduces to Equation (6.7.11) for α = 1. These expressions give

r =
24α

4N + 9α + 2
√

3α
δns (6.11.12)

Inserting N = 50, r = 0.04, δns = 0.032 gives α = 22.4. However, the mentioned approximation
is only valid when

√
2/3α (φ/MP) >> 1, i.e., when α << (2/3)(φ/MP)

2. Hence the expressions
(6.11.10) are not valid for large values of α.

Let us calculate the corresponding expressions valid for large values of α. The slow roll parameters
ε and η are

ε =
4

3α

1(
e
√

2/3α − 1
)2 , η = − 4

3α

e
√

2/3α − 2(
e
√

2/3α − 1
)2 . (6.11.13)

The spectral parameters nS and r are

δns =
8

3α

e
√

2/3αφ + 1(
e
√

2/3αφ − 1
)2 , r =

64
3α

1(
e
√

2/3αφ − 1
)2 . (6.11.14)

These expressions lead to the following δns, r− relation

r = 4δns − (8/3α)
(√

1 + 3αδns − 1
)

. (6.11.15)

This relationship is plotted as a function of α in Figure 8 for 1 ≤ α ≤ 1000 with δns = 0.032.
Note that limr

α→∞
= 4δns = 0.128.
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6.12. Goldstone Inflation

Lyth and Riotto [22] write that the pseudo-Goldstone boson, coming from instanton effects, is
typically of the form

V(φ) = V0 cos2 φ̂, (6.12.1)
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where φ̂ = φ/M and M is a mass significantly bigger than the Planck mass, MP. With this potential
the slow roll parameters are

ε = 2b tan2 φ̂ , η = ε− 2b , b = (MP/M)2. (6.12.2)

The final value of the inflaton field at the end of the slow roll era is given by

tan2 φ̂ f = 1/2b. (6.12.3)

The number of e-folds is

N =
1
2b

ln
sin φ̂ f

sin φ̂
, (6.12.4)

where φ is the value of the inflaton field at a point of time with N e-folds before the end of the slow
roll era. Inserting the expression (6.12.3) for φ f into Equation (6.12.4) gives for the inflaton field at this
point of time

tan2 φ̂ =
1

(1 + 2b)e4bN − 1
. (6.12.5)

Inserting this into the expressions (4.11.2) for ε and η and using Equations (3.4) and (3.13) give

δns = 4b
(1 + 2b)e4bN + 1
(1 + 2b)e4bN − 1

, r =
32b

(1 + 2b)e4bN − 1
. (6.12.6)

These expressions for nS and r lead to

b = (1/16)(4δns − r). (6.12.7)

The BICEP2/Planck values δns = 0.032 and r = 0.05 gives b = 0.005 or M ≈ 14MP, which means
that this is a large field inflation model, possibly depending upon conditions outside the region of
applicability of the general theory of relativity. It follows from Equations (4.29), (6.12.5) and (6.12.6) that

αS = − r
32

(r + 32b) =
r

32
(r− 8 δns). (6.12.8)

From Equation (3.46) we have
αr = − 4αs. (6.12.9)

With the BICEP2/Planck values of r and δns this model gives αS = − 0.0003 and αr = 0.0012.
Solving the last of the Equations (6.12.5) with respect to N leads to

N =
1
4b

ln
r + 32b

r(1 + 2b)
. (6.12.10)

Inserting the values of r and b gives N = 72.
It may be noted that this model is mathematically identical to one of the natural inflation models.

6.13. Coleman-Weinberg Inflation

The Coleman-Weinberg (CW) potential [139] has the form [105,140,141]

V(φ) = V0

{
φ̂4
[

ln φ̂− 1
4

]
+

1
4

}
, (6.13.1)

where φ̂ = φ/M. The shape of this potential is similar to that of the symmetry breaking potential in
Figure 2, and M is the value of the field where the potential has a minimum. We shall assume that this
value of the field is much less than the Planck mass, M << MP.
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Two types of inflation are possible when the inflaton field has the CW potential: the large field
inflation (LFI) and the small field inflation (SFI). The LFI is similar to polynomial inflation with n = 4.
We shall here take a closer look at the SFI branch of the CW inflation.

We then assume that φ << M. The derivatives of the potential (6.13.1) are

V′ =
4V0

M
φ̂3 ln φ̂ , V′′ =

4V0

M2 φ̂2(1 + 3 ln φ̂
)

, V′′′ =
4V0

M3 φ̂
(
5 + 6 ln φ̂

)
. (6.13.2)

Since |ln(φ/M)| = |ln(M/φ)| >> 1 we can approximate the second and third derivatives by

V′′ ≈ 12V0

M2 φ̂2 ln φ̂ , V′′′ ≈ 24V0

M3 φ̂ ln φ̂ . (6.13.3)

Using these expressions together with the approximation V ≈ V0/4 we obtain for the slow
roll parameters

ε = 128 b φ̂6(ln φ̂
)2 , η = 48 bφ̂2 ln φ̂ , ξ = 16

√
6 b φ̂2 ln φ̂ . (6.13.4)

where b = MP/M. Note that η, ξ < 0 since φ < M. We see that ε << |η|. Hence we can approximate
nS with

δns ≈ − 2η. (6.13.5)

The e-folding number is given by

N =
1

M2
P

φ∫
φ f

V
V′

dφ ≈ µ4

16 M2
P

φ∫
φ f

dφ

φ3 ln(φ/M)
. (6.13.6)

During slow roll the quantity ln(φ/µ) changes so slowly that one can approximate the integral by
considering it as a constant. This gives

N ≈ − µ4

32 M2
P

[
1

φ2 ln φ̂

]φ

φ f

. (6.13.7)

Using the expression for η in Equation (6.13.4) we have

N ≈ 3
2

 1
|η| −

1∣∣∣η f

∣∣∣
. (6.13.8)

For this inflationary model the end of the slow roll era is given by
∣∣∣η f

∣∣∣ = 1. Since 1/|η| >> 1 we
we can neglect the last term inside the parenthesis, and obtain

η ≈ − 3
2 N

. (6.13.9)

Equations (6.13.5) and (6.13.9) gives

δns ≈
3

2 N
. (6.13.10)

Inserting the Planck 2015 value of nS gives N = 47. From the expressions (6.13.4) for ε and η,
and using Equation (6.13.5) together with Equation (4.4) we obtain

r ≈ 27
3456

1
b N3

1
ln φ̂

=
δ3

ns
432 b ln φ̂

. (6.13.11)
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Hence this inflationary model predicts that r ≈ 0. Equations (3.21) and (6.13.11) lead to

αS = − (2/3)δ2
ns, (6.13.12)

giving αS = − 0.0007.

6.14. Kähler Moduli Inflation

The Kähler moduli inflation was introduced by Conlon and Quevedo [142] and is characterized
by a potential [70]

V(φ) = V0

(
1− αφ̂4/3e−β φ̂4/3

)
. (6.14.1)

It is assumed that βφ̂4/3 >> 1 and hence that αφ̂4/3e−β φ̂4/3
<< 1. We can therefore approximate

the slow roll parameters ε and η by Equation (6.2.5). This gives

ε = (8/9κ)α2φ̂2/3e−2βφ̂4/3
(

βφ̂4/3 − 1
)2
≈ (8/9κ)α2β2φ̂−2/3

(
φ̂2e−β φ̂4/3

)2

η ≈ (4/3)αβ
[
(5/3)φ̂2/3 − (4/3)βφ̂2

]
e−βφ̂4/3 ≈ − (16/9)αβ2φ̂2e−βφ̂4/3

. (6.14.2)

The number of e-folds during the slow roll era is

N =

φ̂∫
φ̂ f

1√
2κε

dφ̂ ≈ 3
4αβ

φ̂∫
φ̂ f

eβ φ̂4/3

φ̂5/3 dφ̂. (6.14.3)

Introducing a variable x = βφ̂4/3 we find that for βφ̂4/3 >> 1 this gives approximately

N ≈ 9
16αβ2

 eβ φ̂4/3

φ̂2 − eβ φ̂4/3
f

φ̂2
f

. (6.14.4)

In this model the inflaton field is assumed to be much less at the end of the inflationary era than
at the beginning, φ f << φ. Hence

N ≈ 9
16αβ2

eβ φ4/3

φ2 , (6.14.5)

giving
ln N = βφ̂4/3 + ln

(
9/16αβ2φ̂2

)
≈ βφ̂4/3. (6.14.6)

Substituting from Equations (6.14.5) and (6.14.6) into Equation (6.14.2) gives

ε(N) ≈ 9

32β3/2N2
√

ln N
, η(N) ≈ − 1

N
. (6.14.7)

Hence ε << η, so that

δns ≈ − 2η =
2
N

. (6.14.8)

With δns = 0.032 this gives N = 62. For β ≈ 1 this gives a very small value of the
tensor-to-scalar ratio,

r ≈ 9

2N2
√

ln N
≈ 0.0003 (6.14.9)

which is permitted by the BICEP2/Planck result.
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With a redefinition φ̂4/3 → φ̂ the potential (6.14.1) takes the form

V(φ) = V0

(
1− α φ̂ e−β φ̂

)
. (6.14.10)

A similar model considered by Garcia-Bellido and Roest [70] has potential

V = V0

(
1− α φ̂ eφ̂

)
(6.14.11)

with αφ̂ >> 1. This form of the Kähler moduli inflation was also considered by Martin et al. [33].
Then the slow roll parameters are

ε ≈ (1/2)α2φ̂2e−2φ̂ , η ≈ − α φ̂ e− φ̂. (6.14.12)

The number of e-folds is

N =
1
α

φ̂∫
φ̂ f

eφ̂

φ̂
dφ̂ ≈ 1

α
Ei
(
φ̂
)
, (6.14.13)

where Ei
(
φ̂
)

is the exponential integral, and we have neglected the lower integration limit.
This function has a series expansion for large φ

Ei
(
φ̂
)
= eφ̂

(
1
φ̂
+

1
φ̂2 +

2
φ̂3 + · · ·

)
. (6.14.14)

Hence, we have approximately

N ≈ 1
α

eφ̂

φ̂
. (6.14.15)

Inserting this into Equation (6.14.2) leads to

ε ≈ 1
2N2 , η ≈ − 1

N
, (6.14.16)

giving

δns ≈
2
N

, r ≈ 8
N2 , αS = − 2

N2 . (6.14.17)

Again the Planck result δns = 0.032 gives N = 62. Hence r = 0.002 and αS = − 0.0005.

6.15. Hybrid Inflation

Hybrid inflation involves two fields, the so-called water fall field, χ, and the inflaton field, φ.
The potential is given by [143]

V(χ, φ) = g2
(

M2 − χ2

4

)2

+
m2

2
φ2 +

λ2

4
χ2φ2. (6.15.1)

where M, m are mass parameters, and g, λ are dimensionless constants.
Rehman et al. [105] have revisited hybrid inflation in light of WMAP5 data. We shall here follow

their exposition. The global minima of the potential lie at (χ, φ) = (±2 M, 0). For φ >
√

2 gM/λ the
only minimum of the potential lies at χ = 0. In this region the potential reduces to

V(φ) = V0

(
1 + φ̃2

)
, φ̃ = mφ/

√
2V0 , V0 = g2M4. (6.15.2)

Note the similarity of this potential with the Hilltop potential (6.2.1). The only essential difference
is the sign inside the parenthesis.
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Slow roll inflation happens as the inflaton field φ rolls down the χ = 0 valley. Upon reaching
the waterfall inflation ends abruptly as the inflaton field rapidly falls into one of the global minima.
This scenario is termed “hybrid” because the vacuum energy density V0 is provided by the waterfall
field χ, while φ is the slowly rolling inflaton field.

With the potential (6.15.2) the slow roll parameters are

ε =
η0φ̃2(

1 + φ̃2
)2 , η =

η0

1 + φ̃2
, (6.15.3)

where η0 = η
(
φ̃ = 0

)
= m2M2

P/V0. The spectral index δns and the tensor-to-scalar ratio r are

δns = 4η0
φ̃2 − 1/2(
1 + φ̃2

)2 , r =
16η0φ̃2(
1 + φ̃2

)2 . (6.15.4)

It follows that

r =
4 δns φ̃2

φ̃2 − 1/2
, (6.15.5)

or
φ̃2 =

r/2
r− 4 δns

. (6.15.6)

This requires r > 4 δns = 0.128 which is just the opposite to the corresponding Hilltop requirement.
Hence this model seems to be ruled out by the BICEP2/Planck result.

It follows from Equations (4.48) and (6.15.5) that the running of the tensor-to-scalar ratio is

αr =
φ̃2 − 1

2φ̃2 − 1
δns, (6.15.7)

which gives

φ̃2 =
αr − δns

2αr − δns
, (6.15.8)

which requires αr > δns or αr < δns/2. This, too, is opposite to the corresponding condition
of the Hilltop model. Both models have difficulties in satisfying all the observational constraints
simultaneously.

6.16. Brane Inflation

Several authors have considered 5-dimensional universe models where the inflationary era is
due to a collision between branes [144–148]. This induces an effective modified gravity theory in a
4-dimensional world. We shall here follow the slow roll description as presented by Maartens and
Koyoma [149].

It is usual to apply the Hubble slow roll parameters in the theory of brane inflation. However, there
are some inaccuracies in the literature concerning the slow roll parameters of the brane inflation.
Therefore I will here deduce the brane version of the connection between the potential slow
roll parameters as defined in Equation (3.1) and the Hubble slow roll parameters as defined in
Equation (3.7).

The brane version of the Friedmann Equation (2.1) takes the form

H2 =
κ

3

[
1
2

.
φ

2
+ V

(
1 +

V
2λ

)]
. (6.16.1)
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where λ is the tension of each brane. Differentiating this equation and using Equation (2.2) which is
unchanged in brane cosmology, give the brane generalization of Equation (2.12)

.
H = −κ

.
φ

2

2

(
1− V V′

3λH
.
φ

)
. (6.16.2)

Using that
.

H = V′
.
φ we obtain the brane version of Equation (2.5)

H
.
φ =

V V′

3λ
− 2

κ
H H′. (6.16.3)

Inserting this into the previous equation gives

.
H = − (κ/2)

.
φ

2

1− κ
6λ

V V′
H H′

. (6.16.4)

Inserting Equation (6.16.2) into the first Equation (3.12) we find the brane version of the first
Hubble slow roll parameter

εHB =
2
κ

(
H′

H

)2

− V V′ H′

3λ H3 , (6.16.5)

which generalizes Equation (3.7).

Using the slow roll approximation to express εHB in terms of V and V′ we may neglect
.
φ

2
in

Equation (6.16.1) which then reduces to

H2 =
κ

3
V
(

1 +
V
2λ

)
. (6.16.6)

This gives

HH′ =
κ

6

(
1 +

V
λ

)
V′. (6.16.7)

Inserting this into Equation (6.16.5) leads to

εHB =

[
1 + V/λ

(1 + V/2λ)2

]
ε , (6.16.8)

where ε is defined in Equation (3.1). This is in agreement with the result of Maartens and Koyoma [149].
At low energies, V << λ, the brane Hubble slow roll parameter reduce to the standard form,

εHB ≈ ε, but at high energies, V >> λ, it takes the form

εHB ≈ (4λ/V)ε . (6.16.9)

Hence in this limit εHB << ε.
Maartens and Koyoma have taken Equation (3.13) as the definition of ηH . Using Equation (2.2)

we then have

ηH = 3 +
V′

H
.
φ

. (6.16.10)

Inserting the brane expression (6.16.3) for H
.
φ we get

ηHB =
H H′ − κ

6

(
1 + V

λ

)
V′

H H′ − κ
6λ V V′

. (6.16.11)
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Note that the slow roll Equation (2.15) gives ηHB = 0 corresponding to
..
φ = 0. In order to express

ηHB in terms of η and ε we need a more accurate calculation.
Solving Equation (2.2) with respect to

.
φ, differentiating with respect to time and using the

expressions for ηHB and εHB, we obtain

− H
.
φ ηHB = − V′

3
εHB −

V′′
.
φ

3H
−

...
φ

3H
+

1
3

H
.
φ εHB ηHB. (6.16.12)

We now use the slow roll approximation in the following way. It is assumed that
...
φ is small to the

second order in the slow roll parameters and can be neglected. Also the last term is small to the second
order. Furthermore assuming that

...
φ is small to the first order in the slow roll parameters, we make

only a second order error by neglecting
...
φ in Equation (2.2) so that we can use the approximation

H
.
φ = −V′/3 on the left hand and in second term on the right hand side. This gives

ηHB =
V′′

3H2 − εHB. (6.16.13)

Again we make only a second order error by using Equation (6.16.6) in this equation, giving

ηHB =
V′′

κV
(

1 + V
2λ

) − εHB. (6.16.14)

Using the definition (3.1) of η and Equation (6.16.8) this may be written,

ηHB =
η

1 + V
2λ

−
1 + V

λ(
1 + V

2λ

)2 ε, (6.16.15)

which is different from the corresponding Equation (6.16.8) in Maartens and Koyoma [149]. At low
energies, V << λ, we have ηHB ≈ η − ε in agreement with Equation (3.22) since ε ≈ εH . At high
energies, V >> λ, Equation (6.16.15) gives

ηHB ≈
2λ

V
(η − 2ε). (6.16.16)

Hence, in this limit ηHB has much smaller values than η and ε. With the polynomial potential
above we obtain

εHB ≈
8λ

σφ4 , εHB ≈
−4λ

σφ4 . (6.16.17)

From Equations (4.20), (6.16.9) and (6.16.16) we have

δns ≈
4λ

V
(6ε− η). (6.16.18)

The number of e-folds during inflation is

N = κ

φ∫
φ f

V
V′

(
1 +

V
2λ

)
dφ. (6.16.19)

For V >> λ this reduces to

N ≈ κ

2λ

φ∫
φ f

V2

V′
dφ. (6.16.20)
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Let us consider polynomial inflation with potential given in Equation (6.1.1). The low energy
regime is similar to ordinary chaotic inflation as described in Section 6.1, so we shall here consider the
high energy regime with V >> λ. Then Equation (6.16.20) gives

N =
σM4

P
2p(p + 2)λ

[(
φ

MP

)p+2
−
(

φ f

MP

)p+2
]

. (6.16.21)

Assuming that that the inflation ends at a much lower value of the field than the initial value, we
can neglect the last term, which gives(

φ

MP

)p+2
=

2p(p + 2)λN
σM4

P
. (6.16.22)

Differentiating the potential we get

ε =
p2M2

P
2φ2 , η =

p(p− 1)M2
P

φ2 . (6.16.23)

Inserting this into Equation (6.16.18) gives

δnsB ≈
4λp(2p + 1)

σ M4
P

(
MP
φ

)p+2
. (6.16.24)

From Equations (6.15.19), (6.16.22) and (6.16.24) we get

εHB ≈
p

p + 2
1
N

, ηHB ≈ −
1

(p + 2)N
, δnsB ≈

2(2p + 1)
p + 2

1
N

(6.16.25)

in agreement with the results of Okada and Okada [148].
The Brane inflation models have a tensor-to-scalar ratio [150]

rB = 24εHB, (6.16.26)

giving

rB =
24p

p + 2
1
N

. (6.16.27)

The relationship between the tensor-to-scalar ratio and the scalar frequency index is

rB =
12p

2p + 1
δns, (6.16.28)

or
p =

rB
2(6δns − rB)

. (6.16.29)

It follow from Equations (6.16.26) and (6.16.28) that

rB = 8
(

δns −
1
N

)
, (6.16.30)

With δns = 0.032 , N = 50 the chaotic brane inflation model predicts rB = 0.096. With these
values of δns and rB Equation (6.16.28) gives p = 0.5.

It follows from Equations (4.29) and (6.15.25) that the running of the spectral indices are

αSB ≈
2(2p + 1)N

p + 2
1

N2
. (6.16.31)
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For 0 < p < ∞ this gives 0.00066 < αSB < 0.0026.

6.17. Fast Roll Inflation

H. Motohashi, A. A. Starobinsky and J. Yokoyama [107] have investigated a class of inflationary
universe models given by a potential similar to that of hybrid inflation, but with the trigonometric
functions replaced by hyperbolic functions,

V(φ) = (1/2)M2M2
P

[
6 + α− α cosh

(√
2(3 + α) φ̂

)]
= M2M2

P

[
3− αsinh2

(√
3 + α

2
φ̂

)]
. (6.17.1)

Essentially the same model was considered by Santos and Moraes [151]. Here α is a free parameter
of this class of models that interpolate between α = 0 for a flat potential and α ' − 3 for the standard
slow roll approximation. Furthermore they make the ansatz,

..
φ = −(3 + α)H

.
φ. (6.17.2)

Integration of this equation gives a relation between the scale factor and the time derivative of the
inflaton field.

a3+α
.
φ = K1, (6.17.3)

where K1 is an integration constant. Comparison of Equations (2.5) and (6.17.2) gives

α H
.
φ = V′. (6.17.4)

Substituting from Equation (2.13) for
.
φ gives

2 α M2
P H H′ = − V′. (6.17.5)

Integration leads to
α M2

P H2 = −V + K2. (6.17.6)

Determining the integration constant from H(0) = M gives K2 = (3 + α)M2
P M2. Then the Hubble

parameter may be written as

H(φ) = M cosh

(√
3 + α

2
φ̂

)
. (6.17.7)

The constant M represents the energy scale at the beginning of the inflationary era when the slow
roll parameters are evaluated.

Differentiating H and inserting the resulting expression for H′ into Equation (2.13) gives

.
φ = −

√
2(3 + α)M MPsinh

(√
3 + α

2
φ̂

)
. (6.17.8)

Inserting this expression into Equation (6.17.3) and choosing K1 = −MP M
√

2(3 + α) gives the
scale factor in terms of the inflaton field

a(φ) = sinh−1/(3+α)

(√
3 + α

2
φ̂

)
. (6.17.9)

Integration of Equation (6.17.8) gives

tanh

(
1
2

√
3 + α

2
φ

MP

)
= Ke− (3+α) M t. (6.17.10)
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where K is an integration constant. Hence, the inflaton field decreases with time and limφ
t→∞

= 0. With the

initial condition φ(0) = ∞ we get K = 1. Then the inflaton field as a function of time can then be
written in several useful ways,

sinh
(√

(3 + α)/2 φ̂
)
= 1/sinh[(3 + α)Mt] ,

cosh
(√

(3 + α)/2 φ̂
)
= coth[(3 + α)Mt] ,

tanh
(√

(3 + α)/2 φ̂
)
= 1/ cosh[(3 + α)Mt] .

(6.17.11)

Inserting the first of these expressions into Equation (6.17.9) gives the scale factor as a function
of time,

a(t) = sinh1/(3+α)[(3 + α)Mt], (6.17.12)

and inserting the second of the expressions (6.17.11) into Equation (6.17.7) gives the Hubble parameter
as a function of time

H(t) = M coth[(3 + α)Mt]. (6.17.13)

Note that for α = − 3/2 the scale factor of this class of inflationary models has the same
time dependence,

a(t) = sinh2/3[(3/2)Mt], (6.17.14)

as that of the standard ΛCDM universe model dominated by dust and LIVE [152].
The horizon-flow slow roll parameters εn can now be calculated from the definition (3.63) and the

expression (6.17.13) for the Hubble parameter, giving

ε1 = εH =
3 + α

cosh2[(3 + α)Mt]
=

3 + α

1 + a2(3+α)
, ε2 = −2(3 + α)tanh2[(3 + α)Mt], (6.17.15)

correcting a minor printing error in [107] in the expression for ε2. For n ≥ 1 we get

ε2n = 2ε1 − 2(3 + α) , ε2n+1 = 2ε1. (6.17.16)

Hence lim
t→∞

ε2n+1 = 2lim
t→∞

ε1 = 0 , lim
t→∞

ε2n = − 2(3 + α). Thus, as pointed out by

Motohashi et al. [107], the even “slow roll” parameters are not small in these inflationary models.
The initial values of the slow roll parameters in the inflationary era are ε1(0) = 3 + α, ε2(0) = 0.

Inserting this into Equation (4.57) gives

δns = 2(3 + α) , r = 8δns , αS = − 6 δ2
ns , αT = 2 δ2

ns. (6.17.17)

With the Planck 2015 value δns = 0.032 we get r = 0.256 , αS = − 0.006 , αT = 0.002. Also we
then have α = − 2.98, and the quantity 3 + α appearing in many of the expressions above, has a small
value, 3 + α = 0.02. Then the potential (6.17.1) is close to the constant potential case represented by a
cosmological constant. In this case also the even slow roll parameters are rather small, so the rolling is
not so fast after all. Unfortunately this nice model is ruled out by the BKP-data due to the high value it
predicts for r.

We shall now show that by taking the number of e-folds into consideration we arrive at a
very similar set of predictions. Inserting the expression (16.17.13) for the Hubble parameter into
Equation (3.62), performing the integration gives and utilizing Equation (16.17.11), leads to

N =
1

3 + α
ln

sinh
[√

(3 + α)/2 φ̂
]

sinh
[√

(3 + α)/2 φ̂ f

] . (6.17.18)
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Equation (6.17.15) shows that ε1 < 3 + α, so with the Planck data the final value of the inflaton
field cannot be given by the usual condition ε1

(
φ f

)
= 1. In their diagrams Motohashi et al. (2014)

have considered the model during the time interval from t = 0 until t = 2/M. Hence we determine φ f
from the first expression in Equation (6.16.11) with M t = 2, giving

sinh

(√
3 + α

2
φ̂ f

)
=

1
sinh[2(3 + α)]

. (6.17.19)

Inserting this into Equation (6.17.18) we get

sinh

(√
3 + α

2
φ̂ f

)
=

e(3+α)N

sinh[2(3 + α)]
, (6.17.20)

and further inserting this into Equation (6.17.15) finally gives

ε1 =
3 + α

1 + e−2(3+α)Nsinh2[2(3 + α)]
. (6.17.21)

For 3 + α = 0.02 we have sinh2[2(3 + α)] = 0.0016, and hence for N = 50 we then get
e−2(3+α)Nsinh2[2(3 + α)] = 2.2 · 10− 4 leading to nearly the same predictions of the spectral parameters
as in Equation (6.17.17).

It seems natural now to construct a hybrid natural inflationary universe model with potential
(6.5.1) instead of (6.17.1). Then the hyperbolic function in Equation (6.17.7) would be replaced by a
trigonometric function. However, it may be shown that all models of this type have a negative Hubble
parameter. Hence, they are contracting universe models.

6.18. Running Mass Inflation

This is a supersymmetry motivated class of inflationary models. The simplest version has the
potential [153,154]

V(φ) = V0

[
1− φ2

M2

(
ln

φ

φ0
− 1

2

)]
. (6.18.1)

Here V0, M and φ0 are three free parameters, M represents an energy scale and φ = φ0 is an
extremum of V(φ). Defining φ̂ = φ/φ0 , b = (MP/M)2, the slow roll parameters may be written as

ε = 2b2
(

φ

MP

)2(
ln φ̂

)2 , η = −2b
(
1 + ln φ̂

)
, ξ = 4b2 ln φ̂. (6.18.2)

Note that η < 0. The expressions (6.18.2) give

δns = 4b

[
1 + ln φ̂ + 3b

(
φ

MP

)2(
ln φ̂

)2
]

, r = 32b2
(

φ

MP

)2(
ln φ̂

)2. (6.18.3)

The observed values of δns and r can be used to restrict the parameter M and the field strenth φ of
this class of models. Inverting the expressions for δns and r we get

ln φ̂ =
δns − 3

8 r− 4b
4b

,
(

φ

MP

)2
=

r

2
[
δns − 3

8 r− 4b
]2 . (6.18.4)

Hence it is necessary that

b <
1
4

[
δns −

3
8

r
]
<

1
4

δns. (6.18.5)
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Inserting the Planck/BICEP2 results gives b < 0.008 or M > 11 MP and φ < 11MP.

6.19. k-Inflation

The usual models of the inflationary era describe it as a “slow roll” era where the potential energy
of the inflaton field dominates over its kinetic energy and drives an accelerated and nearly exponential
expansion of the universe.

In 1999 V. F. Mukhanov and coworkers [155,156] introduced a string theory inspired class of
inflation models where the kinetic energy of the inflaton field, i.e., the square of the time derivative of
the scalar field, drives the accelerated expansion. It was called k-inflation.

In this theory there appears a new parameter, cs, the velocity of the sound waves in the perturbed
inflaton field. One then defines a quantity representing the ratio of the velocity of the sound waves
and the ratio of the cosmic expansion,

s ≡ (ln cs)
·

(ln a)·
=

.
cs

Hcs
. (6.19.1)

The expression for the scalar tensor index, as given in Equation (4.56), is generalized to [157],

δns = 2ε1 + ε2 + s. (6.19.2)

Lorenz et al. [158] have shown that to lowest order the tensor to scalar ratio is

r = 16csε1. (6.19.3)

From the relationship (4.15) with ε1 ≈ ε we then have

nT = r/8cs. (6.19.4)

Tsjujikawa has discussed a model of this type with

δns =
24c2

s
1 + 3c2

s
, r =

192c2
s

1 + 3c2
s

. (6.19.5)

For this model the δns,r− relationship is r = 8 δns, and the Planck 2015 value δns = 0.032 gives
r = 0.256 which is too large according to the Planck/BICEP2 data.

6.20. Dirac-Born-Infield (DBI) Inflation

This is a string theory inspired class of inflationary models. We shall here only summarize the
results of Li and Liddle [157] concerning the spectral parameters of such models. They considered
a class of DBI-inflationary models with polynomial potential V ∝ φp and deduced the following
expressions for the scalar spectral index and the tensor-to-scalar ratio,

δns =

(
1 +

p
β

)
1
N

, r =
8p
βN

, β =
1
2

(
1− c2

s

)
p + 1 + c2

s . (6.20.1)

Here cs is the sound velocity in the cosmic plasma. It follows from these expressions that

r = 8
(

δns −
1
N

)
. (6.20.2)

The running of the tensor-to-scalar ratio is

Tr = 1/N. (6.20.3)
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With δns = 0.032 , N = 50 we get r = 0.096 and Tr = 0.02. These predictions are independent of
the value of p. Solving the last expression in Equation (5.21.1) with respect to c2

s we get

c2
s =

2β− 2− p
2− p

. (6.20.4)

Hence values of p between 2 and 2β− 2 are not allowed. Further observational restrictions of the
DBI-models have been discussed by Tsujikawa [159].

6.21. Fluxbrane Inflation

Taking into account radiative corrections Martin et al. [33] has argued that one can consider an
inflationary model where the inflaton field has the potential

V(φ) = V0
(
1 + α ln φ̂

)
. (6.21.1)

where φ̂ = κφ. This has also been considered by Lyth and Riotto [22] and is called ‘spontaneously
broken SUSY inflation. This model has also been considered by Guo and Zhang [160]. An inflation
model with this form of the potential has also been considered by Hebecker et al. [161].

In the potential (6.21.1) α is a dimensional parameter which represents the strength of the radiative
effects. It is usually assumed that α > 0 and α << 1. Hence we can use the approximations

ε ≡ 1
2κ

(
V′

V0

)2

, η ≡ 1
κ

V′′

V0
(6.21.2)

for the slow roll parameters. We then get

ε ≈ α2

2φ̂2 , η ≈ − α

φ̂2 , ξ =
2α2

φ̂4 . (6.21.3)

In this case ε << |η|, and we can approximate δns by δns ≈ − 2 η. This gives

δns ≈
2α

φ̂2 , r ≈ 8α2

φ̂2 , αS = − 6α3(2 + α)

φ̂4 . (6.21.4)

Hence the δns, r− and δns, αS− relations are

r = 4αδns , αS = − (3/2)α(2 + α)δ2
ns. (6.21.5)

It follows from these expressions that

αS = − 3r
32

(8δns + r) , αr =
(

1− α

2

)
δns. (6.21.6)

The Planck value δns = 0.032 and α << 1 we get r << δns and αr ≈ 0.032.
With the potential (6.21.1) the number of e-folds is approximately

N ≈ (1/2α)
(

φ̂2 − φ̂2
f

)
. (6.21.7)

The value of the inflaton field at the end of the slow roll era is given by ε
(

φ̂ f

)
= 1, which leads to

φ2
f = α2/2. (6.21.8)
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Hence the value of the inflaton field during the slow roll era is given by

φ̂2 = α2/2 + 2 α N ≈ 2 α N. (6.21.9)

Inserting this into Equation (6.21.4) gives

δns ≈
1
N

, r ≈ 4α

N
. (6.21.10)

With δns = 0.032 we get N = 31 which is lower than admitted in order to solve the horizon- and
flatness problems.

6.22. Mutated Hilltop Inflation

B. K. Pal et al. [162,163] have introduced a new supergravity inspired model of inflation which
they have called mutated hilltop inflation. In this model the inflaton field has potential

V(φ) = V0
[
1− 1/ cosh

(
α φ̂
)]

. (6.22.1)

Here V0 represents the typical energy scale for hilltop inflation, V1/4
0 ∼ 1016GeV, and α is a

dimensionless parameter which characterizes the energy at the beginning of the slow roll era. Using the
slow roll approximation in the form of Equation (2.61) the square of the Hubble parameter is

H2(φ) =
V0

3M2
P

[
1− 1/ cosh

(
α φ̂
)]

. (6.22.2)

Differentiating and inserting the resulting expressions into Equation (3.7), the Hubble slow roll
parameters for this model come out as

εH =
M2

Pα2

2
tanh2(αφ̂)

[cosh(αφ̂)−1]
2 ,

ηH = M2
Pα2 2−cosh2(αφ̂)

cosh2(αφ̂) [cosh(αφ̂)−1]
− εH = − M2

Pα2

2
3+2 cosh(αφ̂)

cosh2(αφ̂)

. (6.22.3)

Pal et al. considered in particular the large field case with cosh
(
αφ̂
)
≈ eα φ̂/2 >> 1 and

tanh
(
αφ̂
)
≈ 1. Then εH << ηH and the expressions for the slow roll parameters reduce to

εH ≈ 2α2e− 2αφ̂ , ηH ≈ − 2α2e− αφ̂. (6.22.4)

Hence according to Equation (4.16), in this approximation we have

δns ≈ − 2ηH = 4α2e− αφ̂ , r = 16εH ≈ 32α2e− 2αφ̂. (6.22.5)

The δns, r− relationship then takes the form

r ≈
(

2/α2
)

δ2
ns. (6.22.6)

Hence, the running of the tensor-to-scalar ratio is

Tr =

(
1− δns

4α2

)
δns. (6.22.7)

B. K. Pal et al. [162] have considered models with α ≈ 3. With the Planck/BICEP2 value
δns = 0.032 we then get a very small value for the tensor-to-scalar ratio, r = 1.1× 10−4.
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We have an approximate expression for the number of e-folds

N =
1

MP

φ̂∫
φ̂ f

dφ√
2εH

=
(

1/2α2
)(

eαφ̂ − eαφ̂ f
)

. (6.22.8)

The value of the inflaton field at the end of the slow roll era is given by εH

(
φ̂ f

)
= 1, giving

eαφ̂ f =
√

2α. (6.22.9)

Inserting this into Equation (6.22.7) gives the inflaton field during the slow roll era,

eαφ̂ = 2α2N +
√

2α ≈ 2α2N. (6.22.10)

From this equation in combination with Equation (6.22.5) we get

δns ≈
2
N

, r ≈ 8
α2N2 . (6.22.11)

With δns = 0.032 we get N = 62.5. This model is not ruled out by the Planck/BICEP2 observations.

6.23. Arctan Inflation

In a toy-model of inflation of the large field type, called arctan inflation by Drees and Erfani [101]
and by Martin et al. [33], the inflaton potential is

V(φ) = V0

(
1 +

2
π

arctanφ

)
, φ = φ/M, (6.23.1)

where the mass parameter M is assumed to be much larger than the Planck mass, M >> MP. It is also
assumed that φ >> 1, so that we can let V

(
φ
)

be approximated by 2V0 in the in the expressions of the
slow roll parameters. Defining b = (MP/M)2 we then get

ε ' b
2π2

1

φ
4 , η ' − 2b

π

1

φ
3 , ξ ' 6b2

π2
1

φ
6 . (6.23.2)

It follows that ε << |η| and hence that ε can be neglected in the expression for δns. This gives

δns '
4b
π

1

φ
3 , r ' 8b

π2
1

φ
4 , αS ' −

12b2

π2
1

φ
6 . (6.23.3)

These expressions give the relationships

r '
(

2b
π2

)1/3
δ4/3

ns , αS = − 3
4

δ2
ns. (6.23.4)

Hence

b ' π2

2
r3

δ4
ns

. (6.23.5)

With the center values δns = 0.032 and r = 0.05 of Planck 2015 and Planck/BICEP we
get M ' 24MP and αS ' − 0.0008. The value of αS is in agreement with the data so far, but
Martin et al (2013) have estimated the energy scale to be M ' 10−3MP which requires r = 5.9× 10−5.
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The number of e-folds is

N ' 1
M2

P

φ∫
φ f

2V0

V′
dφ ' π

3b

(
φ

3 − φ
3
f

)
. (6.23.6)

Assuming that φ
3
f << φ

3 the value of the inflaton field during the slow roll era is given by

φ
3 ' 3b

π
N. (6.23.7)

Inserting this into Equation (6.23.3) the spectral parameters are found to be

δns '
4

3N
, r =

(
1

9π

)2/3
b−1/3 8

N4/3 , αS = − 4
3

1
N2 . (6.23.8)

With δns = 0.032 the first of these relationships implies that the number of e-folds during the
slow roll era is N = 42 which is a little less that the optimal number for solving the horizon and
flatness problems.

6.24. Inflation with Fractional Potential

Eshagli et al. [164] have investigated an inflation model in which the inflaton field has a
fractional potential,

V(φ) = V0
αφ̂2

1 + αφ̂2 , (6.24.1)

where α is an arbitrary dimensionless constant. It is assumed that α φ̂2 >> 1 during the slow roll
era, so that the slow roll parameters can be calculated with V replaced by V0 in the numerator in the
defintions (3.1). Hence

ε ' 2
α2

1
φ̂6 , η ' − 6

α

1
φ̂4 , ξ ' 48

α2
1

φ̂8 . (6.24.2)

The slow roll era ends when the inflaton field has a value φ̂ f =
(
2/α2)1/6. The number of e-folds

during the slow roll era is

N =
α

8

(
φ̂4 − φ̂4

f

)
=

α

8

[
φ̂4 −

(
2/α2

)2/3
]

. (6.24.3)

Assuming that the last term can be neglected compared to the first the value of the inflaton field
during the slow roll parameter is φ̂ ' (8N/α)1/4. Inserting this into Equation (6.24.2) gives

ε ' 1
8
√

2α

1
N3/2 , η ' − 3

4N
, ξ ' 3

4
1

N2 . (6.24.4)

The spectral parameters are

δns '
3

2N

(
1 +

1
2
√

2αN

)
, r '

√
2
α

1
N3/2 , αS ' −

3
2

1
N2

(
1 +

1√
2αN

+
1

8αN

)
. (6.24.5)

Neglecting the last term in the expression for αS this gives the consistency conditions

r ' 8
3

(
δns −

3
2N

)
, αS ' −

1
N

(
δns +

3
8

r
)
' − 1

N

(
2δns −

3
2N

)
. (6.24.6)
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The running of the tensor-to-scalar ratio is

Tr =
2
3

δns −
1

2N
. (6.24.7)

Inserting N = 50 and δns = 0.032 gives r ' 0.005 , αS ≈ − 0.0007 and Tr = 0.01 which is
permitted by the BPK-data. The values of r and αS as functions of N are shown in Figure 9 for
δns = 0.032. Note that r > 0 requires N > 3/2δns ≈ 47.
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Figure 9. The spectral parameters r and αS as given in Equation (6.24.6).

We see that for N < 60 the tensor-to-scalar ratio is r < 0.02.
Two similar models called minimal Higgs inflation, have been investigated by Maity [165]. The first

one has the potential

V =
λ

4
φ4

1 + φ̂4 , (6.24.8)

where φ̂ = φ/M, and M is the energy scale at which the universe enters the inflationary era.
Defining again b = (MP/M)2 the potential slow roll parameters are

ε =
8b

φ̂2
(
1 + φ̂4

)2 , η = 12
(

MP
φ

)2 1− φ̂4(
1 + φ̂4

)2 , ξ = 96
(

MP
φ

)4 1− 8φ̂4 + 3φ̂8(
1 + φ̂4

)4 . (6.24.9)

Assuming that φ̂ >> 1 the slow roll parameters can be approximated by

ε ≈ 8b
1

φ̂10 , η ≈ −12b
1

φ̂6 , ξ = 288 b2 1
φ̂12 . (6.24.10)

It follows that ξ << ε << |η|. Using the approximation (6.24.10) and assuming that φ >> φ f inal
the number of e-folds is found to be

N ≈ 1
24 b

φ̂6. (6.24.11)

Inserting this into Equation (6.24.10) gives

ε ≈ 1
4× 35/3b2/3

1
N5/3 , η ≈ − 1

2N
, ξ ≈ 9

128 b
1

N3 . (6.24.12)

We then obtain

δns ≈ −2η ≈ 1
N

, r ≈ 4
35/3b2/3

1
N5/3 , αs ≈ −

2
55/3b2/3

1
N8/3 . (6.24.13)

For M << MP this gives a small value of r, but the Planck value δns = 0.032 gives N ≈ 31 which
is too small to give a realistic inflationary scenario.
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The other model considered by Maity [160] has the potential

V =
λ

4
φ4(

1 + φ̂2
)2 . (6.24.14)

For this model the slow roll parameters are

ε =
8b

φ̂2
(
1 + φ̂2

)2 , η = 12b
1− φ̂2

φ̂2
(
1 + φ̂2

)2 , ξ = 96b2 1− 6φ̂2 + 4φ̂6

φ̂4
(
1 + φ̂2

)5 . (6.24.15)

Again we have the large field approximation

ε ≈ 8b
1

φ̂6 , η ≈ −12b
1

φ̂4 , ξ ≈ 384b2 1
φ̂8 . (6.24.16)

For this model the number of e-folds is

N ≈ 1
16b

φ̂4. (6.24.17)

Inserting this into Equation (6.24.16) gives

ε ≈ 1
8 b1/2

1
N3/2 , η = − 3

4N
, ξ ≈ 3

2N2 . (6.24.18)

Hence, we get

δns ≈
3

2N
, r ≈ 2

b1/2
1

N3/2 , αs = −
3

N2 . (6.24.19)

For this model the Planck value δns = 0.032 gives N ≈ 47 which may be acceptable. So this is a
more promising model than the previous one. Also, for M << MP this model predicts a small value
of r.

6.25. Twisted Inflation

J. L. Davis et al. [80] have introduced an inflationary model motivated by brane cosmology which
they have called twisted inflation. The argued that the potential of the inflaton field has the form

V(φ) = M4
(

1− Aφ̃2e− φ̃
)

, φ̃ = φ/φ0 (6.25.1)

for φ >> 1. Calculating the spectral parameters there will appear second order polynoms in φ̃ times
e− φ̃ and times e− 2φ̃. Then it is a sufficiently good approximation to keep only the terms with φ̃2e− φ̃.
This gives

δns ' 2
(

MP
φ0

)2
A φ̃2e− φ̃ , r ' 8

(
MP
φ0

)2(
A φ̃2e− φ̃

)2
, αS ' − 2

(
MP
φ0

)4(
A φ̃2e− φ̃

)2
.

(6.25.2)
Hence

r = 2
(

φ0

MP

)
δ2

ns , αS = − 1
2

δ2
ns. (6.25.3)

Martin et al. [33] have estimated that φ0/MP ' 10−5. This implies that the tensor-to-scalar ratio
has a very small value according to the twisted inflation model. With δns = 0.032 the running of the
scalar spectral index is αS = − 0.0005. According to Equation (4.50) the running of the tensor-to-scalar
ratio is then approximately equal to δns, i.e., αr = 0.03.
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6.26. Inflation with Invariant Density Spectrum

We shall here take a closer view upon the inflationary universe model with an inflaton potential
of the form (6.21) giving a scale invariant density spectrum to first order in the slow roll parameters.
The potential is here written as [33]

V(φ) = V0
(
1− αφ̂

)−2, (6.26.1)

where α is a free parameter. The slow roll parameters are

ε =
2α2(

1− αφ̂
)2 , η =

6α2(
1− αφ̂

)2 , ξ =
48α4(

1− αφ̂
)4 . (6.26.2)

This shows that
η = 3ε , ξ = 12ε2. (6.26.3)

Hence

δns = αS = 0 , r =
32α2(

1− αφ̂
)2 . (6.26.4)

This shows that the inflationary model with inflaton potential (6.26.1) has a scale invariant
Harrison-Zeldovich density fluctuation spectrum.

The slow roll era ends when the inflaton field obtains a value φ̂ f given by ε
(

φ̂ f

)
= 1, leading to

φ̂ f =
1± α

√
2

α
. (6.26.5)

The number of e-folds during the slow roll era is

N(φ) =
1

2α MP

φ̂∫
φ̂ f

(
1− αφ̂

)
dφ = (1/4α)

(
φ̂− φ̂ f

)[
2− α

(
φ̂ + φ̂ f

)]
. (6.26.6)

We assume that α > 0. Then, in order that N > 0, we must have either φ̂ > φ̂ f & αφ̂ < 1
with αφ̂ f = 1− α

√
2 or φ̂ < φ̂ f & αφ̂ > 1 with αφ̂ f = 1 + α

√
2. The maximal value of the function

N
(
φ̂
)

with the values (6.26.5) for φ̂ f is Nmax = 1/2. Hence this model is ruled out as a realistic
inflationary model.

6.27. Quintessential Inflation

Quintessential inflation has been considered by Md. W. Hossein et al. [166]. We shall here analyze
this type of inflation by means of the N-formalism. Hossein et al. found that in the small field
approximation the first potential slow roll parameter is given in terms of the number of e-folds as

ε(N) =
α2

2
1

1− e− α2 N
, (6.27.1)

where α is a parameter characterizing the energy of the inflaton field during the slow roll era. In the
case of small field inflation 1/N << α << 1. From Equations (5.1), (5.3) and (6.27.1) we obtain

δns = α2coth
(

α2N/2
)

, r = − 8nT =
8α2

1− e− α2 N
, αS = 2αT = − α4

2
1

sinh2(α2N/2)
. (6.27.2)



Universe 2018, 4, 15 98 of 163

Inserting Equation (6.27.1) into Equations (5.4) and (5.7) and performing the integrations give

V(N) = eα2 N − 1 (6.27.3)

and
φ(N) =

2MP
α

ln
(

eα2 N/2 +
√

eα2 N − 1
)

. (6.27.4)

Inverting this equation gives

eα2 N/2 = cosh
(α

2
φ̂
)

. (6.27.5)

Inserting this into Equation (6.27.3) shows that the potential of this inflationary model is

V(φ) = sinh2
(α

2
φ̂
)

. (6.27.6)

Hence this inflationary model is mathematically similar to hyperbolic inflation with p = 2.
The expressions (6.27.2) give the consistency relation

r = 4
(

δns + α2
)

. (6.27.7)

This shows that r > 4δns. Hence with δns = 0.032 this model of quintessential inflation predicts
r > 0.128 which is ruled out by the BPK-data.

We shall also review three more recent versions of quintessential inflation, and consider first a
model investigated by Bruck et al. [167]. The potential is

V =
V0

2
[
1 + tanh

(
pφ̂
)]

, p > 0. (6.27.8)

The potential slow roll parameters are

ε =
p2

2
[
1− tan

(
pφ̂
)]2 , η = −2p2tanh

(
pφ̂
)[

1− tan
(

pφ̂
)]

. (6.27.9)

Hence the spectral parameters are,

r = 16ε = 8p2[1− tanh
(

pφ̂
)]2 , δns = 2(3ε− η) = p2

[
3− 2tanh

(
pφ̂
)
− tanh2(pφ̂

)]
(6.27.10)

Calculating the number of e-folds, Bruck et al. [162] have shown that

e2pφ̂ ≈ 4p2N. (6.27.11)

Hence,

tanh
(

pφ̂
)
≈ 4p2N − 1

4p2N + 1
. (6.27.12)

Inserting this into Equation (6.27.10) gives

r ≈ 32p2

(4p2N + 1)2 ≈
2

p2N2 , δns ≈ 2p2 3 + 16p2N

(4p2N + 1)2 ≈
2
N

. (6.27.13)

Bruck et al. (2017) have suggested that p ' 100, so we can with good accuracy use the last
approxomations in Equation (4.27.13). Inserting δns = 0.032 gives N ≈ 62 and r ' 0.

Next we consider a quintessence inflation model investigated by Dimopoulos [34], which has
a potential

V = M4 exp
(
− 2neφ̂/

√
2 N1
)

. (6.27.14)
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where N1 and n are dimensionless, positive constants. Note that Dimopoulos et al. used a constant α

related to N1 by N1 =
√

3α /2 or α = (4/3)N2
1 . Here M4 = e2nV0 represents the inflation energy scale,

where V0 = V(0).
The potential slow roll parameters are

ε =

(
n

N1

)2
e
√

2 φ̂/ N1 , η =
n

N2
1

eφ̂/
√

2 N1
(

2neφ̂/
√

2 N1 − 1
)

. (6.27.15)

The condition for the end of inflation, ε
(

φ f

)
= 1 gives

eφ̂/
√

2 N1 =
N1

n
. (6.27.16)

The number of e-folds of the inflationary era is

N =
1√

2 MP

φ f∫
φ

1√
ε

dφ =
N2

1
n

(
e−φ̂/

√
2 N1 − e−φ̂ f /

√
2 N1
)

. (6.27.17)

Inserting the value (4.27.16) for φ̂ f gives

eφ̂/
√

2 N1 =
N2

1
n

1
N + N1

. (6.27.18)

Hence in terms of the number of e-folds the potential slow roll parameters are

ε =

(
N1

N + N1

)2
, η = 2ε− 1

N + N1
. (6.27.19)

Thus the scalar spectral index and the tensor-to-scalar ratio are

δns = 2
(

N1

N + N1

)2
+

2
N + N1

, r = 16
(

N1

N + N1

)2
. (6.27.20)

Equations (6.27.20) imply that

N + N1 =
16

8δns − r
, (6.27.21)

which may be written

N + N1 =
4N

4−
√

r
. (6.27.22)

The last two equations gives an equation for
√

r with positive solution

√
r = (2/N)

[
1 +

√
1 + 2N(Nδns − 2)

]
. (6.27.23)

which requires

Nδns > 1 +
√

1− (1/2)δns ≈ 2. (6.27.24)

Inserting δns = 0.032 gives N > 62.5. With Nδns = 2 we get r = 4δ2
ns = 0.004 and

N1 =
N
√

r
4−
√

r
=

Nδns

2− δns
≈ 1

2
Nδns = 1. (6.27.25)

Hence in this case α = 4/3.
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Finally we consider a quintessence inflation model investigated by Agarwal et al. [134], which has
a potential

V(φ) =
V0

cosh
(

βnφ̂n
) . (6.27.26)

For this model the potential slow roll parameters are

ε = (1/2)
[
nβnφ̂n−1tanh

(
βnφ̂n)]2 ,

η = − nβ2(βφ̂
)n−2

[
n
(

βφ̂
)n

+ (n− 1)tanh
(

βnφ̂n)− 2n
(

βφ̂
)ntanh2(βnφ̂n)] .

(6.27.27)

Hence, the spectral parameters are

δns = βnφ̂n−2
[
2n2(βφ̂

)n
+ 2n(n− 1)tanh

(
βnφ̂n)− n2(βφ̂

)ntanh2(βnφ̂n)] ,

r = 8
[
nβnφ̂n−1tanh

(
βnφ̂n)]2 .

(6.27.28)

The end of the inflationary era is defined by ε
(

φ̂ f

)
= 1, which gives

[
nβnφ̂n−1

f tanh
(

βnφ̂n
f

)]2
= 2. (6.27.29)

In order to provide an analytical prediction Agarwal et al. [134] considered the case n = 1. In this
case Equation (6.27.29) reduces to

β2tanh2(βφ̂
)

= 2. (6.27.30)

Since tanh2(βφ̂
)

< 1 this requires β2 > 2 for inflation to end. In this case the spectral
parameters are

δns = β2
[
2− tanh2(βφ̂

)]
, r = 8β2tanh2(βφ̂

)
. (6.27.31)

This leads to
r = 8

(
2β2 − δns

)
. (6.27.32)

Hence r > 31.7 which is totally unrealistic. Similar problems appear for higher values of n.
Hence this class of inflationary models is ruled out by the requirement of a graceful end of the
inflationary era.

6.28. Generalized Chaplygin Gas (GCG) Inflation

The GCG inflation model has recently been described by Dinda et al. [168]. We shall here give a
review of their presentation.

The Generalized Chaplygin gas has a pressure p which is given by the energy density ρ as

p = − Aρ1+ m
3 . (6.28.1)

It follows from Equations (2.1) and (2.2) that the relationship of the density, pressure and scale
factor for the Friedmann universe models can be written

dρ

ρ + p
= −3

da
a

. (6.28.2)

Inserting Equation (6.28.1) and integrating gives

ρ(a) = (A + Bam)− 3/m. (6.28.3)

For m < 0 a universe dominated by Chaplygin gas behaves like a dust dominated universe model
with ρ ∝ a−3 at very early times with small values of a, and as a universe dominated by LIVE with
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a constant density of the gas at late times with large values of a. For m > 0 it is opposite. Hence the
case m < 0 may represent the period after the inflationary era, and the case m > 0 can describe the
evolution during the inflationary era. Hence we assume that m > 0.

From Equations (2.1) and (6.28.1) we have

.
φ

2
= ρ + p = ρ

(
1− Aρm/3

)
. (6.28.4)

Inserting Equation (6.28.3) gives.

.
φ =

√
ρ√

1 + (A/B)a−m
. (6.28.5)

The first part of Equation (2.2) may be written

.
a = aH =

1
MP
√

3
a
√

ρ. (6.28.6)

From Equations (6.28.5) and (6.28.6) we have

dφ

da
=

.
φ
.
a
=

√
3 MP

a
√

1 + (A/B)a−m
. (6.28.7)

Integration gives

A + B am = A cosh2 ^
φ ,

^
φ =

m(φ− φ0)

2
√

3 MP
, (6.28.8)

where φ0 is an integration constant. Equation (6.28.8) implies that a(φ0) = 0. Hence φ0 may be
interpreted as the initial value of the inflaton field. From Equations (6.28.6) and (6.28.3) we have

H =

√
ρ

√
3 MP

=
1√

3 MP

1

(A + Bam)3/2m . (6.28.9)

Inserting Equation (6.28.8) gives

H = H0 cosh−3/m ^
φ , (6.28.10)

where H0 =
(

1/
√

3 MP

)
A− 3/2m is the initial value of the Hubble parameter. Inserting

Equation (4.28.10) into the first part of Equation (4.28.10) gives

ρ(φ) = A−3/m cosh− 6/m ^
φ . (6.28.11)

Hence, A− 3/m = ρ0 = ρ(φ0) in agreement with the equation H0 =
√

ρ0/
√

3 MP. From
Equations (2.1) and (6.29.1) we also have

V =
1
2
(ρ− p) =

ρ

2

(
1 + Aρm/3

)
. (6.28.12)

Inserting Equation (6.28.11) gives the inflaton potential

V(φ) = (V0/2)
1 + cosh2 ^

φ

cosh2(1+3/m)
^
φ

, (6.28.13)

where V0 = V(φ0) = A−3/m = ρ0.
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We now calculate the Hubble slow roll parameters. From Equations (2.28) and (6.28.10) we get

εH =
3
2

tanh2^φ , ηH =
3
2
− 3 + m

2
1

cosh2 ^
φ

. (6.28.14)

Inserting the expressions (6.28.14) into Equation (4.20) leads to

δns = 3− 3−m

cosh2 ^
φ

, nT = −3tanh2^φ , r = 24tanh2^φ . (6.28.15)

The first and last of these expressions give

r = 24
δns −m
3−m

, (6.28.16)

which requires that 0 < m < δns. Solving Equation (6.28.16) with respect to m gives

m =
3(8δns − r)

24− r
≈ δns −

r
8

. (6.28.17)

Inserting δns = 0.032 and r = 0.05 we get m = 0.026. Hence we can approximate δns by

δns ' 3 tanh2^φ . (6.28.18)

The number of e-folds is

N =
1

M2
P

φ∫
φ f

V
V′

dφ. (6.28.19)

With the potential (6.28.13) we get

V′

V
= 2 tanh

(
3
m

+
1

1 + cosh2 ^
φ

)
. (6.28.20)

Since the Planck data and Equation (6.28.17) show that m < 0.04, the first term in the parenthesis
is at least 150 times larger than the latter. Hence we can with good approximation neglect the last term
during the slow roll era. This gives

N ' m
6M2

P

φ∫
φ f

coth
^
φ dφ =

2
m

ln
sinh

^
φ

sinh
^
φ f

, (6.28.21)

or
sinh

^
φ ' sinh

^
φ f e(m/2)N . (6.28.22)

The value of the inflaton field at the end of inflation is given by εH

(^
φ f

)
= 1 which leads to

tanh2^φ f = 2/3. Inserting this into Equation (6.28.22) gives

tanh2^φ ' 1
1 + (5/4)e−mN . (6.28.23)

Hence the optical parameters as given in Equations (6.28.15) and (6.28.18) are

δns = − nT = r/8 =
3

1 + (5/4)emN . (6.28.24)
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It follows that the number of e-folds is given in terms of δns as

N ' 1
m

ln
(

12
5δns

)
. (6.28.25)

Inserting the expression (6.28.17) for m we obtain

N ' 8
8 δns − r

ln
(

12
5 δns

)
. (6.28.16)

With δns = 0.032 , r = 0.05 the number of e-folds in GCG- inflation is N = 168. Since the number
of e-folds is usually restricted to 50 < N < 60 it is concluded that a universe dominated by generalized
Chaplygin gas is not a suitable model of the inflationary era.

6.29. Axion Monodromy Inflation

We shall consider the axion monodromy inflation model with a potential [169]

V = a1φ̂ + a2 cos
(

φ̂

f
+ δ

)
. (6.29.1)

A more general potential with φ̂ replaced by φ̂p in the first term has been considered by Minor
and Kaplinghat [47]. With the potential (6.29.1) the potential slow roll parameters are

ε =
1
2

(
1− x sin θ

φ̂ + A cos θ

)2
, η = − x2

A
cos θ(

φ̂ + A cos θ
) , ξ = − x

A

√
2ε η tan θ, (6.29.2)

where A = a2/a1, θ = φ̂/ f + δ, x = A/ f . The BICEP2/Planck data imply that ε ' 0.007, η ' 0.006,
ξ = 0.005. It follows from the expressions (6.29.2) that

ε =
A2

2x4

(
1− x sin θ

cos θ

)2
η2 , ξ =

1
x
(1− x sin θ) sin θ

cos2 θ
η2 =

2x3

A2
sin θ

1− x sin θ
ε. (6.29.3)

From the last of the Equation (6.29.2) and the first of Equation (6.29.3) we get

A = −
√

2εη

ξ
(

1 + ξ
η2 cot2 θ

)
cos θ

, x =
1(

1 + ξ
η2 cot2 θ

)
sin θ

, f = −
√

2ε η

ξ
tan θ. (6.29.4)

It follows from Equation (6.29.2) that

φ̂ =
√

2ε
1 + f 2η

2ε + f 2ξ
. (6.29.5)

or

f 2 =
√

2ε
1− φ̂

√
2ε

φ̂ξ − η
√

2ε
, (6.29.6)

which requires φ̂ < φmax = 1/
√

2ε. With ε = 0.007 this gives φ̂ < 8.3. For illustration we choose φ̂ = 7
since the value φ̂ = 10 chosen by Kobayashi et al. [169] is not allowed. From Equations (6.29.6) and
(6.29.4) we then get θ = 1.67 , f = 1.4 , A = 1 , x = 0.7. Hence sin θ = 0.99 , cos θ = − 0.10 and
δ = −1.9.
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We shall only give a rough estimate of the upper limit of the value of N given the above values of
the slow roll parameters and the constants. Since

∣∣Aφ̂−1 cos θ
∣∣ = 0.02 << 1 we shall neglect the term

Aφ̂−1 cos θ in ε when calculating N. This gives

N '
φ2 − φ2

f

2(1− x sin θ)
<

φ2

2(1− x sin θ)
. (6.29.7)

Let us assume that φ̂ = pφ̂max = p/
√

2ε where 0 < p < 1. Inserting this into Equation (4.29.6)
we get

f 2 =
(1− p)2ε

pξ − 2εη
. (6.29.8)

From this and Equation (6.29.4) we obtain

x sin θ = 1/
[
1 +

(
ξ/η2

)
cot2 θ

]
=

(1− p)ξ
ξ − 2εη

. (6.29.9)

Inserting Equation (6.29.9) and φ̂ = p/
√

2ε into the inequality (6.29.7) gives

N <
ξ − 2εη

pξ − 2εη

p2

4ε
≈ p

4ε
. (6.29.10)

With r = 16ε we get

r <
4p
N

. (6.29.11)

Inserting p = 0.5 and N = 50 gives r < 0.04 in agreement with the observational data.

6.30. Intermediate Inflation

Intermediate inflation models were introduced by J. D. Barrow in 1990 [170,171]. I will here follow
the presentations of A. Mohammadi et al. [172] and Rezazadeh et al. [173]. In both of these papers
intermediate models with a no-canonical scalar field were considered. In the present review I will
describe the corresponding class of models with a canonical scalar field by specializing to the case
n = 1, F0 = 1 in [172] or equivalently to α = 1 in [173].

The point of departure is Barrow’s assumption for the time-dependency of the scale factor,

a(t) = a0eAt̂α
, 0 < α < 1. (6.30.1)

Here A is a positive dimensionless constant, a0 is the value of the scale factor at t = 0 and t̂ = t/tP
where tP is the Planck time. It turns out that the constant A does not appear in the expressions for the
optical parameters. In cold inflation its value has no consequence for the predictions of this class of
models. Hence, without loss of generality we can put A = 1.

The models are called ‘intermediate’ because the expansion is faster than power law expansion
and slower than the exponential expansion of the de Sitter spacetime, which has α = 1. The Hubble
parameter, its rate of change and and its second derivative are

H = MPα t̂α−1 ,
.

H = −M2
Pα(1− α) t̂α−2 ,

..
H = M3

Pα(1− α)(2− α) t̂α−3 . (6.30.2)

From Equations (2.1) and (2.6) together with the identity
..
a = H2 +

.
H, we get

ρ = 3M4
Pα2 t̂2(α−1) , p = M4

Pα t̂α−2[2(1− α)− 3α t̂α
]
. (6.30.3)

Equation (2.1) implies

ρ + p =
.
φ

2
(6.30.4)
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Inserting (6.30.3) and integrating with the initial condition φ(0) = 0 gives

φ̂(t) = 2

√
2

1− α

α
t̂α/2. (6.30.5)

Equation (2.1) also gives

V =
1
2
(ρ− p). (6.30.6)

Inserting (6.30.3) we get

V(t) = M4
Pα t̂α−2[3α t̂α − 2(1− α)

]
. (6.30.7)

Using Equation (6.30.5) we obtain the potential as a function of the inflaton field

V(φ) = M4
Pα

[
α

2(1− α)

] α−2
α
(

φ̂

2

) 2(α−2)
α
[

3α2

2(α− 2)

(
φ̂

2

)2

− 2(1− α)

]
. (6.30.8)

For this class of models the spectral parameters are most easily calculated from the Hubble slow
roll parameters (3.12) using Equation (6.30.2). This gives

εH =
1− α

α
t̂− α , ηH =

2− α

2(1− α)
εH . (6.30.9)

Note that the slow roll parameter εH is a decreasing function of time for intermediate inflation.
This means that there is no natural end of the inflationary era in this class of models, and one
just postulates that the inflationary era lasts for a suitable number of e-folds, say 50 < N < 60.
In this class of models one defines instead the beginning of the inflationary era by the condition
εH(ti) = 1, and evaluates the spectral parameters at the end of the inflationary era. However,
Rezazadeh et al. [173] have invoked a non-canonical scalar field in order to solve the exit problem for
intermediate inflation.

Using Equation (6.30.5) the slow roll parameter εH is expressed in terms of the inflaton field as

εH = 8
(

1− α

α

)2 1
φ̂2 . (6.30.10)

It follows from Equations (3.46) and (6.30.1) that the number of e-folds is

N = t̂α − t̂α
i , (6.30.11)

where ti is the initial point of time of the inflationary era, defined by εH(ti) = 1 giving

t̂α
i =

1− α

α
. (6.30.12)

Inserting this into Equation (6.30.11) gives for the point of time when the slow roll parameters
are evaluated

t̂α =
Nα + 1− α

α
, (6.30.13)

Giving

εH =
1− α

Nα + 1− α
, ηH =

2− α

2(Nα + 1− α)
. (6.30.14)
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The spectral parameters δns, nT and r are expressed in terms of the Hubble slow roll parameters
in Equation (4.20). Inserting the expressions (6.30.14) we obtain

δns =
2− 3α

Nα + 1− α
, nT = − 2(1− α)

Nα + 1− α
, r =

16(1− α)

Nα + 1− α
. (6.30.15)

Note that the curvature spectrum is scale independent, corresponding to δns = 0, for α = 2/3.
The expression for ns corrects an error in Mohammadi et al. [172]. For these model the r, δns−
relationship is

r =
16(1− α)

2− 3α
δns. (6.30.16)

The constant α can be expressed in terms of N and δns as

α =
2− δns

3 + (N − 1)δns
≈ 2

3 + Nδns
. (6.30.17)

Inserting the last expression into Equation (6.30.16) gives

r ≈ 1 + Nδns

Nδns
8δns > 8δns. (6.30.18)

With the Planck values δns = 0.032 and N = 60 we get r > 0.256. This value of r is larger than
permitted by the Planck observations. However the more general models with non-canonical inflaton
fields studied by Mohammadi et al. [172] and Rezazadeh et al. [173] contain an additional adjustable
parameter in the expressions for the observable parameters, making agreement with observational
data possible. A class of intermediate inflationary models with a variable sound velocity have recently
been investigated by N. Nazavari et al. [174]. In these models one may obtain agreement with the
Planck data. Below we shall consider warm intermediate inflation models, and they lead naturally to a
suppression of the curvature perturbation, giving a small value of r.

Brane-Intermediate Inflation

S. del Campo and R. Herrera [175] have investigated observable consequences of intermediate
inflation on the brane. The scale factor is given in Equation (6.30.1), and the Hubble parameter and its
derivatives in Equation (6.30.2). Inserting these expressions into Equation (6.16.16) gives

.
φ =

(
2λ

3

)1/4√1− α

t̂
. (6.30.19)

Integrating with φ(0) = 0 leads to

φ = 2
(

2λ

3

)1/4√
(1− α)t̂ . (6.30.20)

From the expressions (6.30.2) and Equation (6.16.19) we get

V(t) =
1
t̂

√
λ

6
[
6α t̂α − (1− α)

]
. (6.30.21)

From Equations (6.30.19) and (6.30.20) the potential is

κ V(φ) =
λ

φ̂2

{
6α

[
4
3
(1− α)

]1−α( 1
6λ

)α/2
φ̂2α − 4

3
(1− α)2

}
. (6.30.22)
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The brane tension is usually assumed to be very small in Planck units, so in the strong field case
the first term inside the brackets dominates. Hence we can approximate the potential with

V(φ) = Bφ̂−2(1−α) , B = 6αλ

[
4
3
(1− α)

]1−α( 1
6λ

)α/2
, (6.30.23)

which has the same form as in polynomial inflation with p = 2(α− 1). However the predicted values
of the spectral parameters are different from those of polynomial standard inflation since the dynamical
equations are different in brane-inflation.

The Hubble slow roll parameters as functions of time are the same as in standard inflation, and
are given in Equation (6.30.9). Combining these expressions with Equation (6.30.20) gives

εH =
1− α

α

[
4(1− α)

√
2λ

3

]α

φ̂− 2α , ηH =
2− α

2α

[
4(1− α)

√
2λ

3

]α

φ̂− 2α. (6.30.24)

The inflaton field at the end of the inflationary era is given by ηH

(
φ f

)
= 1, giving

φ2α
f =

2− α

2α

[
4(1− α)

√
2λ

3

]α

. (6.30.25)

The number of e-folds during the slow roll era is found by combining Equations (6.30.11), (6.30.19),
(6.30.23) and (6.30.24), giving

εH =
2(1− α)

2Nα + 2− α
, ηH =

2− α

2Nα + 2− α
. (6.30.26)

In spite of the different time dependence of the inflaton field for the standard intermediate
inflation and the brane-intermediate inflation the expressions for the slow roll parameters are identical.
The reason is that they depend only upon the time dependence of the scale factor.

However the expressions (4.20) are modified, so Equations (6.30.15)–(6.30.17) are not valid for
brane-intermediate inflation. Del Campo and Herrera [175] have shown that

δns = 2(3εH − ηH). (6.30.27)

Inserting the expressions (6.30.25) gives

δns =
2(4− 5α)

2Nα + 2− α
, (6.30.28)

or

α =
2(4− δns)

10 + 2Nδns − δns
≈ 4

5 + Nδns
. (6.30.29)

Inserting δns = 0.032 and 50 < N < 60 gives 0.58 < α < 0.61. This is a little smaller that the
values 2/3 < α < 4/5 del Campo and Herrera arrived at with the observational data up to 2009.

Del Campo and Herrera found that the running of the scalar index is

αS = − α

3− 4α
δ2

ns, (6.30.30)

giving − 0.0011 < αS < − 0.0009 in agreement with observational data. They found that the
tensor-scalar ratio is given by

r =
8(1− α)

α2 F(nS) t̂1−2α , F(nS) =

[√
1 + n2

S − n2
SArsinh(1/nS)

]−1
. (6.30.31)
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Inserting the expressions (6.30.9) into Equation (6.30.26) leads to

δns =
4− 5α

α
t̂− α. (6.30.32)

It follows from the last two equations that the r, δns− relation is

r =
8(1− α)

α1/α(4− 5α)2−1/α

√
6λ F(nS)δ

2−1/α
ns . (6.30.33)

With nS ≈ 1 we get F(nS) ≈ 2. From the above result a proper choice of α is α = 0.6. Furthermore
we insert the favored Planck value δns = 0.032. Recently J. R. Gott III and W. N. Colley [46] have
shown that from the best available data it follow that 0 < r < 0.04. Inserting these values into
Equation (6.30.32) gives A > 0.01.

6.31. Constant- Roll Inflation

H. Motohashy, A. A. Starobinsky and J. Yokoyama [107,176], F. Cicciarella, J. Mabillard, J and M.
Pieroni [177] and A. Karam et al. [178] have recently considered a class of inflationary models with
constant rate of roll. They defined the ‘rate of roll’ as

..
φ/H

.
φ. According to Equation (3.16) this is the

same as minus the Hubble parameter ηH . Hence the general condition for constant rate of slow roll
inflation may be written

ηH = 3 + α = − 2β = 3λ or
..
φ = − 3λH

.
φ, (6.31.1)

where α, β and λ are constants, α is used in [107], β in [171] and λ in [172]. It follows from Equations (2.5)
and (3.16) that

V′ = (ηH − 3)Hφ′ = αH
.
φ. (6.31.2)

Hence, the case ηH = 3 or α = 0, β = −3/2 and λ = 1 implies that V(φ) = constant,
i.e., it represents a flat potential. We shall first consider this case.

With ηH = 3 Equation (3.7) takes the form

2M2
PH,φφ−3H = 0. (6.31.3)

The general solution of this equation is

H(φ) = A cosh

(√
3
2

φ̂

)
+ Bsinh

(√
3
2

φ̂

)
. (6.31.4)

Differentiating Equation (6.31.4) and using Equation (2.14) we have

V = M2
P

(
3H2 − 2M2

PH′2
)
= 3

(
A2 − B2

)
M2

P, (6.31.5)

showing that V is indeed constant. In this case Equation (3.12) takes the form

..
H + 6H

.
H = 0. (6.31.6)

Integration gives
.

H + 3H2 = K1. (6.31.7)
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where K1 is an integration constant. It follows from Equation (2.12) that
.

H < 0. Integration of
Equation (6.31.7) then gives

H(t) =


H1coth(3H1t + K) , K1 = 3H2

1
1

3t+K , K1 = 0
H1 cot(3H1t + K) , K1 = − 3H2

1

. (6.31.8)

where K is a new integration constant. Equation (3.16) now reduces to

..
φ + 3H

.
φ = 0. (6.31.9)

Using that H =
.
a/a and integrating gives

.
φ = K2a−3. (6.31.10)

where K2 is an integration constant.
Integration of Equation (6.31.8) with K1 > 0 and a(0) = 0 leads to

a(t) = a1sinh1/3(3H1t). (6.31.11)

where a1 is an integration constant. Inserting this into Equation (4.31.10), determining the integration
constants from Equation (2.12), and assuming that the inflaton field decreases with time gives

.
φ = −

√
6 MP H1

sinh(3H1t)
. (6.31.12)

New integration with lim
t→∞

φ(t) = 0 gives

φ =

√
2
3

MP ln
[

cot h
(

3
2

H1t
)]

. (6.31.13)

Differentiating Equation (6.31.8) gives

.
H = −

3H2
1

sinh2(3H1t)
,

..
H = −18H3

1
cosh(3H1t)
sinh3(3H1t)

. (6.31.14)

Inserting Equations (6.31.12) and (6.31.14) into Equation (2.12) gives K1 =
√

6 MPH1.
Equation (2.2) then gives

V = 3M2
PH2 − (1/2)

.
φ

2
= 3M2

PH2
1 , (6.31.15)

which is constant. Comparing with Equation (6.31.5) we get H2
0 = A2 − B2. The Hubble slow

roll parameters,

εH = −
.

H
H2 =

3
cosh2(3H1t)

, ηH = − 1
2

..
H

H
.

H
= 3. (6.31.16)

The scalar spectral index is small only at a certain point of time, t1, when cosh2(3H1t) ≈ 2, so this
is not a realistic inflationary model.

We shall now consider the corresponding models with ηH 6= 3, i.e., α 6= 0. The case ηH = 0
i.e., α = − 3 corresponds corresponds to the scale invariant case which is in conflict with observation,
so this case will not be considered here. Equation (3.7) now takes the form

M2
P H,φφ +β H = 0. (6.31.17)
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The general solution is

H(φ) =

{
A cos

(√
βφ̂
)
+ B sin

(√
βφ̂
)

, β > 0
A cosh

(√
−βφ̂

)
+ Bsinh

(√
−βφ̂

)
, β < 0

. (6.31.18)

Equation (6.31.5) is now generalized to

V(φ) =

 M2
P

[
3
(

A2 + B2)− (3 + 2β)
(

A sin
√

βφ̂− B cos
√

βφ̂
)2
]

, β > 0

M2
P

[
3
(

A2 − B2)+ (3 + 2β)
(

Asinh
√
−βφ̂ + B cosh

√
−βφ̂

)2
]

, β < 0
. (6.31.19)

Motohashy, Starobinsky and Yokoyama [107] have considered 3 special cases.

(1) A = B = M giving

H(φ) =

{
M
√

2 sin
(√

βφ̂ + π/4
)

, β > 0

Me
√
−βφ̂ , β < 0

, (6.31.20)

V(φ) =

{
2M2

P M2 [3− (3 + 2β) cos2(√ β φ̂ + π/4
)]

, β > 0

(3 + 2β)M2
P M2e

√
− 2β φ̂ , β < 0

. (6.31.21)

In the case β < 0 a positive potential requires β > − 3/2.

For − 3/2 < β < 0 the potential is recognized as that of power law inflation. Comparing
with Equation (6.4.1) we have λ2 = − 4β. From Equations (6.4.7) and (6.4.8) we then get
ε = − 2β , δns = − 4β , r = − 32β and hence r = 8δns. This value of r is higher than allowed
by the Planck observations.

(2) B = 0 , A = M giving

H(φ) =

{
M cos

(√
βφ̂
)

, β > 0
M cosh

(√
−βφ̂

)
, β < 0

, (6.31.22)

V(φ) =

{
M2

P A2[3 + (3 + 2β) sin2(√βφ̂2)] , β > 0
M2

P A2[3− (3 + 2β) sin2(√− βφ̂2)] , β < 0
. (6.31.23)

(3) A = 0 , B = M giving

H(φ) =

{
M sin

(√
βφ̂
)

, β > 0
Msinh

(√
−βφ̂

)
, β < 0

, (6.31.24)

V(φ) =

{
M2

P M2[− 3 + (3 + 2β) cos2(√βφ̂
)]

, β > 0

M2
P M2

[
3− (3 + 2β) cosh2(√−βφ̂

)]
, β < 0

. (6.31.25)

It may be noted that the expressions (6.31.23) and (6.31.25) for β > 0 are similar to those for natural
inflation as given in Equation (6.5.1). The predictions of the model with B = 0 has been compared with
the Planck data by Motohashi and Starobinsky [176].

In this case Equation (3.12) takes the form

..
H − 4β H

.
H = 0. (6.31.26)

Hence, the generalization of Equation (4.31.7) is

.
H − 2β H2 = K1. (6.31.27)
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Integrating this equation we have to consider some cases.
1. Let us first consider the case K1 = 0. Integration of Equation (6.31.27) then gives

H =
1

K− 2βt
. (6.31.28)

Then the special case β = 0 gives the constant Hubble parameter of a universe with exponential
expansion such as the De Sitter spacetime dominated by a Lorentz Invariant Vacuum Energy (LIVE)
with a constant density that may be represented by a cosmological constant.

A flat universe FLRW-universe dominated by a perfect fluid with equation of state p = wρ has a
Hubble parameter

H =
2

3(1 + w)t
. (6.31.29)

Hence, putting K = 0 in Equation (6.33.28) gives the Hubble parameter of a flat FLRW-universe
dominated by a perfect fluid with equation of state parameter

w = −
(

1 +
4
3

β

)
. (6.31.30)

The condition− 1 ≤ w ≤ 1 interpolating between LIVE and a Zel’dovich fluid restricts β to the interval
− 3/2 ≤ β ≤ 0.

2. Next we consider the case K1 = − 2β H2
1 . Then Equation (6.31.27) takes the form

.
H = − 2β

(
H2

1 − H2
)

, (6.31.31)

Since
.

H is negative β < 0 requires H > H1, and β > 0 requires H < H1. Solving Equation (6.31.31)
with these requirements in mind leads to

H(t) =

{
H1tanh(2βH1t + K) , β > 0
H1coth(− 2β H1t + K) , β < 0

. (6.31.32)

3. Finally we have the case K1 = 2β H2
1 . Then

.
H = 2β

(
H2

1 + H2
)

, (6.31.33)

which requires β < 0. The solution of Equation (6.31.33) is

H(t) = H1 cot(− 2β H1t + K). (6.31.34)

Integrating the expressions for the Hubble parameter we get the time evolution of the scale factor.
We shall only consider the cases 2 and 3. From Equation (6.31.32) with K = 0 we obtain

a(t) =

{
a1 cosh−1/β(2βH1t) , β > 0
a2sinh−1/β(− 2βH1t) , β < 0

, (6.31.35)

It was noted by Motohashi et al. [176] that also in this case the expression for the scale factor in the
case β < 0 corresponds to that for a flat FLRW model with a cosmological constant filled with a perfect
fluid with equation of state p = wρ, where β = − 3(1 + w)/4. Hence the case β = −3/4 corresponds
to the standard ΛCDM universe model.

From Equation (6.31.34) with K = 0 we get

a(t) = a3 sin(− 2β H1t). (6.31.36)
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The cases 2 and 3 behave in a similar manner for small values of − β H1t. Hence from now on we
shall only consider the case 2.

Equation (3.13) then takes the form

..
φ− 2β H

.
φ = 0, (6.31.37)

giving
.
φ = K1a2β. (6.31.38)

For the case 2 we now get

.
φ =

 −
2MP H1

√
β

cosh(2βH1t) , β > 0

− 2MP H1
√
−β

sinh(2βH1t) , β < 0
, (6.31.39)

while the case 3 leads to
.
φ = −

2MPH1
√
− β

sin(2βH1t)
. (6.31.40)

Integration of Equation (6.31.39) gives

φ(t) =

{
2MPH1

√
1/βarctan

(
e−2βH1t) , β > 0

MPH1
√
− 1/β ln[coth(βH1t)] , β < 0

, (6.31.41)

and of Equation (6.31.40),
φ(t) = MPH1

√
− 1/β ln[cot(βH1t)]. (6.31.42)

Differentiating Equation (6.31.32) gives

.
H =


2βH2

1
cosh2(2βH1t)

− 2βH2
1

sinh2(2βH1t)

,
..
H =

 8β2H3
1

sinh(2βH1t)
cosh3(2βH1t)

, β > 0

− 8β2H3
1

cosh(2βH1t)
sinh3(2βH1t)

, β < 0
(6.31.43)

The time dependency of the inflaton field in the case 2 is

V(t) = 3M2
PH2 − 1

2
.
φ

2
= M2

P H2
1

 3− 3+2β

cosh2(2βH1t)
, β > 0

3 + 3+2β

sinh2(2βH1t)
, β < 0

. (6.31.44)

Inserting the expressions (6.32.41) into (6.31.44) gives the inflaton potential for the case 2

V(φ) = M2
PH2

1


3 cos2

( √
β

MP H1
φ

)
− β sin2

( √
β

MP H1
φ

)
, β > 0

3 cosh2
(√

−β

MP H1
φ

)
+ βsinh2

(√
−β

MP H1
φ

)
, β < 0

. (6.31.45)

The Hubble slow roll parameters for this case are

εH =


2β

sinh2(2βH1t)

− β

cosh2(βH1t)

, ηH =

{
β , β > 0
− β , β < 0

. (6.31.46)
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The tilt of the scalar spectral index and the tensor-to-scalar-ratio are

δns = 2(2εH − ηH) =


4β

2−sinh2(2βH1t)
sinh2(2βH1t)

, β > 0

− 4β
2−cosh2(2βH1t)

cosh2(2βH1t)
, β < 0

r = 16εH =


32β

sinh2(2βH1t)
, β > 0

− 32β

cosh2(2βH1t)
, β < 0

. (6.31.47)

In all cases the δns, r− relationship is

β =
1
8
(4δns − r). (6.31.48)

The preferred values from the Planck observations, r = 0.05 , δns = 0.032 give β = 0.005.
Hence the case β > 0 is favored with β ≈ 0. The values β = − 3/2 and β = − 3 are not permitted.
The observational constraint r < 0.04, δns = 0.032 gives the restriction β > 0.005.

A related class of inflationary models, called ‘constant slow-roll inflation’, has been considered
by Gao and Gong [74]. They are defined by the condition that the slow roll parameter η defined in
Equation (3.1) is constant, hence

V,φφ−κηV = 0. (6.31.49)

Integration gives

V(φ) =


Ae
√

ηφ̂ + Be−
√

ηφ̂ , 0 < η < 1
A + Bφ , η = 0
A cos

(√− ηφ̂
)
+ B sin

(√− ηφ̂
)

, − 1 < η < 0
. (6.31.50)

These are power law inflation with exponential potential, linear polynomial inflation and
natural inflation.

One may use the N-fold formalism to investigate this class of inflationary models. Integrating
Equation (5.44), i.e., [

ln
(

V2,N
)]

,N = 2η (6.31.51)

gives
V(N) =

√
A + Be2ηN , (6.31.52)

where A and B are constants of integration. Integrating Equation (3.58), i.e.,

ε,N = 2ε(η − 2ε) (6.31.53)

with the boundary condition ε(0) = 1 gives

ε(N) =
ηe2ηN

η + 2
(
e2ηN − 1

) . (6.31.54)

Hence the tensor-to-scalar ratio is

r =
16ηe2ηN

η + 2
(
e2ηN − 1

) . (6.31.55)

The scalar spectral tilt is

δns = − 2
η − 2− e2ηN

η − 2 + 2e2ηN η. (6.31.56)



Universe 2018, 4, 15 114 of 163

The two last equations give
η = (1/16)(3r− 8δns). (6.31.57)

From Equations (6.31.54) and (6.31.56) we get

N =
8

8δns − 3r
ln

16(8δns − r)
(32− 3r + 8δns)r

≈ 8
8δns − 3r

ln
[

1
2

(
8

δns

r
− 1
)]

. (6.31.58)

Inserting δns = 0.032 , r = 0.05 gives η = − 0.0067 and N = 54.3. Hence, among the 3 classes
of models in Equation (6.31.49) the one with η < 0 is favored by the observational data. We shall
therefore consider this class of models.

It follows from Equation (3.50) that the inflaton field is given in terms of the number of e-folds by

φ̂ = φ̂ f +

N∫
0

√
2ε(N) dN. (6.31.59)

Inserting the expression (6.31.54) we find

φ̂ =
1√− η

arcsin

(√
2

2− η
eηN

)
, φ̂ f =

1√− η
arcsin

(√
2

2− η

)
. (6.31.60)

which is different from Equation (12) of Gao [74]. Inserting the expression (6.31.60) into
Equation (6.31.50) and choosing A = 0 , B = 1− η/2 gives

V(φ) = (1− η/2) sin
(√
−ηφ̂

)
. (6.31.61)

This is the form of the potential of the natural inflationary models.
Cicciarella, Mabillard and Pieroni (CMP) [177] have recently applied the β− function formalism

to the constant rate of roll inflationary models. It follows from Equations (5.127) and (6.31.1) that the
condition for constant rate of roll inflation can be written in terms of the β− function as

1
2

β2 − β′

κ
= 3λ. (6.31.62)

It follows from Equations (5.128) and (6.31.62) that for these models the scalar spectral index and
the tensor-to-scalar ratio are related by

r = 4(δns + 6λ). (6.31.63)

CMP [177] have integrated Equation (6.31.62) for different cases.

1. De Sitter and chaotic models, λ = 0. In this case there are two solutions.

1A. β(φ) = 0. Equation (5.112) then gives a constant Hubble parameter, H = H0 with exponential
expansion, a ∝ eH0t. This represents the De Sitter spacetime. In this case the condition β

(
φ f

)
= 1 is

never obtained, and therefore there is no end to the slow roll era.
1B. β(φ) = −2/φ. This is a member of the chaotic class of Binétruy et al. [82] with properties

described in the Equations (5.159)–(5.169).
It follows from Equation (6.31.33) that the models 1A and 1B have r = 4δns = 0.128 and are ruled

out by the BPK-data.

2. Constant β− function, β′ = 0. It follows from Equation (6.31.61) that λ > 0 in this case with
β(φ) = ±

√
6λ. This is a member of the power law class of Binétruy et al. [82]. In this case r > 0.128,

so this model is ruled out by the BPK-data.
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3. Fast roll inflation. General case with λ > 0. This class of models will be discussed in Section 6.17. For
these models Equation (6.31.63) gives r > 0.128, so they are ruled out by the BPK-data.
4. Interpolating model with λ < 0. In order to simplify the expression we introduce in this case a
constant γ by λ = −(2/3)γ2. It follows from Equation (6.31.63) that the BPK-data, δns = 0.032, r < 0.04
require λ < − 0.0037 or γ > 0.074. In this case the solution of Equation (6.31.62) may be written

β(φ) =
(
2γ/
√

κ
)

tan
(
γφ̂
)
. (6.31.64)

Hence this model Interpolates between the linear class of models described in Equations (5.150)
to (5.157) and the class of chaotic models, respectively in the limits φ→ 0 and φ̂→ π/2γ . Inserting
the expression (6.31.64 ) into Equation (5.113) and integrating gives the Hubble parameter

H = H1 cos
(
γφ̂
)
, (6.31.65)

and inserting the expressions (6.31.64) and (6.31.65) into Equation (5.125) gives the potential

κV(φ) = V0

[
1− (1− λ) sin2(γφ̂

)]
, (6.31.66)

where V0 = V(0). Inserting the function (6.31.64) into Equation (5.118) gives the number of e-folds

N = − 1
2γ2 ln

sin
(
γφ̂
)

sin
(

γφ̂ f

) . (6.31.67)

It follows from the condition β
(

φ f

)
= 1 for the end of the slow roll era that

2γ tan
(

γφ̂ f

)
= 1 or sin2

(
γφ̂ f

)
=

1
1 + 4γ2 . (6.31.68)

Inserting Equations (6.31.67) and (6.31.68) into Equation (6.31.64) gives

β̂(N) =
2γ√

(1 + 4γ2)e4γ2 N − 1
. (6.31.69)

Inserting this into Equation (5.134) we get for δns and r

δns = 4γ2
(
1 + 4γ2)e4γ2 N + 1

(1 + 4γ2)e4γ2 N − 1
, r =

32γ2

(1 + 4γ2)e4γ2 N − 1
. (6.31.70)

It follows from these expressions that

N =
1

δns − r/4
ln

8δns − r
(1 + δns − r/4)r

≈ 1
δns − r/4

ln
(

8
δns

r
− 1
)

. (6.31.71)

The BPK-data, δns = 0.032 , r < 0.04 require N > 77.

6.32. Warm Inflation

In the usual (cold) inflationary models dissipative effects with decay of inflaton energy into
radiation energy are neglected. However, during the evolution of warm inflation dissipative effects
are important, and inflaton field energy is transformed to radiation energy. This was first taken into
account in the construction of inflationary universe models by A. Berera [179] who introduced a new
class of inflationary universe models called Warm Inflation. Further references to works prior to 2009
on warm inflation are found in [180,181]. For later works see [182–184] and references in these articles.
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The most recent articles are [185,186]. In this scenario there is no need for a reheating at the end of the
inflationary era. The universe heats up and becomes radiation dominated during the inflationary era,
so there is a smooth transition to a radiation dominated phase.

6.32.1. General Warm Inflation Equations

During the warm inflation era both the inflaton field energy with density ρφ and the
electromagnetic radiation with energy density ργ are important for the evolution of the universe.
The Friedmann Equation (2.2) is generalized to

H2 =
κ

3
(
ρφ + ργ

)
. (6.32.1)

In these models the continuity Equation (2.3) for the inflaton field and the radiation take the form

.
ρφ + 3H

(
ρφ + pφ

)
= − Γ

.
φ

2
,

.
ργ + 4Hργ = Γ

.
φ

2
, (6.32.2)

respectively, where Γ is a dissipation coefficient of a dissipative process which causes decay of dark
energy into radiation. In general Γ is temperature dependent. It follows from these equations that the
evolution equation for the inflaton takes the form

..
φ + 3H

.
φ + V′ = −Γ

.
φ (6.32.3)

in the case of warm inflation.
During warm inflation the dark energy predominates over radiation, i.e., ρφ >> ργ. During

inflation H , φ and Γ are slowly varying and the production of radiation is quasi-static,
..
φ << H

.
φ ,

.
ργ << 4Hργ. Then Equations (2.2), (6.32.2) and (6.32.3) take the form

3H2 = κρφ = κV , 4Hργ = Γ
.
φ

2
, (3H + Γ)

.
φ = −V′. (6.32.4)

Hence in these models all of the radiation energy during the inflationary era comes from dissipation of
the inflaton energy. In orther words, without dissiopation there is no radiation energy in the slow roll
approximation. The last equation may be written as

3H(1 + Q)
.
φ = −V′ , Q ≡ Γ/3H, (6.32.5)

Here Q is called the dissipative ratio. Using Equation (6.32.2) the energy density of the radiation
during warm inflation is given by

ργ = CγT4 = (3/4)Q
.
φ

2
. (6.32.6)

where Cγ is a constant and T is the temperature of the radiation. The last two equations together
with the slow roll approximation 3H2 = κV lead to the following expression for the temperature of
the radiation

T =

[
Q

4Cγ(1 + Q)2
V′2

V

]1/4

. (6.32.7)

It follows from this equation and the first of the equations in (6.32.4) that the ratio of the energy
densities of the radiation and the inflaton field are

ργ

ρφ
=

3Q
.
φ

2

4V
=

κQ
.
φ

2

4H2 . (6.32.8)
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Differentiating the first of Equation (6.32.4) and using that
.

V = V′
.
φ we get 2H

.
H = (κ/3)V′

.
φ.

Inserting the expression for V′ from Equation (6.32.6) leads to

.
φ

2
= − 2

.
H

κ(1 + Q)
. (6.32.9)

Hence we get
ργ

ρφ
= −1

2
Q

1 + Q

.
H
H2 . (6.32.10)

The Hubble slow roll parameters are

εH ≡ −
.

H
H2 , ηH ≡ −

..
H

2 H
.

H
, (6.32.11)

giving
ργ

ρφ
=

1
2

Q
1 + Q

εH . (6.32.12)

This shows that during the slow roll era the energy density of radiation energy is much less than
the the energy density of the inflaton field.

In the warm inflation scenario a thermalized radiation component is present with temperature
T > H, where both T and H are expressed in units of energy. Then the tensor-to-scalar ratio is modified
with respect to standard cold inflation, so that [187]

rW =
H/T

(1 + Q)5/2 r. (6.32.13)

Hence, the tensor-to-scalar ratio is suppressed by the factor (T/H)(1 + Q)5/2 compared with the
standard cold inflation.

Hall, Moss and Berera [188] have calculated the spectral index in warm inflation for the strong
dissipative regime with Q >> 1 or Γ >> 3H. We shall here follow Visinelli [189] and permit arbitrary
values of Q. Equation (6.32.9) can be written

.
H = −(κ/2)(1 + Q)

.
φ

2
, (6.32.14)

which replaces the corresponding cold inflation Equation (2.12). Using Equations (3.1), (6.32.4), (6.32.6),
(6.32.14) and finally (6.32.9) we get

ε =
1

2κ

(
V′

V

)2

=
κ

2

[
(1 + Q)

.
φ

H

]2

= − (1 + Q)

.
H
H2 . (6.32.15)

The Hubble slow roll parameters can be written

εH ≡
1

2(1 + Q)

(
V′

V

)2

, ηH ≡
1

1 + Q

[
V′′

V
− 1

2

(
V′

V

)2
]

. (6.32.16)

Hence
ε = (1 + Q)εH . (6.32.17)
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During the inflationary era the energy density of the radiation is much less than the energy density
of the inflaton field, ργ << ρφ. Using Equation (6.32.12) this condition takes the form

εH << 2
1 + Q

Q
. (6.32.18)

In the strong dissipation regime this reduces to εH << 2.
Hall, Moss and Berera [190] have defined the end of the slow roll era for warm inflation by the

condition εH = 1 which in the strong dissipation regime corresponds to ργ = ρφ/2. Note that εH = 1

means
.

H + H2 = 0 and therefore
..
a = a

( .
H + H2

)
= 0. Hence for these models inflation ends with a

transition from accelerated expansion to linear expansion, like that of the empty Milne universe.

Differentiation of Equation (6.32.6) and using that
( .

φ
)′

=
..
φ/

.
φ gives

V′′ =
Γ′V′

Γ + 3H
− 3H(1 + Q)

..
φ
.
φ
− 3

.
H. (6.32.19)

Dividing by κ V and using the first of Equation (6.32.4) in the two last terms lead to

η =
1
κ

V′′

V
=

Q
1 + Q

1
κ

Γ′V′

ΓV
− 1 + Q

H

..
φ
.
φ
−

.
H
H2 . (6.32.20)

Using Equation (6.32.19) we get

..
φ

H
.
φ
=

1
1 + Q

(
ε + Qβ

1 + Q
− η

)
, β ≡ 1

κ

Γ′V′

ΓV
, (6.32.21)

in agreement with Equation (2.14) of Visinelli [189]. Hall, Moss and Berera [190] and
Rezazadeh et al. [173] have calculated that in the strong dissipative regime the scalar spectral index
parameter, the tensor spectral index and the tensor-to-scalar ratio are

δns =
3

2Q

[
3
2
(ε + β)− η

]
, nt = −

2ε

Q
, r =

1
6MP

(2σ V)1/4
(

ε

Q3

)3/4
, (6.32.22)

where σ is the Stefan-Boltzmann constant.
It may be noted that in warm inflation the condition for slow roll is that the absolute values of

ε, η and β are much smaller than 1 + Q.
Moss and Xiong [191] have deduced a general expression for the scalar spectral tilt in warm

inflation, and Herrera [192] has shown that when the dissipation coefficient is independent of the
temperature, their expression takes the form

δns =
17 + 6Q

4(1 + Q)2 ε +
1 + 9Q

4(1 + Q)2 β− 3
2

1
1 + Q

η. (6.32.23)

In the weak dissipative regime this expression reduces to

δns =
1
4
(17ε + β− 6η) (6.32.24)

6.32.2. Warm Polynomial Inflation

Visinelli [193] has investigated warm inflation with a polynomial potential which we write in
the form

V = M4φ̂p, (6.32.25)
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where φ̂ = φ/MP since the potential and the inflaton field have dimension equal to the fourth and first
power of energy, respectively. Here M represents the energy scale of the potential when the inflaton
field has Planck mass. Furthermore he assumes that the dissipative term is also monomial

Γ = Γ0φ̂q/2. (6.32.26)

He considered models with p > 0 and q > p. However in the present article we shall also consider
polynomial models with p < 0. Note that q = 0 corresponds to a constant dissipation coefficient.

From Equations (6.32.25) and (6.32.26) we have

Q = Q0φ̂
q−p

2 , Q0 =
Γ0MP√

3 M2
. (6.32.27)

The constant Q0 represents the strength of the dissipation. For q = p the dissipative ratio is
constant, Q = Q0. We shall here consider the strong dissipative regime where Q >> 1. Then the third
of Equations (6.32.4) reduces to

.
φ = − V′

Γ
. (6.32.28)

Inserting Equations (6.32.25) and (6.32.26) gives

.
φ = − pM4

Γ0MP
φ̂p− q

2−1. (6.32.29)

Integration leads to

φ(t) =

[
4 + q− 2p

2

(
K− pM4

Γ0Mp− q
2

t

)] 2
4+q−2p

, q > 2(p− 2) . (6.32.30)

where K is a constant of integration. The initial condition φ(0) = 0 gives K = 0.
The special cases (i) Γ = V/M3

P, i.e., Γ0 = M4/M3
P , q = 2p and (ii) Γ = Γ0, i.e., q = 0, both with

the initial condition φ(0) = 0, i.e, K = 0, have been considered by Sharif and Saleem [194]. The latter
case was originally considered by Taylor and Berera [195]. For these cases the condition φ(t) > 0
requires p < 0. In the first case Equation (6.32.32) reduces to

φ̂ =
√
− 2pMP t. (6.32.31)

Note that the time has dimension inverse mass with the present units, so that MPt
is dimensionless.

Visinelli, however, has considered polynomial models with p > 0. Then we have to change the
initial condition. The corresponding solution of Equation (6.32.31) with q = 2p and the inflaton field
equal to the Planck mass at the Planck time gives

φ̂ =
√

1− 2pMP(t− tP). (6.32.32)

It may be noted that q = 2(p− 2) gives a different time evolution of the inflaton field.
Then Equation (6.32.29) with the boundary condition φ(tP) = MP has the solution

φ̂ = exp

[
− p M4

Γ0M2
P
(t− tP)

]
. (6.32.33)

In this case the inflaton field decreases or increases exponentially, depending upon the sign of p.
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Inserting Equations (6.32.25) and (6.32.27) into Equations (6.32.15), (6.32.20) and (6.32.21),
the slow-roll parameters are

ε =
p2

2
1

φ̂2 , η =
2(p− 1)

p
ε , β =

q
p

ε. (6.32.34)

With these expressions Equation (6.32.23) valid in the regime of strong dissipation, Q >> 1, gives

δns =
3(4 + 3q− p)

4p
ε

Q
. (6.32.35)

The slow-roll regime ends when at least one of the parameters (6.32.34) is not much smaller than
1 + Q. In the strong dissipative regime Q >> 1 and ε f = Q f . Using Equations (6.32.27) and (6.32.34)
we then get

φ̂ f =

(
p2

2Q0

) 2
4+q−p

. (6.32.36)

The number of e-folds, N, in the slow roll era for this model has been calculated by Visinelli [193].
It is defined by

N = ln
a f

a
=

t f∫
t

H dt =

φ f∫
φ

H
.
φ

dφ. (6.32.37)

Using Equations (6.32.4) and (6.32.6) we get

N =
1

M2
P

φ∫
φ f

(1 + Q)
V
V′

dφ. (6.32.38)

Inserting the potential (6.32.25), performing the integration and considering the strong dissipative
regime, gives

N ≈ 2Q0

p(4 + q− p)

(
φ̂

4+q−p
2 − φ̂

4+q−p
2

f

)
. (6.32.39)

The time dependence of the inflaton field is given by Equation (6.32.32) when p < 0 showing that
φ f > φ in this case, and by Equation (6.32.32) when p > 0 implying φ f < φ in that case, showing that
N > 0 in both cases.

φ̂ ≈
(

p(4 + q− p)N
2Q0

) 2
4+q−p

. (6.32.40)

Inserting this into the first of Equation (6.32.34) and Equation (6.32.27) gives

ε ≈ p2

2

[
2Q0

p(4 + q− p)N

] 4
4+q−p

, Q ≈ Q0

[
p(4 + q− p)N

2Q0

] q−p
4+q−p

(6.32.41)

Inserting these expressions into Equation (6.32.35) gives

δns ≈
3(4 + 3q− p)
4(4 + q− p)

1
N

. (6.32.42)

Note that with q = 0, i.e., a constant value of the dissipation parameter Γ, this equation reduces to

δns =
3

4N
, (6.32.43)
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for all values of p. Then N = 60 gives δns = 0.012 which is smaller than the preferred value from the
Planck data, δns = 0.032 . Inserting q = 2p in Equation (6.32.44) and solving the equation with respect
to p gives,

p =
4(4Nδns − 3)
15− 4Nδns

. (6.32.44)

The Planck values δns = 0.032 , N = 60 give p = 2.56 and q = 5.11, and hence is negative in
conflict with the Planck observations.

Panotopoulos and Videla [183] have investigated the tensor-to-scalar ratio in this model with
p = 4. According to Equation (6.1.36) δns = 2/N in this case for cold inflation. For δns = 0.032
this corresponds to N ≈ 62 which is an acceptable number of e-folds. Then Table 1 shows that the
tensor-to-scalar ratio is r = 0.32, which is much larger than allowed by the Planck observations.
Furthermore, in this case case r = 8δns. Panotopoulos and Videla found the corresponding δns,
r− relation in warm inflation with Γ = aT, where a is a dimensionless parameter. They considered
two cases.

A. The weak dissipative regime. In this case Q << 1 and Equation (6.32.13) reduces to rW = (H/T)r.
They then found

rW ≈
0.01√

a
δns. (6.32.45)

With δns = 0.032 and rW < 0.12 this requires a > 7× 10− 6. However, they also found that
in this case δns = 1/N giving N = 31 which is too small to be compatible with the standard
inflationary scenario.

B. The strong dissipative regime. Then Q >> 1 and rW ≈
(

H/T Q5/2
)

r. They then found

δns =
45

28 N
, rW =

3.8× 10−7

a4 δns. (6.32.46)

Then N = 50 and a > 1.8× 10−2, so this is a promising model.
Taylor and Berera [195] have briefly considered warm inflation models with an exponential

potential, V = V0 exp(φ/M), and found that in the strong dissipation regime the scalar spectral index
parameter δns for models of this type is

δns = −
3
8

(
MP
M

)2 1
Q

, (6.32.47)

and hence is negative in conflict with the Planck observations.

6.32.3. Warm Natural Inflation

Visinelli [188] has investigated warm natural inflation with potential

V(φ) = V0
(
1 + cos φ̃

)
= 2V0 cos2(φ̃/2

)
. (6.32.48)

Here φ̃ = φ/M, and M is the spontaneous symmetry breaking scale. He assumed that the
dissipation coefficient Γ is independent of the inflaton field, so that β = 0. Inserting the definitions of ε

and η into Equation (6.32.23) then gives

δns =
3

2κQV2

(
3
4

V′2 −V V′′
)

. (6.32.49)

Inserting the potential gives

δns =
3

8κQ
3− cφ

1 + cφ
, (6.32.50)
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where cφ is given in Equation (6.5.3). From the first of the Equation (6.32.4) with the potential (6.32.48)
we have

H =
√
(κ/3)V0

(
1 + cφ

)
. (6.32.51)

Equations (6.32.5) and (6.32.51) then give

Q =
Γ√

3κV0
(
1 + cφ

) . (6.32.52)

Hence

δns = A
3− cφ√

1 + cφ
, A =

3
8Γ

√
3V0

κ
. (6.32.53)

We shall now express the δns in terms of the number of e-folds of expansion during the slow
roll era for this inflationary universe model, again following Visinelli. Assuming that the dissipation
parameter Γ is independent of φ, i.e., that β = 0, the number of e-folds is given by

N ' −Γ

φ f∫
φi

H(φ)

V′(φ)
dφ. (6.32.54)

Differentiating the potential (6.32.48) and inserting Equation (6.32.51) we get

N =
α

2

φ̃ f∫
φ̃i

√
1 + cos x
sin x

dx =
α√
2

ln
tan
(

φ̃ f /4
)

tan
(
φ̃i/4

) . (6.32.55)

Hence,

tan
φ̃i
4

= tan
φ̃ f

4
exp

(
− β N

2

)
. (6.32.56)

Visinelli has argued that
φ̃ f = π − β, (6.32.57)

giving

tan
φ̃ f

4
=

1− tan(β/4)
1 + tan(β/4)

. (6.32.58)

Inserting this into Equation (6.32.56) gives

tan
φ̃i
4

= γ exp
(
− β N

2

)
, γ =

1− tan(β/4)
1 + tan(β/4)

(6.32.59)

Applying the trigonometric identity

√
1 + cos θ =

√
2

1− tan2(θ/4)
1 + tan2(θ/4)

, (6.32.60)

in the expression (6.32.59) and inserting the result into Equation (6.32.53) we finally arrive at

δns =
3
8

β
exp(2βN) + γ4

exp(2βN)− γ4 . (6.32.61)
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Here we must have β << 1 in order to give the Planck value δns = 0.032 for N = 60.
Hence, Equation (6.32.59) gives γ ≈ 1. A good approximation for δns is therefore

δns ≈ (3/8)βcoth(βN). (6.32.62)

Inserting δns = 0.032 and N = 60 gives β = 0.08.
Visinelli [188] found that the tensor-to-scalar ratio for this inflationary model is

r = 128κ

√
π

Γ

.
φ

2

T
√

H
. (6.32.63)

Differentiating the expression (6.32.51) gives

.
H = −κV0

6M
sφ

.
φ

H
, sφ ≡ sin φ̃ (6.32.64)

Combining this with Equation (6.32.14) in the strong dissipative regime and using
Equation (6.32.5) gives

.
φ =

V0sφ

M Γ
. (6.32.65)

The energy density of the radiation is

ργ = aT4, (6.32.66)

where a = 7 × 5657 × 10−16 J·m−3·K−4 = 4.69 × 10−6 GeV·m−3·K−4 is the radiation constant.
Combining with Equation (6.32.7) we get

T =

(
Γ

4aH

)1/4 .
φ

1/2
. (6.32.67)

Equations (6.32.63), (6.32.65) and (6.32.66) give

r = B
s3/2

φ(
1 + cφ

)1/8 , B =
384 · 35/8κ7/8

√
6π V11/8a1/4

M3/2 Γ9/4 . (6.32.68)

Visinelli [188] has evaluated the constant B and concluded that for this type of inflationary
universe model the expected value of r is extremely small. If observations give a value r > 10−14 this
model has to be abandoned.

6.32.4. Warm Viscous Inflation

As noted by del Campo, Herrera and Pavón [196], it has been usual, for the sake of simplicity, to
study warm inflation models containing an inflaton field and radiation, only, ignoring the existence of
particles with mass that will appear due to the decay of the inflaton field. However, these particles
modify the fluid pressure in two ways: (i) The relation between pressure and energy density is no
longer p = (1/3)ρ as it is for radiation. A simple generalization is to describe the mixture of matter
and radiation as a fluid with equation of state p = (γ− 1)ρ, where γ is the adiabatic constant with
value 0 ≤ γ ≤ 2. (ii) Due to interactions between the particles and the radiation there will appear a
bulk viscosity so that the effective pressure takes the form pe f f = p + pζ , where

pζ = −3ςH, (6.32.69)

is a “viscous pressure” and ς a coefficient of bulk viscosity.
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Following Setare and Kamali [197] the second of the Equation (6.32.2) is now generalized to

.
ρ + 3H(ρ + p− 3ζH) = Γ

.
φ

2
. (6.32.70)

With quasi static production of radiation we have
.
ρ << 3H(γρ− 3ζH) and

.
ρ << Γ

.
φ

2
.

The Equation (6.32.70) reduces to

γρ = Q
.
φ

2
+ 3ζH. (6.32.71)

Equations (3.7) and (6.32.9) give

εH =
κ

2
(1 + Q)

.
φ

2

H2 . (6.32.72)

Using Equation (6.32.1) with ργ = 0 we get

(2/3)εHρφ = (1 + Q)
.
φ

2
. (6.32.73)

Let us for a moment consider the strong dissipative regime with Q >> 1. Then Equation (6.32.73)
reduces to

(2/3)εHρφ = Q
.
φ

2
. (6.32.74)

In this case we get
γρ = (2/3)εHρφ + 3ζH. (6.32.75)

Hence the slow roll condition εH << 1 requires that

ρφ >> (3/2)(γρ− 3ζH). (6.32.76)

6.32.5. Warm Viscous Intermediate Inflation

We shall now consider the warm, viscous, intermediate inflation models studied by Setare and
Kamali [197] in the strong dissipation regime. This is also similar to the isotropic universe models
corresponding to the anisotropic models considered by Sharif and Saleem [194]. The scale factor is
given in Equation (6.30.1) and the Hubble parameters and its derivatives are given in Equation (6.30.2),
where the expressions must be multiplied by A in the present case. In order to find the time evolution
of the inflaton field we now write Equation (6.32.9) as

.
φ̂ = ±

√
− 2

.
H/(1 + Q). (6.32.77)

Inserting the expression (6.30.2) for
.

H into Equation (6.32.77) gives

.
φ̂ = ±

√
2α(1− α)

1 + Q
t− 1
P t̂

α
2−1. (6.32.78)

where tP is the Planck time. Note that this requires 0 < α < 1.
Both Setare and Kamali [197] and Sharif and Saleem [194] have considered two cases. In the first

one assumes
Γ = Γ(φ) = V(φ),ζ = ζ1ρ. (6.32.79)

Equations (6.32.4) and (6.32.5) then give

Q = tP H. (6.32.80)
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Furthermore, for several reasons, the authors restricted their analysis to the strong dissipative
regime where Q >> 1. Equations (6.32.77) and (6.32.78) then reduce to

.
φ̂ = ±

√
− 2

.
H

tP H
=
√

2(1− α) (tPt)− 1/2, (6.32.81)

where we have used Equation (6.30.2). Integrating with the initial condition φ(0) = 0 and assuming
that φ(t) > 0 we get

φ̂(t) = 2
√

2(1− α) t̂. (6.32.82)

which is different from the corresponding Equation (6.31.5) for cold intermediate inflation. We see
that φ is an increasing function of time. Inserting the expression (6.30.2) for H into the first of the
Equation (6.32.4) gives

V(t) = 3 α2M4
P t̂2(α−1). (6.32.83)

Hence the potential decreases with time. Combining this with Equation (6.32.82) leads to

V(φ) = 3α2M4
P

(
φ̂

2
√

2(1− α)

)4(α−1)

. (6.32.84)

Inserting the expressions (6.32.79) into Equation (6.32.71) we obtain

ρ =
V

.
φ

2

3H(γ− 3ζ1H)
. (6.32.85)

Hence in order that the density of the mixture of matter and radiation shall be positive, we must
have ζ1 < γ/3H. Inserting the expressions (6.30.2), (6.32.81) and (6.32.83) we find the evolution of the
density with time,

ρ =
2α(1− α)M4

P t̂α−2

γ− 3ζ1αMP t̂α−1 . (6.32.86)

Solving Equation (6.32.81) with respect to time gives

t̂ =
φ̂2

8(1− α)
. (6.32.87)

Inserting this into Equation (6.32.86) gives the density as a function of the inflaton field,

ρ =
2α(1− α)M4

P

[
φ̂/2

√
2(1− α)

]2(α−2)

γ− 3ζ1αMP

[
φ̂/2

√
2(1− α)

]2(α−1)
. (6.32.88)

Setare and Kamali [197] and Sharif and Saleem [194] used the Hubble slow roll parameters (3.7).
In the strong dissipative regime with Q >> 1 they take the form

εH = −
.

H
H2 =

1
2Q

(
V′

V

)2

, ηH = −
..
H

2 H
.

H
=

1
Q

[
V′′

V
− 1

2

(
V′

V

)2
]

. (6.32.89)

Furthermore Setare and Kamali have shown that for this type of inflationary models the scalar
spectral index parameter is given as

δns = 2ηH − 5εH . (6.32.90)
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Differentiating the expression (6.32.83) gives

εH =
1− α

α

(
φ̂

2
√

2(1− α)

)− 2α

, ηH =
3− 2α

2α

(
φ̂

2
√

2(1− α)

)− 2α

=
3− 2α

2(1− α)
εH . (6.32.91)

Inserting the last expression for ηH into Equation (6.32.91) gives

δns =
3α− 2
1− α

εH . (6.32.92)

Together with the expression (6.32.91) for εH this leads to

δns =
3α− 2

α

(
φ̂

2
√

2(1− α)

)− 2α

. (6.32.93)

Note that the scale independent Harrison-Zeldovich spectrum occurs for α = 2/3.
The slow roll era ends when the inflaton field has a value φ f so that εH

(
φ f

)
= 1, corresponding

to ε
(

φ f

)
= Q, which gives (

φ̂ f

2
√

2(1− α)

)2α

=
1− α

α
. (6.32.94)

The number of e-folds is given by Equation (6.32.40), which in the present case takes the form

N =
1√

3 MP

φ f∫
φ

V3/2

V′
dφ. (6.32.95)

Inserting the potential (6.32.84) and integrating gives

N =

(
φ̂

2
√

2(1− α)

)2α

−
(

φ̂ f

2
√

2(1− α)

)2α

=

(
φ̂

2
√

2(1− α)

)2α

− 1− α

α
. (6.32.96)

Hence (
φ̂

2
√

2(1− α)

)2α

=
Nα + 1− α

α
. (6.32.97)

Inserting Equation (6.32.97) into Equation (6.32.93) leads to

δns =
3α− 2

Nα + 1− α
. (6.32.98)

A positive value of δns requires α > 2/3. Equation (6.32.98) can be written

α =
2 + δns

3 + δns − Nδns
≈ 2

3− Nδns
. (6.32.99)

Inserting the Planck value δns = 0.032 and N = 60 gives α ≈ 1.9. This is in conflict with the
requirement 0 < α < 1. The values 2/3 < α < 1 give 0 < δns < 1/N = 0.16 which is smaller than
allowed by the BPK-data.
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In the second case Setare and Kamali and Sharif and Saleem assumed that Γ = Γ0 , ζ = ζ0.
Equation (6.4) then takes the form. Using Equations (6.32.79) and (6.30.2) and integrating with the
initial condition φ(0) = 0, leads to

φ(t) = φ1 t̂α−1/2 , H(φ) = αMP φ̃
2(α−1)
2α−1 , φ1 =

2α MP
2α− 1

√
6MP(1− α)

Γ0
. (6.32.100)

where φ̃ = φ/φ1. Hence from the first of the equations Equation (4.32.4) we have

V(φ) = 3α2M4
P φ̃

4(1−α)
2α−1 . (6.32.101)

From Equations (6.32.1) and (6.32.100) the viscous pressure is

pζ = −3ζ0αM2
P φ̃

2(1−α)
2α−1 . (6.32.102)

In the present case Equation (6.32.84) is replaced by

γρ =
Γ0

3

.
φ

2

H
+ 3ζ0H. (6.32.103)

Differentiation the first of Equation (4.32.100) we have

.
φ =

φ1MP
2

(2α− 1) t̂α− 3
2 . (6.32.104)

Inserting this, together with the expression (6.31.2) for H into Equation (6.32.103) gives the time
evolution of the density of the matter-radiation fluid,

ρ =
MP
3γα

[
Γ0φ2

0

(
α− 1

2

)2
t̂α−2 + ζ0(3α)2 t̂α−1

]
. (6.32.105)

Substituting for t from Equation (6.32.99) we obtain the density as a function of the inflaton field

ρ =
MP
3γα

[
Γ0φ2

0

(
α− 1

2

)2
φ̃

2(α−2)
2α−1 + ζ0(3α)2φ̃

2(α−1)
2α−1

]
. (6.32.106)

In this case εH and ηH becomes

εH =
1− α

α
φ̃−

2α
2α−1 , ηH =

2− α

2α
φ̃−

2α
2α−1 =

2− α

2(1− α)
εH . (6.32.107)

The expression for ηH is different for that of Setare and Kamali and will lead to a different
conclusion than their concerning the acceptability of this class of inflation models. Inserting the
expressions (6.32.107) into Equation (6.32.89), the scalar spectral index is

δns =
4α− 3
1− α

εH . (6.32.108)

Hence,

δns =
4α− 3

α
φ̃−

2α
2α−1 . (6.32.109)

The final value of φ f is given by

φ̃ f
2α

2α−1 =
1− α

α
. (6.32.110)
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The number of e-folds is

N = φ̃
2α

2α−1 − φ̃ f
2α

2α−1 = φ̃
2α

2α−1 − 1− α

α
. (6.32.111)

Hence
φ̃

2α
2α−1 = N +

1− α

α
. (6.32.112)

The scalar spectral index is

δns =
4α− 3

Nα + 1− α
≈ 4α− 3

α

1
N

, (6.32.113)

which can be written
α ≈ 3

4− Nδns
. (6.32.114)

Inserting the Planck value δns = 0.032 and N = 60 gives α = 1.4. This is outside the range
allowed by Equation (4.32.78), α < 1, which requires N < 31. Hence these models are not acceptable
for realistic inflation. However in the anisotropic case considered by Sharif and Saleem, one may
obtain agreement with the Planck data for α < 1. The tensor to scalar ratio has a very small value in
these models.

In the case (i) considered above the dissipation coefficient is assumed to be proportional to
the potential of the inflaton field, Γ = Γ(φ) = κ V(φ)/MP. Combining this with the first of
Equations (6.32.4) we get Γ = 3H2/MP. Furthermore in the strong dissipative regime with Γ >> 3H
this leads to H >> MP. With H ≈ (1/MP)

√
V/3 these models have V >> 3M4

P.
The slow roll era begins at a point of time ti when the inflaton field is given by Equation (6.32.81).

Combining this with Equation (6.32.73) leads to

ti =

(
N +

1− α

α

)1/α

tP ≈ N1/αtP. (6.32.115)

With N = 60 , α = 1.4 we get ti ≈ 18 tP. A smaller value of α corresponds to a later beginning of
the inflationary era.

V. Karmali and Setare have considered warm viscous inflation models in the context of brane
cosmology using the so-called chaotic potential (4.1.1) with α = 3/2. The corresponding models in
ordinary (not brane) spacetime correspond to taking the limit that the brane tension λ→ ∞ in their
equations. They first considered the case Γ = Γ0. Then the time evolution of the inflaton field is given
by Equation (6.31.5) with α = 3/2. In this case δns = 0.012 which is smaller than the preferred value
from the Planck data. Karmali and Setare got a different result. Letting λ→ ∞ in their Equation (68)
gives δns = 0, i.e., a scale invariant spectrum.

Next they considered the case Γ = Γ(φ) = β V(φ)/M3
P where β is a dimensionless constant.

With β = 1 this corresponds to the first case considered by Sharif and Saleem. It will now be shown
that this model is in conflict with observations. With V = 3M2

PH2 we then have Γ(φ) = 3βH2/MP.
In the strong dissipation regime: Γ >> H. Hence 3βH2 >> MPH, giving 3β H >> MP.

We now use the constraints from the Planck satellite data, H < 1.8× 1013GeV. This gives a
lower bound on β as β >> MP/3H = 4.4× 104. Hence the model with β = 1 is in conflict with the
Planck data.
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6.32.6. The N-Formalism Applied to Warm Inflation

We shall here follow the paper of R. Herrera [192] and use units so that κ = 1. In warm inflation
the relationships of the derivatives of V with respect to φ and N, the first one corresponding to
Equation (5.42) in cold inflation, are

V′2 = (1 + Q)V V,N , V′′ =
(1 + Q)

(
V2

,N + V V,NN

)
+ V V,N Q,N

2V,N
(6.32.116)

Furthermore for the derivatives of the dissipation coefficient Γ with respect to φ and N we have

Γ,φ =
[
(1 + Q)V

V,N

]1/2
Γ,N (6.32.117)

Hence the potential slow roll parameters of warm inflation as given in Equations (6.32.15), (6.32.20)
and (6.32.21) take the forms

ε = (1 + Q)
V,N
2V

, η =
(1 + Q)

(
V,2N +V V,NN

)
+ V V,N Q,N

2V V,N
, β = (1 + Q)

Γ,N
Γ

(6.32.118)

The Equation (6.32.23) for the scalar spectral tilt can then be written

δns =
11 + 3Q
8(1 + Q)

V,N
V
− 3

4
V,NN
V,N

+
1 + 9Q

4(1 + Q)

Γ,N
Γ
− 3

4
Q,N

1 + Q
(6.32.119)

or using that Γ = 3HQ,

δns =
11 + 3Q
8(1 + Q)

V,N
V
− 3

4
V,NN
V,N

+
1 + 9Q

4(1 + Q)

H,N
H

+
1
4

1 + 6Q
1 + Q

Q,N
Q

. (6.32.120)

Since 3H2 ≈ V in the slow roll approximation we obtain

δns =
1
4

(
6

V,N
V
− 3

V,NN
V,N

+
1 + 6Q
1 + Q

Q,N
Q

)
. (6.32.121)

Using Equations (6.32.4) and (6.32.118) it follows that Equation (6.32.13) for the tensor-to-scalar
ratio for warm inflation takes the form

rw =
8

√
3(1 + Q)3/2

V,N
T V3/2 . (6.32.122)

I follows from Equations (3.62), (6.32.4), (6.32.5) and (6.32.116) that

φ = φ0 +

N∫
0

[
V,N

(1 + Q)V

]1/2

dN. (6.32.123)

From Equations (6.32.7) and (6.32.116) we have

T =

[
Q

4Cγ(1 + Q)

V,N
V

]1/4
. (6.32.124)

Hence the tensor-to-scalar ratio is

rw = 8

[
4CγV,3N

9 Q(1 + Q)5V5

]1/4

. (6.32.125)
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In the weak dissipative regime where Q << 1, the φ, N−relation can be written

φ = φ0 +

N∫
0

(
V,N
V

)1/2
dN. (6.32.126)

Using Equations (5.32.124), (6.32.121) and (6.32.122) then reduce to

δns =
1
4

(
ln

QV6

V,3N

)
,N , rw = 8

(
4Cγ

9
V,3N
QV5

)1/4

. (6.32.127)

In the strong dissipative regime where Q >> 1, the φ, N−relation can be written

φ = φ f +

N∫
0

(
V,N
QV

)1/2

dN. (6.32.128)

Then

δns =
3
4

(
ln

Q2V2

V,N

)
,N , rw = 8

(
4Cγ

9
V,3N

Q6V5

)1/4

. (6.32.129)

Note that the only difference between the expressions for δns and rw in terms of N in the weak
and strong regime is that Qweak ↔ Q6

strong . It follows from Equations (6.32.127) and (6.32.129) that the
potential is in both cases given by

V(N) = r4
W exp

(
4
∫

δnsdN
)

. (6.32.130)

Herrara [192] has considered a few examples. In the first one

δns =
2
N

, rw =
1

N(1 + ξN)
. (6.32.131)

In this case the δns, r−relation is

rw =
δ2

ns
2(2ξ + δns)

. (6.32.132)

The observational result that rW < 0.04 = rmin then leads to the requirement

ξ >
δns(δns − 2rmin)

4rmin
. (6.32.133)

Insering δns = 0.032 gives ξ > − 0.0096.
Equations (6.32.130) and (6.32.131) give the potential as a function of N

V(N) =
A

(ξ + 1/N)4 , (6.32.134)

where A is a constant. Inserting this into Equation (6.32.126) gives in the weak regime

N =
1

1− ξ exp
(
− φ−φ0

4A

) . (6.32.135)
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From the last two equations we have the potential

V(φ) =
A[

1 + ξ
(

1− exp
(
− φ−φ0

4A

))]4 . (6.32.126)

In the strong regime Equations (6.32.128) and (6.32.129) lead to an integral that cannot be solved
in terms of elementary functions.

In the special case that ξ = 0 we have the prediction δns = 2/N and rw = 1/N,
i.e., rw = δns/2 = 0.016. Equation (6.32.130) then gives V(N) = K1N4. Then we get from
Equation (6.32.126) N = [(φ− φ1)/4]2. Hence in this case the potential is

V(φ) = K2(φ− φ1)
8. (6.32.137)

The expressions for cold inflation corresponding to those in Equation (6.32.131) are found in
Equation (6.1.42). For these models r < 0.04 require a value of the exponent less than 0.3, but warm
inflation gives generally a smaller value of r than the corresponding cold inflation models.

6.33. Tachyon Inflation

So called tachyon inflation is a string theory inspired model of inflation where the action has a
certain form [28,61,198,199]. Although it has been shown by Kofman and Linde [200] that there are
certain problems with tachyon inflation, it is considered here because it also has some nice properties.
A recent analysis leading to observational constraints on tachyon inflation has been presented in [201].

6.33.1. General Tachyon Inflation Equations

In these models it has become usual to introduce a so-called tachyon field and denote it by T.
A rolling tachyon field [202] can be described as a fluid which in the homogeneous limit has energy
density and pressure

ρ =
V(T)√
1−

.
T

2
, p = −V(T)

√
1−

.
T

2
= − ρ

(
1−

.
T

2
)

, (6.33.1)

where V(T) is the tachyon potential. Hence [194],

w = p/ρ = −
(

1−
.
T

2
)

, (6.33.2)

showing that the tachyon matter interpolates smoothly between LIVE for
.
T = 0 and dust for

.
T = 1.

The equation of motion of the tachyon field is

..
T +

(
3H

.
T +

VT
V

)(
1−

.
T

2
)
= 0. (6.33.3)

where we use the notation VT ≡ dV/dT.
For this class of models Friedmann’s first and second equations take the form

H2 =
κ

3
ρ =

κ

3
V√

1−
.
T

2
,

..
a
a
= H2 +

.
H = − κ

6
(ρ + 3p) =

κ

3
V√

1−
.
T

2

(
1− 3

2

.
T

2
)

(6.33.4)
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There will be accelerated expansion when
.
T

2
< 2/3. Inserting Friedmann’s first equation gives

.
H = − κ

2
V

.
T

2√
1−

.
T

2
= − 3

2
H2

.
T

2
. (6.33.5)

Since
.

H = HT
.
T Equation (6.33.5) may also be written as

.
T = − 2

3
HT

H2 . (6.33.6)

It follows that [199]
.
T

2
= 1−

(
κV

3H2

)2
. (6.33.7)

Inserting (6.33.7) into (6.33.6) gives

H2
.

H =
κ2

6
V2 − 3

2
H4. (6.33.8)

Using Equation (6.33.7) this equation takes the form

H2
T =

1
4

(
9H4 − κ2V2

)
. (6.33.9)

It follows from Equations (6.33.4) and (6.33.5) that Hubble slow roll parameters are

εH = −
.

H
H2 =

3
2

.
T

2
. (6.33.10)

Hence a time independent tachyon field behaves as LIVE and gives exponential expansion,
while integration of Equation (6.33.8) with a tachyon field having

.
T = 1 gives a ∝ t2/3 which is the

behavior of a dust dominated universe. As emphasi zed by Gibbons [194], if the tachyon condensate
starts to roll down the potential with small initial value of

.
T, a universe dominated by this new form

of matter will smoothly evolve from a phase of accelerated expansion to a phase dominated by a
non-relativistic fluid.

It follows from Equations (6.33.4) and (6.33.5) that

..
a
a
= H2

(
1− 3

2

.
T

2
)

. (6.33.11)

Hence, the condition for accelerated expansion,
..
a > 0, requires that

.
T

2
< 2/3. From

Equation (6.33.9) we see that in terms of the Hubble slow roll parameter εH the rate of change
of the tachyon field is

.
T = ±

√
2εH

3
. (6.33.12)

Thus the tachyon field varies slowly during the slow roll era, meaning that
.
T

2
<< 1 ,

..
T << 3H

.
T.

It then follows that Equations (6.33.3) and (6.33.4) reduce to

3H
.
T ≈ −VT/V , H2 ≈ κV/3. (6.33.13)
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Note that the first of these equations is different from the corresponding Equation (2.15) of the
standard single field inflation. It follows from Equations (4.33.13) that

.
T =

2√
3κ

(
V− 1/2

)
T

, (6.33.14)

which is different from Equation (2.17). Equations (6.33.10) and (6.33.14) give

εH =
1

2κ

V2
T

V3 . (6.33.15)

Inserting Equation (6.33.13) into (6.33.12) gives

..
a = H2a(1− εH). (6.33.16)

This relation is exact. If εH is neglected in Equation (4.33.12) so that
..
a = H2a, there is exponential

expansion. The equation of state parameter w may then be written

w = −
(

1− 2
3

εH

)
, (6.33.17)

showing that is has a value close to −1.
The tachyon field is related to the usual inflaton field by

φ =
√

V T. (6.33.18)

Hence, during the inflationary era the derivative with respect to the inflaton field is related to the
derivative with respect to the tachyon field by

d
dφ

=
1√
V

d
dT

, (6.33.19)

which leads to

V′ =
VT√

V
, V′′ =

VT T
V
− 1

2
V2

T
V2 , V′′′ =

V3
T

V7/2 − 2
VTVT T

V5/2 +
VT T T

V3/2 . (6.33.20)

Let us now introduce the horizon flow parameters defined in Equation (3.63), which gives

ε1 = −HN

H2 , ε2 = −d ln|ε1|
dN

, ε2ε3 =
1
ε1

d2ε1

dN2 −
(

1
ε1

dε1

dN

)2
. (6.33.21)

Here and in the following we use the notation HN ≡ dH/dN and so forth. Inserting these
expressions into Equations (2.75) and (2.79) leads to

κε1 =
V2

T
2V3 , κε2 = 3 V2

T
V3 − 2 VT T

V2 = − 2√
V

(
VT

V3/2

)
T

, κ2ε2ε3 = 9 V4
T

V6 − 10 V2
T VT T
V5 + 2 VTVT T T

V4 . (6.33.22)

It follows from Equations (3.1) and (3.26) in combination with the expressions (6.33.20),
or alternatively from Equations (3.72) and (3.74) in combination with the expressions (6.33.22) that

η =
1
κ

(
VT T

V2 −
1
2

VT
2

V3

)
, ηH =

1
κ

(
VT T

V2 −
VT

2

V3

)
. (6.33.23)
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On the other hand Fei et al. [75] have defined implicitely the potential slow roll parameter in the
tachyon inflationary scenario by

κηV = 2
VT T

V2 . (6.33.24)

Combining this with Equations (6.33.21) and (6.33.22) gives

ηV = 6ε1 + (ln ε1)N . (6.33.25)

From Equation (3.51) with ε = ε1 and Equation (6.33.19) we have

VT =

√
κV
2ε1

VN . (6.33.26)

Inserting this into the expression for ε1 in Equation (6.20.20) gives

ε1 =
1
2

VN
V

. (6.33.27)

which requires that VN > 0. Integration of Equation (6.33.27) gives

V(N) = V0 exp
[

2
∫

ε1dN
]

. (6.33.28)

From Equations (3.63) and (4.56) we have to lowest order

δns = 2ε1 − (ln ε1)N , r = 16ε1 , αS = (δns)N . (6.33.29)

Inserting Equation (6.33.27) into the first of the expressions (6.33.29) we obtain

δns =

(
ln

V2

VN

)
N

. (6.33.30)

It follows from Equations (6.33.22) and (6.33.14) that the two first horizon-flow parameters are

ε1 =
3
2

.
T

2
, ε2 =

2
..
T

H
.
T

. (6.33.31)

Steer and Vernizzi [28] have shown that to 2. order in the low roll parameters we have the
consistency relationship

nT = − r
8

(
1 + δns −

r
24

)
. (6.33.32)

which replaces the corresponding relation (4.16) in standard single field inflation.
We shall now express the optical parameters in terms of the number of e-folds. Using the first of

the Equation (6.33.22), the Equation (3.50) of the standard single field inflation is replaced by

TN = M2
P

VT

V2 . (6.33.33)

Combing Equation (6.33.1) with (6.33.26) and (6.33.27) we obtain

TN =
√

2MP

√
ε1

V
. (6.33.34)



Universe 2018, 4, 15 135 of 163

Hence the tachyon field is given in terms of the number of e-folds as

T(N) =
√

2MP

∫ √
ε1

V
dN. (6.33.35)

Note also that it follows from Equation (6.33.26) that the relationship between the tachyon field
and the number of e-folds may also be written as

N(T) =
1

M2
P

Tf∫
T

V2

VT
dT, (6.33.36)

When combining Equations (6.33.26) and (6.33.14), we obtain

VT =

√
3
2

H√
ε1

VN . (6.33.37)

Hence, an alternative form of Equation (6.33.36) is

N(T) =

√
3
2

Tf∫
T

H√
ε1

dT. (6.33.38)

Sometimes one needs to calculate the relationship between the tachyon inflaton field T and the
number of e-folds N from a knowledge of the potential V as a function of N. This may be obtained
from Equations (6.33.26), (6.33.27), and (6.33.33) that lead to the relationship

dT
dN

= MP

√
VN
V

. (6.33.39)

or

T = MP

∫ √VN
V

dN. (6.33.40)

We shall now review several types of tachyon inflation models.

6.33.2. Tachyon Inflation with Constant Value of ε2

Q. Fei et al. [75] have considered a tachyon inflation model with constant value of ε2. It then
follows from Equation (6.33.21) that

ε1 = e−ε2 N . (6.33.41)

It follows from Equations (6.33.29) and (6.33.41) that

δns =
r
8
− 1

N
ln
( r

16

)
. (6.33.42)

This function has a minimum at r1 = 8/N with

δns(r1) =
1 + ln(2N)

N
. (6.33.43)

Inserting N = 60 gives δns = 0.096 which is about three times larger than the value favored by
the Planck data. Hence the model with constant value of ε2 is excluded by the Planck data.
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6.33.3. Tachyon Inflation with Constant Value of δns

Fei et al. then considered a model with constant value of δns. Integration of Equation (4.20.31)
with ε1(0) = 1 then gives

r =
16δns

(2− δns)eNδns − 2
≈ 8δns

eNδns − 1
. (6.33.44)

Inserting the Planck value δns = 0.032 and N = 60 gives r = 0.044 which is just at the upper limit
of what is acceptable according to the present observational data.

6.33.4. Tachyon Inflation with Constant Value of ηH

Furthermore, Fei et al. considered a tachyon inflation model with constant Hubble slow motion
parameter ηH . Equation (3.59) can be written

ηH = εH + (1/2)(ln εH),N . (6.33.45)

Integrating this for constant ηH and with εH(0) = 1 gives

εH =
ηH

1− (1− ηH)e−2ηH N . (6.33.46)

Using this expression together with the Equation (4.20) leads to

δns =
4ηH

1− (1− ηH)e−2ηH N − 2ηH , r =
16ηH

1− (1− ηH)e−2ηH N . (6.33.47)

Hence
ηH =

1
8
(r− 4δns). (6.33.48)

Inserting this into the last of the Equation (4.33.47) gives

N =
4

r− 4δns
ln

r(8− r + 4δns)

8(8δns − r)
. (6.33.49)

In Figure 10 we have inserted δns = 0.032 and plotted N as a function of r.
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Inserting this into Equation (4.13) gives 

( ) ( ) 22

6 162 ,
2 2 2 2 V

V V
ns V NN

V V

r
e e ηη

η ηδ η
η η −−= − =
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Hence 

( )1 3 8
16V nsrη δ= − . (6.33.52) 

With 0.032nsδ =  a positive value of Vη  requires 0.085r > . Inserting the expression (6.33.49) 
into the second of expressions (6.33.51) leads to 

( )
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32 8 38 ln
3 8 16 8

ns

ns ns

r r
N

r r
δ

δ δ
+ −

=
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In Figure 11 we have inserted 0.032nsδ =  and plotted N as a function of r. 
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Figure 10. The number of e-folds N as given in Equation (6.33.37) plotted as function of r.

We see that N has a minimum for r ≈ 0.127 with Nmin = 62, so this model is marginally in
agreement with the Planck data.
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6.33.5. Tachyon Inflation with Constant Value of ηV

Fei et al. also considered a tachyon inflation model with constant potential slow motion parameter
ηV . Integrating Equation (6.33.31) then gives

ε1 =
ηV

2− (2− ηV)e−2ηV N (6.33.50)

Inserting this into Equation (4.13) gives

δns =
6ηV

2− (2− ηV)e−2ηN − 2ηV , r =
16ηV

2− (2− ηV)e−2ηV N . (6.33.51)

Hence
ηV =

1
16

(3r− 8δns). (6.33.52)

With δns = 0.032 a positive value of ηV requires r > 0.085. Inserting the expression (6.33.49) into
the second of expressions (6.33.51) leads to

N =
8

3r− 8δns
ln

r(32 + 8δns − 3r)
16(8δns − r)

. (6.33.53)

In Figure 11 we have inserted δns = 0.032 and plotted N as a function of r.Universe 2018, 4, 17  141 of 167 
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2 2 4
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Inserting these expressions into those in Equation (4.56), we obtain  

= = = −
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2
2 2 2 4

0 0 0 0 0 0

ˆ2 8 sinh 2ˆ ˆcosh , , sinhˆcoshns S
TT r T

V T V T T V T
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These expressions are different from those in Equation (6.8.6) for the same potential in standard 
single field inflation. It follows from the expressions for nsδ  and r  that 
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2

0 0
4

4 ns ns

V T
rδ δ

=
−
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( )20 0 min
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Figure 11. The number of e-folds N as given in Equation (6.33.53) plotted as function of r.

We see that in order to have 50 < N < 60 the tensor to scalar ratio must obey 0.036 < r < 0.065
which is marginally in agreement with the Planck data.

Inserting the expression (6.33.51) for r into Equation (3.55) and integrating gives

V(N) =
√

V(0)2 + 2
(
e2ηV N − 1

)
, (6.33.54)

where V(0) =
√

ηV .

6.33.6. Self-Dual Tachyon Inflation

D. A. Steer and F. Vernizzi, [28] and also Rezazadeh, Karami and Hashemi [173] have considered a
tachyon inflation model with the same potential (6.8.1) as in the S-dual model and used the horizon-flow
parameters to calculate the scalar spectral index, its running and the tensor to scalar ratio. The potential
is written

V(T) =
V0

cosh T̂
, (6.33.55)
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where V0 = V(0) and T̂ = T/T0. The tachyon field has approximately the field strength T0 during the
inflationary era. From Equation (6.33.22) we then get

κε1 =
1

2V0T2
0

sinh2T̂
cosh T̂

, κε2 =
1

V0T2
0

1 + cosh2 T̂
cosh T̂

, κ2ε2ε3 =
1

V2
0 T4

0

sinh4T̂
cosh2 T̂

, (6.33.56)

Inserting these expressions into those in Equation (4.56), we obtain

δns =
2

V0T2
0

cosh T̂ , r =
8

V0T2
0

sinh2T̂
cosh T̂

, αS = − 2
V2

0 T4
0

sinh2T̂ . (6.33.57)

These expressions are different from those in Equation (6.8.6) for the same potential in standard
single field inflation. It follows from the expressions for δns and r that

V0T2
0 =

4√
(4δns − r)δns

. (6.33.58)

Inserting the BPK-values δns = 0.32 , r < 0.04 and rmin = 0, corresponding to
(
V0T2

0
)

min = 2/δns,
gives 62.5 < V0T2

0 < 75. Furthermore

αS = − (1/8)rδns. (6.33.59)

Hence |αS| < 0.0005 showing that the running of the scalar spectral index is very small in this
inflationary model.

Inserting the potential (6.33.55) into Equation (6.33.34) gives the number of e-folds

N(T) = V0T2
0

T̂f∫
T̂

dT̂
sinhT̂

= V0T2
0 ln

tanh
(

T̂f /2
)

tanh
(
T̂/2

) . (6.33.60)

The end of the inflationary era takes place when ε1

(
Tf

)
= 1, giving

cosh T̂f = V0T2
0 +

√
V2

0 T4
0 + 1. (6.33.61)

To 2. order in
(
1/2V0T2

0
)

this gives

tanh

(
T̂f

2

)
= 1 +

3
2

(
1

2V0T2
0

)2

. (6.33.62)

Hence we can use the approximation tanh
(

T̂f /2
)

= 1 in Equation (6.33.58), giving

ln
[
tanh

(
T̂f /2

)]
≈ ln 1 = 0, which leads to

tanh
(

T̂
2

)
= e
− N

V0T2
0 . (6.33.63)

It follows that

sinhT̂ =
1

sinh
(

N/V0T2
0
) , cosh T̂ = coth

(
N/V0T2

0

)
. (6.33.64)
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Inserting these expressions into Equation (6.33.57) gives

δns =
2

VoT2
o

coth
(

N
V0T2

0

)
, r = 16

V0T2
0

1
sinh(2N/V0T2

0 )
, αS = − 2

V2
0 T4

0

1
sinh2(N/V0T2

0 )
. (6.33.65)

6.33.7. Exponential Tachyon Inflation

Steer and F. Vernizzi, [28] and Rezazadeh, Karami and Hashemi [173] have also considered a
tachyon inflation model with exponential potential

V(T) = V0e− T̂ . (6.33.66)

The corresponding model in standard inflation was considered in Section 4.4 and then leads to
power law inflation as given in Equation (4.4.7), and a tensor-to-scalar ratio that is larger than allowed
by the Planck data. However in the Tachyon inflation scenario the model with this potential give more
interesting predictions, as will be shown below.

Inserting the potential (6.33.66) into Equation (6.33.15) and integrating with T0 = T(t0) gives the
time dependency of the tachyon potential

e−T̂ =

(
e− T̂0/2 +

t− t0

2
√

3V0

)2
. (6.33.67)

where t0 is a positive constant. The potential has a power law time dependence

V(t) = V0

(
e− T̂0/2 +

t− t0

2
√

3V0

)2
. (6.33.68)

Hence, according to the slow roll approximation (6.33.12) the Hubble parameter is.

H(t) =

√
κV0

3

(
e− T̂0/2 +

t− t0

2
√

3V0

)
. (6.33.69)

The first Hubble slow roll parameter, given in Equation (6.33.11), is

εH =
1

2V0
eT̂ . (6.33.70)

The slow roll era ends when εH

(
T̂f

)
= 1 giving

eT̂f = 2V0. (6.33.71)

Inserting the potential (6.33.66) into Equation (6.33.38) and performing the integration gives

N = V0

(
e−T̂ − e−T̂f

)
. (6.33.72)

The last three equations together with Equation (6.33.22) give

2ε1 = ε2 = ε3 =
2

2N + 1
. (6.33.73)

Inserting this into Equation (4.56) we

δns =
4

2N + 1
, r =

16
2N + 1

, αS = − 8

(2N + 1)2 . (6.33.74)
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Inserting δns = 0.032 gives N = 62 in good agreement with the inflationary requirements.
The expressions (6.33.71) imply r = 4δns = 0.128 which is too large to be compatible with the Planck
data. Furthermore αs = − (1/2)δ2

ns = − 0.0005. Note the agreement with the tachyonic inflation with
exponential inflation and the prediction (6.1.37) of standard inflation with power law inflation having
p = 2—the so-called chaotic inflation.

6.33.8. Inverse Power Law Tachyon Inflation

Rezazadeh, Karami and Hashemi [173] have also considered tachyon inflation with inverse
power-law potential,

V(T) = V0T̂− n. (6.33.75)

Inserting this into Equation (6.33.13) and integrating with T(tP) = MP and n 6= 4 gives

T̂(t) = [1 + A(t− tP)]
2

4−n , A =
n(4− n)M

n
2−1
P

2
√

3V0Tn
0

. (6.33.76)

Hence
V(t) = V0[1 + A(t− tP)]

− 2n
4−n . (6.33.77)

Inserting this into Equation (6.33.4) and neglecting
.
T compared to 1 in the slow roll era, we get

H(t) =
1

MP

√
V0

3
[1 + A(t− tP)]

− n
4−n . (6.33.78)

Normalizing the scale factor to a(tP) = 1 gives

a(t) = exp

{
1

MP A

√
V0

3
[1 + A(t− tP)]

2(2−n)
4−n − 1

}
(6.33.79)

It follows from Equations (6.33.15) and (6.33.75) that the first Hubble slow roll parameter is

εH =
n2

2V0T̂2
0

T̂n−2. (6.33.80)

For n = 2 the slow roll parameter εH is constant, and then there is no graceful exit from the slow
roll era. Furthermore Rezazadeh, Karami and Hashemi [173] have shown that this model is ruled out
by the Planck data. The inflaton field increases with time for n < 4. A graceful exit of the slow roll era
requires that εH increases with time and hence that 2 < n < 4.

Inserting the potential (6.33.73) into Equation (6.33.41) and performing the integration gives

N =
V0T2

0
n(n− 2)

(
T̂2−n − T̂2−n

f

)
. (6.33.81)

The slow roll era ends when εH

(
Tf

)
= 1, giving

T2−n
f =

n2

2V0T̂2
0

. (6.33.82)

Hence

T̂2−n =
n[2(n− 2)N + n]

2V0T2
o

. (6.33.83)
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Inserting this into Equation (6.33.80) gives

ε1 = εH =
n

(n− 2)N + n
. (6.33.84)

From Equation (6.33.28) we now obtain

δns =
4(n− 1)

2(n− 2)N + n
, r =

16n
2(n− 2)N + n

, αS = − 8(n− 1)(n− 2)

[2(n− 2)N + n]2
. (6.33.85)

These expressions imply that

r =
4n

n− 1
δns > 4δns . (6.33.86)

With δns = 0.032 this relationship gives r > 0.128 while the BPK-data require r < 0.04, so this
model is not in agreement with the observational data.

6.33.9. Tachyon-Intermediate Inflation

S. del Campo, R. Herrera and A. Toloza [203] have considered the intermediate inflation in the
tachyonic framework. Then the scale factor is given in Equation (6.30.1). The Hubble parameter and its
derivatives with respect to cosmic time are given in Equation (6.30.2). However Equation (2.1) is now
replaced by (6.33.1) so the density and pressure of the tachyonic field are not given by Equation (6.30.3).

Inserting the expressions (6.30.2) into Equation (6.33.6) and integrating with T(0) = 0 gives

T =
2

2− α

√
2(1− α)

3α
t̂

2−α
2 , (6.33.87)

which replaced Equation (5.30.5) in the ordinary intermediate inflation. It is assumed that 0 < α < 1.
Hence the tachyon field is an increasing function of time. From Equations (6.33.4) and (6.33.6) we obtain

κ V = H
√

3
(

3H2 + 2
.

H
)

. (6.33.88)

Inserting the expressions (6.30.2) gives

κ2 V(t) = 3α2 t̂− 2(1−α)

√
1− 2(1− α)

3α
t̂−α. (6.33.89)

It follows from Equations (6.33.84) and (6.33.86) that the potential as a function of the tachyon
field is

κ2V = A1T− 2β
√

1− A2T− 2(1−β) , β = 2(1−α)
2−α

A1 = 3A2α2
[
(2−β)2β
3(1−β)

]β

, A2 =
{
(2− β)α

[
β

3(1−β)

]}2−β

εH = β
2(1−β)

[
β(1−β)

3

]1−β
T− 2(1−β) , ηH = 1

β εH

(6.33.90)

The Hubble slow roll parameters are given as a function of time in Equation (6.30.9). Combining
this with Equation (6.33.88) leads to

εH =
β

2(1− β)

[
β(1− β)

3

]1−β

T− 2(1−β) , ηH =
1
β

εH . (6.33.91)
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Hence εH is a decreasing function of time. So like standard intermediate inflation there is no
natural finish of the slow roll era, and the parameter εH is used to define the initial value of the inflaton
field by the condition εH(Ti) = 1, giving

T2(1−β)
i =

β

2(1− β)

[
β(1− β)

3

]1−β

. (6.33.92)

When combining Equations (6.30.11) and (6.33.84) we find that the number of e-folds during the
inflationary era is

N =

[
(2− β)

√
3(1− β)

β

]2(1−β)[
T2(1−β) − T2(1−β)

f

]
. (6.33.93)

The tachyon inflaton potential is an increasing function of N. Inserting this into
Equation (6.33.91) gives

T2(1−β) =
β

2(1− β)

[
β(1− β)

3

]1−β{
1 + 2(1− β)[(1− β)(2− β)]− 2(1−β)N

}
. (6.33.94)

Hence

εH =
[(1− β)(2− β)]2(1−β)

2(1− β)N + [(1− β)(2− β)]2(1−β)
. (6.33.95)

In tachyon inflation, the scalar spectral index is not given in the same way as in standard
inflation in terms of the Hubble parameters. However, Rezazadeh et al. [173] have shown that the r,
δns− relation is

r =
8β

2β− 1
δns. (6.33.96)

It follows from this relationship that r > 4δns = 0.128. Hence these inflationary models are ruled
out by the BPK-data which according to Gott and Colley [46], require r < 0.04.

6.33.10. The N-Formalism Applied to Tachyon Inflation

N. Barbosa-Cendejas et al. [61,201] have used the N-formalism and the horizon-flow parameters,
and studied a tachyon inflationary model with n = 1 of the perturbative class considered in Section 5.2.
Then Equation (3.73) takes the form

ε1 =
β

N
. (6.33.97)

Inserting this into Equation (6.33.94) and performing the integration gives

V(N) = V0

(
N
N0

)2β

. (6.33.98)

Substituting this into Equation (6.33.33) and integrating with T(0) = 0 shows that the potential is

V(T) ∝


V0

(
T
T0

) 4β
1−2β , β 6= 1/2

V0e
1

MP

√
V0

2β N0
(T−T0)

, β = 1/2

. (6.33.99)

From Equations (6.33.97) and (6.33.25) we get

δns =
1 + 2β

N
, r =

16β

N
, αS = − 1 + 2β

N2 (6.33.100)
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This gives

β =
1
2
(Nδns − 1) , r = 8

(
δns −

1
N

)
. (6.33.101)

When comparing with Equation (6.1.44) we see that the last of these equations is the same
consistency relationship as that for ordinary polynomial inflation. With N = 50, δns = 0.032 we get
β = 0.3, r = 0.096. This value of the tensor-to-scalar ratio is larger than allowed by the most recent
analysis of the observational data [46], r < 0.04.

Fei et al. [75] have considered a model with

δns =
p

N + A
. (6.33.102)

Inserting this into Equation (6.33.26) gives(
ln

V2

VN

)
N
=

p
N + A

. (6.33.103)

The solution of this equation with V0 = V(0) is

V(N) =


V0

1+C1

[
(N+A)1−p−A1−p

] , p 6= 1

V0
1+C2 ln(1+ N

A )
, p = 1

, (6.33.104)

where C1 and C2 are constants. Inserting this into Equation (6.20.32) gives

ε1 =


C1(p−1)

2(N+A)
[
C1+(Ap−1−C1)(1+ N

A )
p−1] , p 6= 1

C2
2(N+A)[1+C2 ln(1+ N

A )]
, p = 1

. (6.33.105)

The constants are determined by the condition that the slow roll era ends when ε1(0) = 1, giving

C1 =
2Ap

p− 1
, C2 = − 2A. (6.33.106)

Hence the potential and the first horizontal slow roll parameter are

V(N) =


V0

1+ 2A
p−1

[
(1+ N

A )
1−p−1

] , p 6= 1

V0
1−2A ln(1+ N

A )
, p = 1

(6.33.107)

and

ε1 =

 p−1
2(N+A)+(p−1−2A)(1+ N

A )
p , p 6= 1

1
(1+ N

A )[1−2A ln(1+ N
A )]

, p = 1
(6.33.108)

Combining this with Equation (6.33.107) we get the δns, r− relations

r =


16[(N+A)δns−1]

2(N+A)+[(N+A)δns−1−2A](1+ N
A )

(N+A)δns , p 6= 1

Aδns
1+2A ln(Aδns)

, , p = 1
. (6.33.109)

The tensor-to-scalar ratio r is plotted as function of A from the expression (6.33.109) for p 6= 1
with δns = 0.032 and N = 50 in Figure 12.
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The factor (N + A)δns − 1− 2A changes sign for

A = A 1 =
Nδns − 1
2− δns

. (6.33.110)

Inserting N = 50 and δns = 0.032 gives A 1 = 0.31 while N = 60 gives A 1 = 0.45. Because(
1 + N

A 1

)(N+A1)δns
≈ 3× 103 is so large, r changes sign close to A = A 1. Since only positive values of

r are allowed, this class of models require that A < A1. This is the reason of the restricted range of A in
Figure 12.
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Figure 12. The tensor to scalar ratio as given in Equation (6.33.111) for p 6= 1 plotted as function of A in
the region 0.20 < A < 0.315 for N = 50 and δns = 0.032.

It may be noted that

r(A 1) =
16(Nδns − 1)

2N − 1
≈ 8

(
δns −

1
N

)
(6.33.111)

With N = 60 , δns = 0.032 gives r(A 1) ≈ 0.12.
Equation (6.33.103) can be written as

A =
p

δns
− N or p = (N + A)δns. (6.33.112)

Hence A > 0 requires p > Nδns. Inserting N = 50 , δns = 0.032 gives p > 1.6. The value p = 1
gives A = (1/δns)− N. With N > 50 , δns = 0.032 we have A < − 19. However negative values of A
are not allowed by the expression (6.33.109) for p = 1. So the model with p = 1 is excluded by the
Planck data.

The relationship between the tachyon inflaton potential and the number of e-folds of the scale
factor during the slow roll era can be calculated by inserting Equation (6.33.107) into Equation (6.33.35).
Performing the integration with T0 = T(0) one obtains for p 6= 1 , p 6= 2,

N = A[1 + β1(T − T0)]
2

2−p − A , β1 =
(2− p)

√
V0/2

2AMP
. (6.33.113)

Inserting this into Equation (6.33.107) one obtains the inverse power law potential

V(T) =
V0

1 + 2A
p−1

{
[1 + β1(T − T0)]

2(1−p)
2−p − 1

} . (6.33.114)

In the special case with p = p1 and A = A 1 the potential takes the form



Universe 2018, 4, 15 145 of 163

V(T) = V0[1 + β1(T − T0)]
2(p−1)

2−p . (6.33.115)

For p = 2 the potential as given in Equation (6.33.107) takes the form

V(N) =
V0(N + A)

A + (1− 2A)N
. (6.33.116)

Inserting this equation into Equation (6.33.32) and integrating with N(T0) = 0 gives

N = A
[
e
√

V0/2(1/AMP)(T−T0) − 1
]
. (6.33.117)

Substituting this into Equation (6.33.116) gives

V(T) =
V0

1 + 2A
[
e−
√

V0/2(1/AMP)(T−T0) − 1
] . (6.33.118)

The expression reduces to the exponential potential

V = V0e
√

2V0(T−T0)/MP (6.33.119)

if A = 1/2. In this case Equation (6.33.102) gives N = (4− δns)/2δns = 62 which is an acceptable value
of N. Inserting these values into the first expression in Equation (6.33.109) gives r = 0.064. Hence the
tachyonic inflationary model with an exponential potential is allowed by the observational data, while
in the standard inflationary scenario the model with exponential potential gives too high value of r as
seen in Equation (6.4.12).

Fei et al. [75] have also considered a class of tachyonic inflationary models with the first horizontal
slow roll parameter given by

ε1 =
1

(1 + N/N0)
p , (6.33.120)

where I have used the notation of Equation (5.66). The δns, r-relationship is the same as Equation (5.67)
in the standard inflationary scenario, and a prediction of this class of inflationary models is that
r < 0.033. However, the expressions of the potential are different in the tachyonic inflationary scenario.

We can use the Planck data to estimate realistic values of p and N0. The scalar tilt and the
tensor-to-scalar ratio are

δns =
2(

1 + N
N0

)p +
p

N + N0
, r =

16(
1 + N

N0

)p . (6.33.121)

From these equations it follows that the δns, r-relation has the form

δns =
r
8
+

p
N + N0

=
r
8
+

p
N0

( r
16

)1/p
. (6.33.122)

We can now express p and N0 in terms of δns, r and N as[
1−

( r
16

)1/p
]

p = N
(

δns −
r
8

)
, N0 =

8p
8δns − r

− N. (6.33.123)

Inserting δns = 0.032 , r = 0.05 , N = 60, solving the first equation numerically for p,
and inserting the result into the second equation, gives p = 1.6 , N0 = 2. Hence these are realistic
values for this class of tachyonic inflationary models.



Universe 2018, 4, 15 146 of 163

Substituting Equation (6.33.120) into Equation (6.33.27) and integrating gives

V(N) =

 V0e
2

1−p (N+N0) , p 6= 1

V0

(
1 + N

N0

)2N0
, p = 1

. (6.33.124)

It was shown by Fei et al. [75] that the potential cannot be expressed by T in terms of elementary
functions for arbitrary values of p. We therefore proceed with the case p = 1. In this case

N0 =
Nδns − 1
2− δns

, r =
16N0

N + N0
=

16(Nδns − 1)
2N − 1

. (6.33.125)

Inserting δns = 0.032 , N = 60 gives N0 = 0.5 and r = 0.12 which is too large in relation to the
Planck data.

Inserting the expression of the potential for p = 1 in Equation (6.33.124) into Equation (6.33.32)
and integrating with N(T0) = 0 gives

N =

 N0

[
1 +

√
V0
2

1−2N0
2N0

(T − T0)

] 2
1−2N0 − N0 , N0 6= 1/2

1
2

[
e
√

2V0(T−T0) − 1
]

, N0 = 1/2
. (6.33.126)

Combining Equations (6.33.124) and (6.33.126) gives the potentials

V(T) =

 V0

[
1 +

√
V0
2

1−2N0
2N0

(T − T0)

] 4
1−2N9

, N0 6= 1/2

V0 exp
[√

2V0(T − T0)
]

, N0 6= 1/2
. (6.33.127)

Let us consider an inverse power law potential of the form

V(T) =
V0

1 + T̂p . (6.33.128)

Steer and Vernizzi [28] considered the special case with p = 4. Inserting Equation (6.33.128) into
Equation (6.33.20), the horizon slow roll parameters are found to be

ε1 =
p2M2

P
2V0

T̂2(p−1)

1 + T̂p , ε2 =
pM2

P
V0

T̂p−2[2(p− 1) + (p− 2)T̂p]
1 + T̂p . (6.33.129)

Furthermore Steer and Vernizzi have assumed that T̂4 >> 1 and V0T2
0 >> M2

P. Hence we have
to leading order

ε1 ≈
p2M2

P
2V0T2

0
T̂p−2 , ε2 ≈

p(p− 2)M2
P

V0T2
0

T̂p−2. (6.33.130)

Inflation ends when ε1

(
T̂f

)
= 1 which gives

T̂p−2
f =

2V0

p2M2
p

. (6.33.131)

It follows from Equations (6.33.35) and (6.33.128) that the number of e-folds is

N(T) =
V0T2

0
p(p− 2)M2

P

 1
Tp−2 −

1

Tp−2
f

. (6.33.132)
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The two last equations give

T̂2 =
V2

0
M2

P

1
2(p− 2)N + p2/2

. (6.33.133)

Inserting this into Equation (6.33.130) and using that ε3 = −(ln ε2)N gives

ε1 =
p

2(p− 2)N + p
, ε2 = ε3 =

2(p− 2)
2(p− 2)N + p

. (6.33.134)

Inserting these expressions into Equation (6.33.25) gives

δns =
4(p− 1)

2(p− 2)N + p
, r =

16p
2(p− 2)N + p

, αS = − 8(p− 1)(p− 2)

[2(p− 2)N + p]2
. (6.33.135)

The case p = 4 was considered by Steer and Vernizzi. It gives

δns =
3

N + 1
, r =

16
N + 1

, αS = − 3

(N + 1)2 . (6.33.136)

Hence we get the relationships

r =
16
3

δns , αS = − 1
3

δ2
ns. (6.33.137)

Inserting the Planck value δns = 0.032 gives r = 0.17 and αS = − 0.002. Due to the large value of r
this model is ruled out by the Planck data.

It follows from the expressions (6.33.135) that

r =
4p

p− 1
δns , αS = − p− 2

2(p− 1)
δ2

ns. (6.33.138)

The first of these equations can be written

p =
r

r− 4δns
. (6.33.139)

Inserting this into the second of the Equation (4.33.135) gives

αns = −
(

δns −
r
8

)
δns. (6.33.140)

In order that p shall be positive we must have r > 4δns. With δns = 0.032 this gives r > 0.128
while the Planck data favor r < 0.04. Hence the Planck data favor negative values of p because positive
values give too large tensor-to-scalar ratio. Another way of seeing that the Planck data favor negative
values of p is to solve the first of the Equation (6.20.131) with respect to p. This gives

p =
4(Nδns − 1)

(2N + 1)δns − 4
. (6.33.141)

Inserting N = 60 , δns = 0.032 gives p = − 29. Substituting this into Equation (6.33.136) gives
r = 0.123. A smaller value of r is favored, for example r = 0.05. From Equation (6.33.139) we then get
p = − 0.64. Solving Equation (6.33.141) with respect to N gives

N =
4(1− p) + pδns

(2− p)2δns
. (6.33.142)



Universe 2018, 4, 15 148 of 163

Putting p = − 0.64 , δns = 0.032 into this equation gives N = 38 which is too small. In Figure 13
we have plotted p as given in Equation (6.20.137) as a function of N for δns = 0.032.
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Figure 13. The parameter p plotted as a function of N as given in Equation (6.33.136) for 50 < N < 60.

We see that the preferred values of p are − 30 < p < − 3.
Barbosa-Candejas et al. [201] considered a polynomial class of models with

ε1 =
λ

N
(

N2λ + 1
) . (6.33.143)

Inserting the expression (6.33.143) into Equation (6.33.37) and performing the integration gives

V(N) =
V0

1 + N− 2λ
, V0 = V(0). (6.33.144)

From Equations (6.33.143), (6.33.144) and (6.33.24) we get

T(N) =

{
T1 N

1−2λ
2 , λ 6= 1/2

T1 ln N , λ = 1/2
, (6.33.145)

where T1 =
[
V0(1− 2λ)2/8λM2

P

]2λ/(2λ−1)
. Hence the potential as a function of the tachyon field is

V(T) =

{ V0
1+(T/T1)

n , λ 6= 1/2
V0

1+exp(− T/T1)
, λ = 1/2

, (6.33.146)

where n = 4λ/(2λ− 1).
Inserting the expression (6.33.143) into Equation (6.33.28) we obtain the spectral parameters for

this class of inflationary models

δns =
1 + 2λ

N
, r =

16λ

N
(

N2λ + 1
) . (6.33.147)

This gives the r, δns-relationship

r =
8(Nδns − 1)

N
(

NNδns−1 + 1
) . (6.33.148)

Inserting δns = 0.032 , 50 < N < 60 gives 0.003 < r < 0.008, which are acceptable values.
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Barbosa-Candejas et al. [201] also investigated an exponential class of models with

ε1 =
λ

2
(
eλN + 1

) . (6.33.149)

Inserting the expression (6.33.149) into Equation (6.33.37) and integrating gives

V(N) =
V0

1 + exp(− λN)
. (6.33.150)

From Equations (6.33.149), (6.33.150) and (6.33.24) we obtain

T(N) = T1 exp(− λN/2) , T1 = 2MP/
√

λV0. (6.33.151)

Hence the potential as a function of the inflaton field, is

V(T) =
V0

1 + (T/T1)
2 . (6.33.152)

Putting the expression (6.33.149) into Equation (6.33.28), we obtain the spectral parameters for
this class of inflationary models

δns = λ , r =
8λ

eλN + 1
. (6.33.153)

Hence the r, δns-relationship is

r =
8δns

eNδ + 1
. (6.33.154)

Inserting δns = 0.032 , 50 < N < 60 gives 0.03 < r < 0.05, which again are acceptable values.
Finally Barbosa-Candejas et al. [200] have studied the tachyonic version of S-dual inflation, with

ε1 =
λ

sinh(2λN)
. (6.33.155)

Inserting the expression (6.33.155) into Equation (6.33.37) and integrating leads to

V(N) = V0 tanh(λN). (6.33.156)

From Equations (6.33.155), (6.33.156), and (6.33.24) we obtain

T(N) =

√
λ

2
MP ln tanh

(
λN
2

)
. (6.33.157)

Hence the potential as a function of the inflaton field, is

V(T) =
V0

cosh
(√

λV0
MP

T
) . (6.33.158)

Inserting the expression (6.33.155) into Equation (6.33.28) we obtain the spectral parameters for
this class of inflationary models

δns = 2λ coth(λN) , r =
16λ

sinh(2λN)
. (6.33.159)

These expressions can be combined to give

λ = (1/4)
√

δns(4δns − r). (6.33.160)
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Inserting δns = 0.032 , r = 0.04 gives λ = 0.013 in order to obtain agreement with
the PBK-observations.

6.33.11. Tachyon Warm Intermediate Brane Inflation

V. Kamali, S. Basilakos and A. Mehrabi [204] have investigated tachyon warm-intermediate
inflation in light of the Planck data. They have noted that while in cold standard tachyon inflation
reheating is problematic because the tachyon fields in such models do not oscillate around the minimum
of the potential, this problem can be alleviated in the context of warm inflation, where production of
radiation occurs during the slow-roll era, which implies that reheating is not necessary.

For this class of models the density and pressure of the tachyon inflaton field is given by
Equation (6.33.1). Inserting the expressions (6.33.1) into the brane version of the 1. Friedmann
Equation (5.16.1), gives

H2 =
κ

3
V√

1−
.
T

2

1 +
V

2λ

√
1−

.
T

2

. (6.33.161)

The equations of continuity for the inflaton energy and the radiation energy are found in
Equation (6.32.2). Inserting the expressions (6.33.1) into the equation of continuity of the tachyon field
gives evolution equation of the tachyon field

..
T

1−
.
T

2 + 3H
.
T +

V′

V
= − Γ

V

.
T

√
1−

.
T

2
. (6.33.162)

Differentiating Equation (6.33.161), using that
.

V = v′
.
φ, and utilizing Equation (6.33.162) lead to

6
κ

H
.

H = −
.
T

2

1 +
V

λ

√
1−

.
T

2

Γ +
3HV√
1−

.
T

2

. (6.33.163)

without any approximations. In the case of strong dissipation Γ >> 3HV, and the equation reduces to

.
T

2
= − 6

κ Γ
H

.
H

1 +
V

λ

√
1−

.
T

2

−1

. (6.33.164)

From Equation (6.33.161), we then get to lowest order in V/λ,

.
T

2
= − (6/κ Γ)H

.
H
(

1 + 3H2/κλ
)−1

. (6.33.165)

It may be noted that Equation (13) of Kamali, Basilakos and Mehrabi is slightly different.
They have

(
1 + 6H2/κλ

)−1/2 for the last factor, but a series expansion gives the expression (6.33.165)
to lowest order in H2/κλ.

Kamali, Basilakos and Mehrabi have investigated two cases, I. Γ = Γ0 = constant, and II.
Γ = Γ1TR, where TR is the radiation temperature, and Γ1 is a constant. With the number of e-folds
50 < N < 60 they found for model I: 0.032 < δns < 0.037 , 0.004 < r < 0.009, and for the model
II: 0.031 < δns < 0.36 , 0.002 < r < 0.009. Hence the models are in agreement with the Planck
observational data.

6.33.12. Tachyon Natural Inflation

I shall here consider tachyon inflation with a potential like that of Equation (6.5.1)

V = V0

(
1 + cos T̃

)
, T̃ = T/M. (6.33.166)
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This is the same as the potential in Equation (2) of Rashidi and Nozari [205]. We shall here put
their warp factor λ = 1. With this potential Equations (6.33.15) and (6.33.23) give

ε = εH =
1

2β

1− cos T̃(
1 + cos T̃

)2 , η = − 1
2β

1
1 + cos T̃

, ηH = − 1
β

1(
1 + cos T̃

)2 , (6.33.167)

where β = V0κ2M2 > 0. Note that Rashidi and Nozari have defined the slow roll parameters by the
expressions (3.12) for εH and ηH , (but without the factor 2 in the denominator in the expression for
ηH ,) and calculated the second slow roll parameter by using the first expression in Equation (6.33.23)
for η instead of the second one for ηH .

The number of e-folds is found by inserting the potential (6.33.166) and its derivative into
Equation (6.33.36), which gives

N = β

(
cos T̃f − cos T̃ + 2 ln

1− cos T̃f

1− cos T̃

)
. (6.33.168)

The final value of the tachyon fiel is given by ε
(

Tf

)
= 1 which leads to

cos T̃f =

√
16β + 1− 4β− 1

4β
. (6.33.169)

The scalar spectral tilt, the tensor-toscalar-ratio and the running of the scalar spectral index are
given by (4.13) and (4.4), respectively. Inserting the expressions (6.33.167) and introducing a function
−2 < G(β) < 0 by

G + 1 = cos T̃ (6.33.170)

leads to
δns = −

2
β

G− 1

(G + 2)2 , (6.33.171)

r = − 8
β

G

(G + 2)2 , (6.33.172)

αS =
2
β2

(4− G)G

(G + 2)4 . (6.33.173)

Solving Equation (6.33.171) with respect to G gives

G = −
1 + 2βδns −

√
1 + 6βδns

βδns
. (6.33.174)

where the minus sign has been chosen due to the condition −2 < G(β) < 0 which leads to the
requirement β > 1/2δns. With δns = 0.032 according to the Planck 2015 data, this demands that
β > 15.6.

Inserting the expression (6.33.174) into Equation (6.33.172) gives the (r, δns)−relationship

r =
1 + 2βδns −

√
1 + 6βδns

(1−
√

1 + 6βδns)
8δns. (6.33.175)

The tensor-to-scalar-ratio r is plotted as a function of β for δns = 0.032 in Figure 14.
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Here r is an increasing function of β with lim
β→∞

r = (8/3)δns. Hence a prediction of this model is

that r < (8/3)δns or r < 0.085 with δns = 0.032.

7. Conclusions

The most recent analysis [46] (July 2017) of the combined Planck, BICEP2 and Keck results has
given the restriction r < 0.04 on the tensor-to-scalar-ratio for the CMB-radiation. This, together with
the precise value of the scalar spectral index, ns = 0.968± 0.006, determined from the observations,
rule out several classes of inflationary universe models. The observations are still not sufficiently
accurate to give precise values of the other spectral parameters. Hence we shall here focus mostly
upon the predicted δns, r− relationship of different inflationary models in order to judge how well they
come out of the confrontation with observational data.

1. Polynomial inflation. The potential is given in Equation (6.1.1) and the δns, r− relationship in
(6.1.23). For δns = 0.032 and r < 0.04 this relationship requires p < 0.37. Hence polynomial
inflation with for example p = 2 is ruled out by observations.

2. Hilltop inflation. The potential is given in Equation (6.2.1). It was noted below Equation (6.2.12) that
small field hilltop inflation is ruled out by the observational data. As shown in Equation (6.2.30)
large field hilltop inflation predicts r < (8/3)δns = 0.085 which is in agreement with observations.
However in general large field inflation has an unsecure theoretical foundation since the energy
scale of the symmetry breaking is larger than the Planck energy. Strictly speaking we need a
quantum gravity theory to describe such models.

3. Symmetry breaking inflation with potential (6.3.1). It was shown that this inflationary model
predicts 4δns < r < 5δns, or with the Planck data, 0.128 < r < 0.16. This is larger than the values,
r < 0.04, favored by the BICEP2/Planck-Keck data, so this model is ruled out.

4. Exponential potential inflation. For an inflation model with potential (6.4.1) the δns, r− relationship
is r = 8 δns = 0.256, which is in conflict with observations. However it is possible for models
with the more general form (6.4.13) of the potential to be in agreement with observations.

5. Natural inflation. The potentials are given in Equation (6.5.1). It was shown from the δns,
r− relationship (6.5.24) that the symmetry breaking mass is M = 7MP, i.e., much larger than
the Planck mass in these models, which is somewhat problematic, since we are then outside the
region of validity of the classical theory of relativity.

6. Hybrid natural inflation with potential (6.6.1). It was shown that the hybrid natural inflation
models are in trouble unless αS > 0 and r < 4αs.

7. Higgs or Starobinsky inflation. The simplest form of the potential is given in Equation (6.7.2).
This model predicts that r = 3δ2

ns = 0.003 which is in agreement with observations.
The more general potential (6.7.13) gives the δns, r− relationship r ≈

(
2/q2)δ2

ns. In general the
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Higgs-Starobinsky inflation models predict very small values of r. It should be noted, however,
that there may exist a limit to how small r is allowed to be. Hamada and coworkers [206] have
recently argued in the context of Higgs inflation, that the PandaX-II bound on the dark-matter
mass, mDM > 750 GeV, leads to the requirement r > 10−3 in most of the parameter space of
elementary particle physics.

8. S-dual inflation. These models have in general a potential of the form (6.8.2). It was shown
that these models do not have a graceful exit of the slow roll era. Also they have an extra free
parameter making exact predictions problematic.

9. Hyperbolic inflation. The potential is given in Equation (6.9.1). These models are similar to those
of the S-dual inflation, but they do not suffer from the exit problem. With suitable values of the
two free parameters of these models they give values of the spectral parameters in accordance
with observations.

10. M-flation. The potential is given in Equation (6.10.1). This model predicts too large tensor-to-scalar
ration and is ruled out by observations.

11. Supergravity motivated inflation. These models have the potential (6.11.1) with two arbitrary
parameters, that can be chosen so that a model in this class is in agreement with the observational
data. There is also a so-called α− attractor model with a potential (6.11.9). This is in agreement
with observations for α < 25.

12. Goldstone inflation with potential (6.12.1). This model is mathematically identical to one of the
natural inflation models and is a large field model. It can be adjusted to be in accordance with
observations, but has the same foundational problems as natural inflation.

13. Coleman-Weinberg inflation with potential (6.13.1). This class of models incorporates both
small-fields and large-field models. The small field version is in agreement with observations,
is physically well motivated, and is a promising inflation model.

14. Kähler moduli inflation with potential (6.14.1). This model predicts a very small value of r and is in
agreement with the present observational data.

15. Hybrid inflation. Inflation models in this class have two fields, a so-called water-fall field and an
inflaton field. The simplest version with potential (6.15.1) predicts too large value of r and is thus
ruled out by the observational data.

16. Brane inflation. The predicted tensor-to-scalar ratio for brane inflation with the polynomial
potential (6.1.1) is given in Equation (6.16.29), which leads to the value rB = 0.096. According
to the most recent analysis of the observational data r < 0.04, so this brane model is ruled out
by observations.

17. Fast roll inflation with potential (6.17.1). This model predict r = 8δns = 0.256. Hence it is ruled out
by the observational data due to the high value it predicts for r.

18. Running mass inflation with potential (16.18.1). This model has three free parameters, and hence it
cannot predict the values of the optical parameters.

19. K-inflation. Like fast roll inflation this class of models predict r = 8δns = 0.256 and is thus ruled
out by the observational data.

20. Dirac-Born-Infield inflation. A class of DBI-inflationary models with polynomial potential V ∝ φp

has been considered. According to Equation (6.20.2), it predicts r = 0.096, and is hence in conflict
with observational data.

21. Flux-brane inflation with potential (6.21.1). This model predicts δns ≈ 1/N giving N ≈ 31 for
δns = 0.032. This is lower than admitted in order to solve the horizon- and flatness problems.

22. Mutated hilltop inflation with potential (6.22.1). This model is not ruled out by the
Planck/BICEP2 observations.

23. Arctan inflation with potential (6.23.1). In this model δns ' 4/3N showing that the number of
e-folds during the slow roll era is N = 42, which is a little less that the optimal number for solving
the horizon and flatness problems.
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24. Inflation with fractional potential. One version of this model has potential (6.24.1). This leads to the
prediction that for N < 60 the tensor-to-scalar ratio is r < 0.02. Another version has potential
(6.24.8) having a too small number of e-folds during the slow roll era to give a realistic inflationary
scenario. A third version has potential (6.24.14) giving N ≈ 47, which is close to being acceptable.

25. Twisted inflation with potential (6.25.1). The tensor-to-scalar ratio has a very small value according
to the twisted inflation model. It seems to be an acceptable inflation model.

26. Inflation with invariant density spectrum. This model has potential (6.26.1) and has a scale invariant
Harrison-Zeldovich density fluctuation spectrum. Also, the number of e-folds is less than one.
Hence, this model is ruled out as a realistic inflationary model.

27. Quintessential inflation. A first version has potential (6.27.6). This model of quintessential inflation
predicts r > 0.128 and is thus ruled out by observations. A second version has potential
(6.27.8). Using δns = 0.032 it predicts N ≈ 62 and r ' 0. This model is in agreement with
observations. A third model has potential (6.27.14). With δns = 0.032 this model gives N > 62.5
and r ≈ 4δ2

ns = 0.004 in agreement with observations. A fourth model has potential (6.27.26) and
turned out to be very unrealistic.

28. Generalized Chaplygin gas inflation. The inflaton field has a potential given in Equation (6.28.13).
With δns = 0.032 this model predicts N = 168. Since the number of e-folds is usually restricted to
50 < N < 60 it is concluded that a universe dominated by generalized Chaplygin gas is not a
suitable model of the inflationary era.

29. Axion monodromy inflation with potential (6.29.1). With a reasonable value of a parameter in this
model one obtains r < 0.04 in agreement with the observational data.

30. Intermediate inflation. The potential is given in Equation (6.30.8). The simplest versions of these
models predict that r > 8δns = 0.256, which is not allowed by observations.

31. Constant rate of roll inflation. Maybe the most promising version of this class of models is the
one with potential (6.31.45). However, the potential contains two arbitrary parameters, and this
prevents a prediction of the tensor-to-scalar-ratio unless one can determine for example an initial
condition defining the beginning of the slow roll era. Recently Yi and Gong [207] has shown that
the model with potential (6.31.25) and β < 0 is in conflict with the Planck data.

32. Warm inflation. During the evolution of warm inflation dissipative effects are important, and
inflaton field energy is transformed to radiation energy. This is a large class on inflationary models
that may be realized in a large number of ways. In the warm inflation scenario a thermalized
radiation component is present with temperature T > H, where both T and H are expressed
in units of energy. Then the tensor-to-scalar ratio is suppressed by the factor (T/H)(1 + Q)5/2

when compared with the standard cold inflation, where Q the so-called dissipative ratio defined
in Equation (6.32.5).

Let us summarize the predictions of some specific models.

Warm polynomial inflation with an inflaton potential given by Equation (6.1.1) with p = 4 has
been investigated by Panotopoulos and Videla [182]. They found that in the weak dissipative
regime when Q << 1 the scalar spectral tilt is δns = 1/N, giving N = 31 which is too small to be
compatible with the standard inflationary scenario. However, in the strong dissipative regime
when Q >> 1, the spectral parameters can be made to be in accordance with the observational
data by choosing a proper value of an arbitrary parameter.

Taylor and Berera [195] have briefly considered warm inflation models with an exponential
potential, V = V0 exp(φ/M), and found that in the strong dissipation regime the scalar spectral
index parameter δns for models of this type is negative in conflict with the Planck observations.

Visinelli [189] has investigated warm natural inflation with potential (6.32.48). He found that this
class of inflationary models predicts a vanishing value of the tensor-to-scalar-ratio.
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Several versions of warm viscous inflation have also been investigated, and their properties have
been restricted in order to obtain agreement with the observational data. In all such models,
the tensor-to-scalar-ratio has a small value, but without some fundamental theory making it
possible to determine some physical parameters they cannot presdict the values of the CMB
spectral parameters.

33. Tachyon inflation. Tachyon inflation is a string theory inspired model of inflation. In these models
it has become usual to introduce a so-called tachyon field, and denote it by T. The tachyon field
is related to the usual inflaton field by Equation (6.33.16). Like warm inflation, this is a large
class of inflationary models that may be realized in a large number of ways. Here, too, we shall
summarize the predictions of some specific models.

A class of models with ε1 = β/N, where β is an arbitrary constant, leads to the relationship
r = 8(δns − 1/N). With N = 50, δns = 0.032 we get β = 0.3, r = 0.096. This value of the
tensor-to-scalar ratio is larger than allowed by the most recent analysis of the observational
data [46], r < 0.04. This class of models have members with polynomial or exponential
tachyon potentials.

As shown in Figure 12, tachyon models with δns = p/(N + A) have r < 0.04 when 0 < A < 0.29.
Several other tachyon models may be made to agree with observations, but having more than one
free parameter, that is not a prediction of the models, only adjustments after the observational
results have been obtained.

It has been shown that tachyon natural inflation predicts r < (8/3)δns or r < 0.085 with
δns = 0.032.

It should also be mentioned that S. Chervon and coworkers [208–210] have developed a procedure
for calculating the optical parameters of inflationary universe models exactly, without applying
the slow roll approximation. One may show that the predictions made by means of such
calculations deviate only a few per cent from those based upon the slow roll approximations.

In the present article I have given a systematic exposition of the dynamics of inflationary models,
the three types of slow roll parameters—the potential-, the Hubble-, and the horizon-flow parameters-,
and the N-formalism of inflationary models. Furthermore 33 classes of inflationary models have been
described, many of them in a rather detailed way. Their predictions of the tensor-to-scalar-ratio has
been calculated, given the measured scalar tilt, δns = 0.032, and the proper range of the number of
e-folds, 50 < N < 60, and compared to the requirement r < 0.04 of the most recent analysis of the
observational data. A supplementary review has been given in [211].

The main result is that many inflationary models can be ruled out because they predict to large
value of r, and a few are strongly favored. Models that are ruled out by the observational data
are: Most types of polynomial inflation, small field hilltop inflation, the main type of symmetry
breaking inflation, the simples types of exponential potential inflation, some types of hybrid natural
inflation, M-flation, the simplest types of hybrid inflation, brane inflation, fast roll inflation, K-inflation,
Arctan-inflation, inflation with invariant density spectrum, two of the four models of quintessential
inflation that were reviewed, generalized Chaplygin gas inflation, the simplest versions of intermediate
inflation, and some types of tachyon inflation.

Other models are not attractive because they contain too may arbitrary parameters, implying
that they have a rather phenomenological character and lack predictive force, or that their theoretical
foundations are weak, such as for large field inflations that strictly speaking need a quantum gravity
theory because their symmetry breaking energy is larger than the Planck energy, or they have no
graceful exit of the slow roll era. Models in this category are: large field hilltop inflation, natural
inflation, S-dual inflation, hyperbolic inflation, supergravity motivated inflation, Goldstone inflation,
large field Coleman-Weinberg inflation and constant rate of roll inflation.
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The models of inflation that come best out of the confrontation with observational data, have a
graceful exit of the slow roll era, and are also able to predict a value for r given the restrictions
mentioned above of δns and N are: Higgs or Starobinsky inflation, small field Coleman-Weinberg
inflation, Kähler moduli inflation, standard DBI-inflation, mutated hilltop inflation, some versions
of inflation with fractional potential, twisted inflation, some types of quintessential inflation,
axion monodromy inflation, and many types of warm inflation.

In general, warm inflation seems to be the class with physically most realistic inflationary models,
and also those that come best out of the confrontation with observational data.
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