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Abstract 

The aim of this thesis is to explore connections between a problem-solving approach to 

teaching mathematics and student learning. The student learning has not been based on test 

results, but on measures of activity, knowledge and skills. Student accounts from problem-

solving classrooms were used to measure this. 

One teacher’s approach to using problem-solving activities when teaching mathematics has 

been used as a base for the study. Using qualitative interviews, data was collected from 

students in the 7th and 10th grade classes at two different schools where he teaches. These 

interviews were analyzed through a framework designed to identify characteristics of 

powerful mathematics classrooms.  

The theoretical perspective of this thesis connects research on knowledge types and 

knowledge quality to theory on what understanding is needed for- and obtained through 

mathematical problem solving. It is argued that there is a clear connection between the 

ability to solve problems, and the capability of connecting mathematical concepts, applying 

strategies and reasoning abilities. 

A qualitative approach was taken in this study, conducting interviews to collect data. 

Although many lessons were observed, collecting data has not been done through 

observation. In order to acquire the students’ perceptions on participating in problem-

solving classes, using interviews were chosen as the most suitable method. 

Concluding the thesis, there were several findings. First, it concluded that the students in 

these classes learned through a sociocultural approach to learning. Working in groups and 

engaging in productive struggles together with peers were connected to Vygotsky’s ideas of 

Zone of Proximal Development and scaffolding. Collaborative work with problem solving 

helped the students engage with challenging tasks. Second, the students showed good 

abilities in applying strategies when solving problems. Although the students did not express 

that they had learned explicit strategies, they interacted with the tasks in ways that are 

connected with effective problem solving. Third, there seemed to be a correlation between 

the students who regularly worked with problem-solving tasks and the quality of knowledge 

they possessed. The interviewed students were all in possession of a variety of knowledge 



and skills which they were able to connect and reason with through the problem-solving 

tasks, making the case that the students in these classes had achieved deep learning. Last, 

there are implications that problem solving should be a means towards mathematical 

competency, and not the end result of learning mathematics. 
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1 Introduction 

 

1.1 Background and motivation 

This thesis is a result of enrolling in the study Master of Educational Sciences for Basic 

Education: Specialization in Mathematics. Having spent five years working as a teacher at the 

primary and upper secondary levels in Bergen, I was eager to expand my knowledge within 

mathematics teaching. 

When teaching mathematics, I was constantly asking myself whether my teaching was the 

best I could offer my students. Did my teaching create critical mathematical thinkers; students 

with a solid and connected mathematical knowledge that would give them good opportunities 

for further studies and contributions in society? 

I have always been curious to how I could develop and become better at the things I do. As a 

teacher in mathematics I am interested in the differences between teachers, teaching 

practices and student learning outcomes. Why do some teachers constantly deliver great 

results (and some teachers, unfortunately, regularly deliver poor results) compared to other 

teachers, even at the same school? 

The first year of this study provided much insight on different types of knowledge for teachers 

and on the complexity of teaching mathematics. It was definitely both important and 

educational, making me want to dig even deeper for my master thesis. From the very start, I 

intended to find a topic for my thesis that would prove to be meaningful and relevant for the 

rest of my teaching career, and the aforementioned questions regarding quality of teaching 

once again emerged.  

During my time teaching, I had heard of a teacher whose students on a consistent basis 

delivered exceptional results on 10th grade exams in mathematics (henceforth called upon by 

the pseudonym Isaac Peterson). Assuming that these results were not due to factors beyond 

mathematics (for example more mathematics lessons per week or sociocultural advantages), 

I figured that it would be meaningful to gain an understanding of how learning took place in 

his classrooms. I already knew that Peterson had a teaching-approach that evolved around 
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problem-solving tasks, and that one of the schools where he taught had a somewhat 

untraditional curriculum design (outlined in section 1.4). Aside from this, I had very little 

knowledge of Isaac Peterson, his teaching, or his students’ learning before beginning my 

research. 

 

1.2 Context of the study 

The research reported in this study was conducted at two schools, one elementary 

(henceforth called Westwood) and one upper secondary (henceforth called Lakeside) in a 

large city in Norway. Isaac Peterson primarily works at Lakeside, and has one additional 

mathematics class at Westwood once per week. After meeting with and observing Peterson, 

the decision of conducting the study at two different schools was made for several reasons 

listed and argued for in Chapter 3. 

At Westwood, the students in Peterson’s class consisted of approximately 1/4 of the school’s 

7th graders. At the beginning of the 6th grade, the students at Westwood were given the choice 

of joining his class once per week, or to solely participate in regular mathematics classes. 

Westwood organized the classes so that Peterson’s mathematics classes were run parallel to 

the other mathematics classes at the 7th grade. This way, Peterson’s classes were considered 

an option to the regular mathematics classes that the students participated in. Since these 

classes only were once per week, the students joined their regular classes the remaining 

mathematics lessons over the course of a week. 

Amongst the classes Peterson teach at Lakeside, he teaches two classes at the 10th grade once 

per week. These two classes consisted of approximately 50-60 students, where the students 

had abilities ranging from decent to great. These lessons replaced one of their weekly 

mathematics classes, and Peterson used these lessons primarily for problem-solving activities. 

The remaining mathematics lessons were taught by their regular teachers. 
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1.3 Research questions 

As the title of my thesis reveals, problem solving is a key construct in this master thesis. Many 

researchers (Kilpatrick, Swafford, & Findell, 2001; Lester Jr, 2013; Liljedahl, Santos-Trigo, 

Malaspina, & Bruder, 2016; Ludvigsen, 2015; Putnam, 1987; Schoenfeld, 1985, 2013, 2014; 

Stacey, 2005, 2007; Wake, Swan, & Foster, 2016) argue for the important role of problem 

solving in mathematics classrooms. In their work Adding it up: Helping Children Learn 

Mathematics, Kilpatrick et al. (2001) describe the concerns that students in the American 

school system do not develop adequate knowledge and skills needed to apply the 

mathematics they have learned. Using the term Mathematical Proficiency, they look for a 

competency that enable students to become good mathematical thinkers. It is claimed that 

problem solving should be the site in which all of the strands of mathematics proficiency 

converge (Figure 1). It should provide opportunities for students to weave together the 

strands of proficiency and for teachers to assess students’ performance on all of the strands 

(Kilpatrick et al., 2001. p. 421). 

As Kilpatrick et al. (2001) claim, problem solving should be a main part of mathematics 

teaching in order to ensure students’ mathematical competency. However, the teaching 

practices, and the learning that emerges from problem-solving classrooms is a field of 

research that has not received a lot of attention (Boaler, 2003; Lester Jr, 2013; Schoenfeld, 

2014). Having the topic of problem solving as a key construct, my aim is to investigate 

students’ interaction, participation and learning in classrooms that focus on problem solving, 

leading to a total of three research questions for this thesis.   

Gaining insight on how students engage and participate in these classes is important in order 

to get an impression of students’ activity and the effectiveness of the teaching, making me 

ask: 

1. In mathematics classrooms where problem solving activities constitute the main 

part of teaching, how do the students engage? (RQ1) 

With problem solving tasks at hand, investigating how students work with these tasks will 

provide understanding of the thoughts and strategies the students use, and directing the next 

research question to:    
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2. How do the students in these classes interact with problem solving tasks? (RQ2) 

Learning outcomes can be represented in a number of ways. Though results from 10th grade 

exams were mentioned earlier, testing is not necessarily the only parameter of examining 

students’ knowledge. Desired aims from mathematics teaching is that the students become 

critical thinkers who are independent, skillful and able to see connections in mathematics 

(Kilpatrick et al., 2001; Liljedahl et al., 2016; Ludvigsen, 2015; OECD, 2017; Stacey, 2005, 2007). 

These abilities are closely related to theory on deep learning (Pellegrino et al., 2012), 

ultimately leading me to the last research question: 

3. To what extent does problem solving activities promote deep learning which 

supports development of powerful mathematical competency? (RQ3) 

 

1.4 Lakeside’s curriculum design 

As mentioned, Peterson primarily works as a mathematics teacher at Lakeside. A few years 

ago, Lakeside implemented a new curriculum design intended to enhance students’ learning 

in mathematics. In contrast to Bruner’s spiral approach to curriculums, where topics are 

repeated from schoolyear to schoolyear and in this way increase in depth and difficulty for 

each year (Fried & Amit, 2005), they sought to create a curriculum where each topic was 

taught extensively and in-depth before moving on to the next topic(s). By strategically placing 

the mathematical topics in a specific order, each new topic would connect to previously 

attained knowledge. Ensuring that every topic was taught over a minimum of one semester, 

students would be given the opportunity to get much repetition and learn topics in-depth 

before moving on. In this way, Lakeside’s idea was that five intertwining components; topics, 

concepts, methods, beliefs and procedures would constantly interconnect, ultimately leading 

to a connected and deep mathematical knowledge in their students. This information was 

given through an interview with another teacher in the mathematics section at Lakeside.  

As this curriculum design is aimed for students at the upper-secondary level, it has not been 

developed for the 7th-grade students at Westwood. It is fair, however, to assume that the 

general ideas of this curriculum design is embedded in Peterson’s teaching at Westwood as 

well.  The observed lessons at Westwood focused on problem solving, but also required 



 5 

Peterson to go through principles within the different mathematical topics. When the 

students were introduced to a mathematical concept, they were immediately given problem-

solving tasks that highlighted these concepts. 

The idea of intertwining these five components is founded in the theory on acquisition of 

mathematical proficiency (Kilpatrick et al., 2001). This term is used to capture the aspects 

necessary for anyone in order to become successful in learning mathematics (Kilpatrick et al., 

2001; Ludvigsen, 2015). The important part of the five components is that they are both 

intertwined and interdependent when it comes to building mathematical proficiency (Figure 

1). Cognitive research has shown that competence relies on mental representations and in 

what ways of which a topic is connected and structured (Kilpatrick et al., 2001; Mayer, 2011; 

Pellegrino et al., 2012). The idea that the five components are interwoven reflects this 

importance of connectedness. This ability of connecting knowledge is necessary in order to 

develop deep mathematical competency, which again can lead to effective problem solving 

(Kilpatrick et al., 2001). 

 

Figure 1. Five intertwined strands of mathematical proficiency. 

Reprinted from “Adding it up: Helping children learn mathematics,” by J. Kilpatrick, J. Swafford, and B. Findell (Eds.), p. 117. 

The importance of spending sustained periods of time with each topic is also something 

Kilpatrick et al. (2001) mentions as an important factor in order to gain mathematical 
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proficiency. Students need time and practice to fully grasp new knowledge, and also to do this 

in a variety of ways; procedural and conceptual work, problem solving and developing 

essential skills (Kilpatrick et al., 2001; Ludvigsen, 2015; Putnam, 1987; Schoenfeld, 2014). This 

reflects the ideas implemented in Lakeside’s curriculum design, as they spend a significant 

amount of time on every topic to ensure deep understanding. In that way, this curriculum 

design distances itself from the frequently applied spiral approach and concentrates on 

extensive teaching topic by topic, rather than learning more and more within each topic every 

year. Lakeside’s practice of spending longer periods with each topic is consistent with what is 

called the power law of practice, that learning requires a lot of repetition over time (Newell, 

1990; Rosenbloom, 1987). Developing knowledge over time can lead to skills becoming 

automated and fluent. As the skills are well-represented in a learner’s long-term memory it 

will free capacity for the working memory, opening up possibilities to focus on other problems 

(Pellegrino et al., 2012; Putnam, 1987). To sum up, the idea is that the students at Lakeside 

will gain learning that gets represented in their long-term memory, which can easily be 

retrieved when this knowledge and these skills are needed in work with other mathematical 

topics. 

 

1.4.1 Flipped classroom 

An important aspect to include when discussing Lakeside’s curriculum design is that the 

mathematics teachers should strive to avoid using large amounts of time in the classroom 

teaching. Instead, they have a large online database of instructional videos within all relevant 

mathematical topics that the students watch at home as homework, a method called flipped 

classroom. With flipped classrooms, students engage in preliminary learning before lessons to 

prepare for learning activities that will happen at school (Reidsema, 2017). Each video 

contains tasks that are linked to the content taught in the video, ensuring that the students 

have the opportunity to solve tasks immediately after they have watched a video. 

Peterson used the flipped classroom method intensively both as homework and in class at 

both Westwood and Lakeside. This way, the students were active learners and problem 

solvers during class and he had more time to give feedback to each individual student. This 

does not, however, mean that he did not teach during classes: Problems arise and students 
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ask questions. But for the main part, the acquisition of new knowledge happened through the 

use of the flipped classroom method. 

 

1.5 Outline of the thesis 

This thesis is divided into five chapters. As already revealed, the current chapter shares 

background information, research questions and important aspects regarding the teaching 

practices of the teacher and schools selected. After this introduction, I will in Chapter 2 review 

relevant research on knowledge, learning and problem-solving. In Chapter 3, I explain the 

research process, where I argue for the choice of a qualitative method in this study. Chapter 

4 contains an analysis of the collected data through a framework created to recognize 

characteristics of good teaching. Last, in Chapter 5, I will discuss the findings from Chapter 4, 

connecting it to the literature reviewed in Chapter 2. I will conclude Chapter 5 with 

implications of problem solving as a means approach in mathematics teaching, connecting it 

to aspects of deeper learning.  
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2 Literature review 

In this literature review, I will examine research which is relevant for this thesis. The research 

questions state a position towards learning in classrooms that focus on problem solving. 

However, when researching learning, I also find it important to examine teaching 

characteristics. Describing what good teaching practices are gives a foundation to understand 

what leads to desired learning, and this thesis will look at these two factors in connection with 

each other. Considering this, parts of this literature review will cover aspects of good teaching 

practices in mathematics. 

This chapter will be divided into three sections. First, in section 2.1, I will look at characteristics 

of what constitutes good mathematics teaching. Then I will give examples of what types of 

knowledge and understanding that students need to possess in order to become good 

mathematical thinkers in section 2.2. Last, in section 2.3, I will continue to look at literature 

within problem solving in mathematics teaching, and how this affects learning. 

 

2.1 What is “good” mathematics teaching? 

When it comes to teaching, it is essential to look for aspects of teaching that prove to be 

successful and which are less successful. Shulman (1986) called for what he referred to as 

the missing paradigm. This was explained as how a teacher’s knowledge transforms into 

something that a student will learn. With this, he asked questions to what types of teacher 

knowledge are required for teachers to be successful. “The professional holds knowledge, 

not only of how – the capacity for skilled performance – but of what and why. The teacher is 

not only a master of procedure but also of content and rationale, and capable of explaining 

why something is done” (Shulman, 1986, p. 13). What Shulman’s article does not emphasize, 

however, is what the characteristics of good mathematics teaching are. Obviously, there is a 

connection between teacher knowledge and how well he or she will teach, but how is this 

knowledge exercised in classrooms to create opportunities for learning? And are there 

specific traits that apply only to mathematics teachers? 

Appropriately recognizing what is looked upon as “good mathematics teaching” is not 

necessarily easy, as adjectives in recent studies vary as to what has been researched. Is there 
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a difference between “good mathematics teaching”, as researched by Wilson, Cooney & 

Stinson (2005) and “effective” teaching suggested by the National Council of Teachers of 

Mathematics (Leinwand et al., 2014)? What about “teaching in powerful classrooms” 

(Schoenfeld, 2014), or “teaching for mathematical proficiency” (Kilpatrick et al., 2001)? One 

would assume that mathematics teaching resulting in high levels of student learning, where 

students are enabled to become good mathematical thinkers and given opportunities to use 

mathematics in a variety of ways, is what the goal of mathematics teaching is. The question 

remains however, to what type of teaching and learning that creates good mathematical 

thinkers. Using the term Profound Understanding of Fundamental Mathematics, Liping Ma 

(2010) gives examples of knowledge that successful Chinese teachers possess and how this 

affects student learning. This knowledge consists of four properties: Connectedness (a 

teacher’s intention of making connections between different mathematical concepts and 

procedures), multiple perspectives (the ability to use different approaches to the same topic 

to ensure flexibility among their students), basic ideas (possessing powerful basic knowledge 

of topics) and longitudinal coherence (understanding and connection of previous and future 

mathematical curriculum). These properties all point in the direction that teachers’ and 

students’ understanding should be comprehensive, both in depth and breadth, and should 

focus on the ability to interconnect topics, concepts and procedures (Kilpatrick et al., 2001; 

Ma, 2010; Pellegrino et al., 2012; Putnam, 1987). As a part of my work, I have looked at some 

teacher characteristics when it comes to learning mathematics and Ma’s (2010) notion of 

profound understanding captures many of the aspects which will be analyzed in section 4.2. 

Within the discourse of good mathematics teaching, another frequently used term is 

mathematical problem solving (Halmos, 1980; Kilpatrick et al., 2001; Lester Jr, 2013; Liljedahl 

et al., 2016; Putnam, 1987; Schoenfeld, 1985, 2013; Skemp, 1976). There seems to be a 

consensus within mathematics research that developing good problem-solving abilities is an 

essential purpose of teaching, and this is closely related with good mathematical competence 

(de Corte, Greer, & Verschaffel, 2000; Halmos, 1980; Ludvigsen, 2015; Schoenfeld, 1985, 2013; 

Stacey, 2005, 2007). However, the question of whether mathematics should be taught in order 

for students to become good problem solvers (problem solving abilities being the end result) 

or problem solving should be taught to promote mathematics learning (a means for another 

goal) is an issue within mathematics education (Lester Jr, 2013). The relationship between 
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good mathematics teaching and a problem-solving approach to mathematics teaching seems 

to be important as many national curriculums highlight problem solving as an important part 

of students’ learning (Stacey, 2005). However, research on teaching problem solving still lacks 

focus on teachers’ behaviors, teacher-student and student-student relations as well as 

classroom atmospheres that evolve in classrooms where problem solving is taught (Lester Jr, 

2013). As Lester claims in his article on problem solving: “(…)research is needed that focuses 

on the factors that influence student learning” (Lester Jr, 2013, p. 246). In this thesis, the 

perspective is teaching mathematics through the use of problem solving. Therefore, my 

research will be based in the thoughts of using problem solving as a means to develop 

mathematical competency. 

 

2.2 Knowledge types and knowledge quality 

A widely discussed topic within mathematics research, is the type of knowledge that students 

acquire, and should acquire, through mathematics teaching (Hiebert, 1986; Kilpatrick et al., 

2001; Leinwand et al., 2014; Ma, 2010; Skemp, 1976; Stacey, 2007). In his 1976 article 

“Relational Understanding and Instrumental Understanding”, Richard Skemp addresses the 

superficial understanding that many students have in mathematics, and what benefits come 

from teaching with a relational perspective on mathematics (Skemp, 1976). The questions that 

arise from Skemp’s work are similar to what Hiebert (1986), Star (2000, 2005, 2007) and 

Star&Stylianides (2013) discussed later on in more recent research, drawing lines between 

procedural or conceptual knowledge types with deep or superficial knowledge qualities. 

Furthermore, an aspect within research on knowledge is the important distinction between 

knowledge type and knowledge quality. Within knowledge theory this distinction is difficult, 

because research has entangled these terms (Star & Stylianides, 2013; Star, 2000, 2005, 2007). 

The difference between type and quality is important to specify, as this has implications for 

the way teachers and researchers will understand educational studies (Star, 2005). 

This section will be divided into subsections where I in subsection 2.2.1 and 2.2.2 will elaborate 

on research of knowledge quality and knowledge types respectively. In subsection 2.2.3 I will 

look at the distinction between the quality and type of knowledge and in what way they can 
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be understood in connection to one another, before I will discuss sociocultural perspectives 

to learning in subsection 2.2.4. 

 

2.2.1 The quality of knowledge 

In the 2012 report “Education for Life and Work” on what competencies will be important in 

the 21st century, deeper learning is considered as a key aspect of what is needed to be 

emphasized in schools in the future (Pellegrino et al., 2012). The concept of deeper learning 

is complex, and ranges from different perspectives of learning and thinking, domains of 

competency, and different types of knowledge a student is able to acquire: “Deeper learning 

occurs when the learner is able to transfer what was learned to new situations” (Pellegrino et 

al., 2012, p. 99). Transfer is the idea that knowing something within a domain, strengthens the 

learning of something else in that same domain if the two domains are somewhat relevant to 

each other (Pellegrino et al., 2012). 

Transferable knowledge and skills are “(…)competencies that enable learners to transfer what 

they have learned to new situations and new problems” (Pellegrino et al., p. 70). In order to 

acquire transferable knowledge, the required knowledge needs to be based on a fundamental 

understanding of the principles of the knowledge, and it needs to be well-organized mentally 

(Pellegrino et al., 2012). These aspects of transferable knowledge can be seen in relation to 

the aforementioned properties Ma (2010) claimed were required in order to possess profound 

understanding of fundamental mathematics. 

Given the fact that deeper learning relies on transferring current knowledge to new and 

unknown situations, deeper learning is strictly not needed if the end goal for the students is 

to solve and complete tasks that are identical to those encountered when learning. On the 

contrary, if the aim is for students to succeed in new and challenging situations that have a 

higher cognitive demand and the solutions are not obvious, a focus on deeper learning is 

important. Learning that focuses on deeper understanding and how to solve problems leads 

to this transferable knowledge (Pellegrino et al., 2012).  

Referring to Mayer (2011), Pellegrino et al. (2012) give examples of five interconnected types 

of knowledge that are essential to develop deeper knowledge: Factual knowledge, concepts, 

procedures, strategies and beliefs about one’s learning. The important part of these types of 
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knowledge are that they are interconnected and dependent on each other to achieve deeper 

learning. Factual knowledge, consisting of isolated bits of information, is not enough in itself 

to develop a solid understanding within a subject. However, if these facts are integrated and 

seen in relation to each other, there is a higher chance that the knowledge can lead to transfer. 

These five types of knowledge mirror Kilpatrick et al.’s (2001) framework of mathematical 

proficiency used at Lakeside covered in section 1.4. This parallel connects the development of 

solid mathematical understanding with the idea of deeper knowledge, exemplifying the way 

their curriculum is designed to develop profound mathematical thinkers through teaching. 

 

2.2.2 Teaching concepts or procedures? Building relational or instrumental understanding? 

In “Fremtidens skole” (2015), Ludvigsen presented what they thought would be important to 

focus on in the Norwegian school system in the future. One of the main findings was that 

deeper learning within all school subjects would enhance students’ overall competency. 

Ludvigsen uses the term taxonomy in the discussion of deeper learning, and parallels are 

drawn between taxonomy and to what degree someone has learned something deep. The 

opposite of deeper learning; “surface learning”, requires a low level of taxonomy, as deeper 

learning requires a high level of taxonomy where for example connecting, application and 

analyzing are important elements. The development of deep knowledge is a necessary 

condition in order to re-structure and use current knowledge in new contexts (Ludvigsen, 

2015). 

Skemp (1976) explained what he means is a faux amis1 in mathematics teaching. He argued 

that the word understanding is used with different meanings, and that the way teachers look 

at understanding plays an essential role in the mathematical knowledge acquired by students. 

He states that there are two different types of understanding; instrumental and relational 

understanding (Skemp, 1976). Instrumental understanding is the comprehension connected 

to rules, straight-forward calculations, and similar types of processes that do not require larger 

extents of reflection or explanations. Instrumental understanding was referred to as “rules 

without reasons”, expressing that there is some sort of emptiness to this form of 

                                                      
1 Faux amis: French term used to describe words that are similar, but have different meanings. 
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understanding (Skemp, 1976, p. 20). Relational understanding, on the other hand, is 

connected to reasoning, explanations and the “why”-aspect of subject conception, 

characterizing this form of understanding as “knowing both what to do and why” (Skemp, 

1976, p. 20). 

These conceptions of understanding led to much research on the forms of knowledge 

acquired in schools, further developing the categories laid out by Skemp. Examples being 

studies by Hiebert (1986), Star & Stylianides (2013) and Star (2000, 2005, 2007). The initial 

terms instrumental and relational understanding were altered, taking the perspective of 

knowledge type as opposed to understanding, and the expressions procedural and conceptual 

knowledge emerged (Hiebert, 1986). This terminology is still used in educational research to 

refer to the type of knowledge that emerges from mathematics classrooms. Procedural 

knowledge is characterized by the knowledge of rules and the sequential actions necessary to 

complete tasks or reaching correct answers, closely linked to the features of instrumental 

understanding. Conceptual knowledge is considered to be knowledge of concepts; knowledge 

which is rich in relationships, leading to a deep understanding (Hiebert, 1986; Star, 2000, 2005, 

2007; Star & Stylianides, 2013).  

Although research supports teaching that leads to conceptual knowledge, the skills required 

to perform accurate and effective procedures should not be forgotten, and the acquisition of 

procedural fluency is considered an important part of developing mathematical proficiency 

(Kilpatrick et al., 2001). The abilities of performing accurate computations, for example, are 

needed to support conceptual understanding within numbers. The terms procedural and 

conceptual knowledge are interconnected and are related to the development of each type 

of knowledge (Kilpatrick et al., 2001). Proper understanding makes skill learning simpler, and 

within some concepts a procedural approach can promote understanding (Kilpatrick et al., 

2001). The problem occurs, however, when procedures are not seen in relations with each 

other (Kilpatrick et al., 2001; Ludvigsen, 2015; Ma, 2010). Students who learn skills as isolated 

pieces of information, may experience difficulties when learning similar topics because they 

have no possibility of seeing connections to previously learned knowledge. Learning only 

procedural skills, and thereby being deprived of the opportunity to gain a connected 

understanding of mathematics, will limit students’ access to higher education and better jobs, 
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effectively condemning these students to a second-class status in society at best (Kilpatrick et 

al., 2001). 

 

2.2.3 Connecting quality with knowledge types 

The definitions given on procedural and conceptual knowledge has received criticism because 

there are no clear distinctions between the aspects of quality and types between them (Star 

& Stylianides, 2013; Star, 2000, 2005, 2007). Conceptual knowledge is not defined in regards 

to the quality of ones knowledge of concepts, but rather to what extent one has the ability to 

link and make connections within the particular knowledge: “(…)the richness of the 

connections inherent in such knowledge” (Star, 2005, p. 407). Star points to Medin (1989), 

claiming both that knowledge of a concept is not necessarily rich in relationships, and that 

connections within a concept can be superficial and limited. Procedural knowledge on the 

other hand is characterized as superficial and without the aspect of being able to make 

connections. There are many different kinds of procedures, and there are also different 

demands to quality of one’s knowledge to execute these procedures. On one side there are 

algorithms that guarantee a correct solution if executed properly, but on the other side there 

is heuristics which is an essential part of being an effective problem solver (Star, 2005). It is 

argued that the definitions of knowledge types are insufficient, and that there is for example 

need to discuss what characterizes deep procedural knowledge and superficial conceptual 

knowledge (Star, 2005). The perception of these terms have been discussed in literature on 

knowledge qualities and knowledge types (Star & Stylianides, 2013; Star, 2000, 2005, 2007). 

Quality would normally refer to the way something is known and how well someone 

understands something (Star & Stylianides, 2013). As mentioned, knowledge can exist in both 

the deep and superficial levels, and deeper knowledge is associated with the ability of solving 

tasks with higher cognitive demand in new and challenging situations, whereas surface-

learning requires a lower level of taxonomy (Ludvigsen, 2015; Pellegrino et al., 2012). 

Knowledge type, on the other hand, implies what is known. Procedural knowledge should tell 

us something about how well a person knows procedures, and conceptual knowledge should 

give answers to what knowledge someone has about mathematical concepts (Star & 

Stylianides, 2013). A common view is that conceptual knowledge is something that is known 
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on a deep level, and procedural knowledge is superficial knowledge, leading to an 

entanglement of these two terms (Star, 2005).  

Table 1 illustrates this conflict, clearly showing how the terms have become intertwined: 

  

Table 1. Types and Qualities of Procedural and Conceptual Knowledge. Reprinted from “Reconceptualizing 

Procedural Knowledge,” by J.R. Star, 2005, Journal for Research in Mathematics Education, 36(5), p. 408. 

When procedural and conceptual knowledge types and quality get tangled up, there will be 

difficulties for teachers to distinguish between the types and qualities associated with 

effective learning (Star & Stylianides, 2013). Within research, this confusion of terms will 

definitely make interpretations of the results difficult. In order to understand the results, clear 

definitions and assessments of these knowledge types are important to gain any form of 

knowledge from it (Star & Stylianides, 2013). With these considerations in mind, it can prove 

to be difficult to define what are traits of good mathematics teaching. The distinctions 

between what are important types and qualities of knowledge lead to important decisions 

made by teachers and teacher educators, causing impact in mathematics classrooms. 

 

2.2.4 A sociocultural perspective to learning 

Two elements of research within learning and thinking, a cognitive and sociocultural 

perspective, are worth emphasizing in the context of attaining deep knowledge. In the 

cognitive perspective, the focus is on the mechanisms of learning and how different types of 

knowledge are structured. The sociocultural perspective, on the other hand, focuses on how 

learning takes place when people take part in communities and learn through interaction with 

others (Pellegrino et al., 2012). 

An important researcher within sociocultural perspectives to learning is Lev Vygotsky. Through 

his works (e.g. Thinking and Speech from 1934), Vygotsky emphasized that human activities 

happen in cultural surroundings, and cannot be understood as isolated events. Cognitive 
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structures and thought processes are created through social interactions, and development is 

considered the transformation from these social interactions into internal processes 

(Woolfolk, 2010). In short, improvement and growth are progressions from collaborative work 

to individual understanding. Two important terms in Vygotsky’s work are Scaffolding and The 

Zone of Proximal Development (ZPD) (Baltzer, 2011; Hedegaard, 1993; Woolfolk, 2016). 

Scaffolding happens when adults or more capable peers assist and support learners in 

understanding something. This help is needed to gain a solid understanding, eventually 

leading to the learners being able to solve problems on their own (Baltzer, 2011). A learner’s 

ZPD is an illustration of an area of learning where students are not able to solve a problem by 

themselves but might be successful with support from an adult or another more skilled peer 

(Baltzer, 2011; Hedegaard, 1993). Simply put, the ZPD is the difference between what a 

learner can do without help and what he/she can do with help (Hedegaard, 1993). These two 

terms are closely related as the cooperation and communication through scaffolding within a 

learner’s ZPD is considered important aspects in order to promote understanding (Baltzer, 

2011; Hedegaard, 1993; Woolfolk, 2010). 

As my study focuses on problem solving, positions towards a sociocultural perspective to 

learning and thinking will be taken. A teacher’s knowledge and decisions affect what students 

learn, but students play an important role in their own learning through expectations, 

knowledge and how they respond to the teaching. I will consider teaching and learning 

mathematics as a matter of the interactions between students and teacher and how they 

produce knowledge together. Through different contexts in mathematics classrooms these 

student-teacher and student-student interactions occur, and by recognizing these contexts 

analysis can be made on which classroom practices that promote and which do not promote 

mathematical proficiency (Kilpatrick et al., 2001). In this thesis I will investigate how, and to 

what extent, problem solving as a classroom practice promotes mathematical proficiency in 

students. 

 

2.3 Problem solving 

The aspects of knowledge types and quality can be related to features mathematical problem 

solving. Previously mentioned research emphasizes the importance of teaching approaches 
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that create opportunities for deeper learning (Ludvigsen, 2015; Pellegrino et al., 2012). In 

order for students to achieve deep knowledge, they need abilities to transfer current 

knowledge to new and unknown situations and the capability of transferring knowledge relies 

on making connections. Acquiring knowledge which is easily connected, labeled above as 

conceptual knowledge, is essential for learners to obtain in order to transfer knowledge 

(Kilpatrick et al., 2001; Ludvigsen, 2015; Pellegrino et al., 2012). 

Problem solving tasks are often defined as tasks where the solution method is not known in 

advance by the solver (Schoenfeld, 1985; Wake, Swan & Foster, 2015), although this can be 

considered as a simple definition (Lester Jr, 2013). Some researchers have put critical thinking 

in relation to problem solving, as both critical thinking and problem solving require reasoning, 

analytical abilities, identifying relevant questions and using purposeful strategies to solve 

complex problems (Lester Jr, 2013; Ludvigsen, 2015; Schoenfeld, 1985; Stacey, 2007). Problem 

solving means that students need to analyze a problem and deciding how to attack it with use 

of expedient methods (Ludvigsen, 2015). A more thorough definition of problem solving posed 

by Lester (2003) gives a comprehensive explanation of the abilities needed in order to be 

effective at problem solving:  

“Successful problem solving involves coordinating previous experiences, knowledge, 

familiar representations and patterns of inference, and intuition in an effort to 

generate new representations and related patterns of inference that resolve some 

tension or ambiguity (i.e., lack of meaningful representations and supporting 

inferential moves) that prompted the original problem-solving activitiy” (Lester Jr, 

2013, p. 249). 

Although there are many different definitions and thoughts on what mathematical problems 

are, there seems to be a consensus in the community of mathematicians that problem-solving 

skills are important to become good at mathematics (Leinwand et al., 2014; Lester Jr, 2013; 

Putnam, 1987; Schoenfeld, 1985; Stacey, 2005, 2007). In the Norwegian curriculum of 

mathematics, problem-solving abilities are emphasized as a key part of learning mathematics, 

because mathematical competency «(…)consists of using problem solving and modeling to 
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analyse and re-structuring a problem to mathematical form, solving it, and considering how 

valid the solution is” (The Norwegian Directorate for Education and Training, 2013). This 

addresses the fact that problem solving is a fundamental part of what is considered being a 

competent mathematics learner. 

In this section, I will first, in subsection 2.3.1, look at the connection between transferable 

knowledge and problem solving in. The following subsection, 2.3.2, will deal with heuristics, 

the way one uses reasoning and methods in order to solve problems. Last, in subsection 2.3.3, 

classroom practices will be discussed through the lens of problem solving research, closing 

with Schoenfeld’s framework for employing robust understanding through teaching. 

 

2.3.1 Defining a knowledge base for problem solving 

What are the important attributes of knowledge needed for mathematical problem solving? 

Section 2.2 looked at different types and qualities of knowledge, but is there a connection 

between a student’s knowledge or understanding and the ability to solve problems? 

The abovementioned explanations of problem solving are clearly linked with the concept of 

deeper learning. Problem solving gets associated with connection, critical thinking, analysis 

and inference, all of which being attributes of deep knowledge (Lester jr, 2013). The 

importance of connecting knowledge in new problems is especially important, as this is not 

considered an aspect of instrumental understanding (Skemp, 1976). This being said, one could 

go a long way in arguing that deep, conceptual understanding is a prerequisite in order to 

become good mathematical problem solvers: “Deeper learning requires students to use their 

analytical abilities to solve problems and reflect over their own learning to construct a lasting 

understanding” (Ludvigsen, 2015, p. 14). If the aim of (deeper) learning for the students is to 

acquire transferable knowledge, problem solving activities should be easier to work with as 

the goal for students is to use already-known mathematical content in non-routine problems 

(Wake, Swan & Foster, 2015). 

Stacey (2005) looked for similarities and differences in curriculums when it comes to the view 

of problem solving. In this work, Stacey draws lines between Singapore’s model of teaching 

mathematics and other European countries. In many curriculums (for example the UK’s), the 
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goal is for students to achieve good mathematical knowledge, and the use of problem solving 

is a way to ensure this. In Singapore, however, this is turned the other way around. Stacey 

quotes Singapore’s Ministry of Education which states that “The primary aim of the 

mathematics program is to enable pupils to develop their ability in mathematical problem 

solving (…) The attainment of this mathematical problem-solving ability is dependent on five 

inter-related components — Concepts, Skills, Processes, Attitudes and Metacognition.” 

(Stacey, 2005, p. 345) These five components embedded in mathematics education in 

Singapore can easily be connected to Kilpatrick et al’s (2001) view on how to acquire 

mathematical proficiency, through the intertwining of factors important to learning. These 

two ways of looking at problem-solving instruction in mathematics are consistent with Lester 

Jr’s (2013) means- or end approaches which were mentioned in section 2.1. 

There are several factors that come into play when working with mathematical problems. 

Building on Polya’s (1945) work, Schoenfeld (1985) looked to identify traits of learners that 

were good at problem solving, taking a position where he accepts that solving problems 

depend on a learner’s prior knowledge and understanding of the problem at hand. In doing 

so, Schoenfeld clearly defines limits to a learner’s possibilities of solving problems (Liljedahl et 

al., 2016). Classifying this, Schoenfeld used four categories of knowledge and behavior 

necessary for students to become good problem solvers: Resources (possessed mathematical 

knowledge), heuristics (strategies and techniques), control (decision making) and belief 

systems (beliefs and attitude towards the subject, a problem etc). Resources is the foundation 

of what mathematical understanding and procedures a learner has access to, and the 

heuristics lay the ground to which extent the learner can use this mathematical knowledge in 

strategies. Control is the ability to make decisions that put the knowledge and strategies to 

good use. Last, a learner’s view of the mathematics or his/her abilities within mathematics or 

a mathematical topic, affect the three first categories (Schoenfeld, 1985). Another more 

detailed look at required skills for problem solving is illustrated in Figure 2, and it gives an 

example of how problem solving is dependent on several contributing factors (Stacey, 2005). 

The elements in Figure 2 and Schoenfeld’s four categories are similar, but there are a few 

points from Stacey’s (2005) figure that separate from Schoenfeld’s classification. Both 

emphasize having solid mathematical knowledge, and that they possess strategic knowledge, 

or heuristics, in order to solve problems. However, Stacey also looks to include communication 
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skills and capability of working with others as important parts of becoming good problem 

solvers. These points can be linked to the aspects of sociocultural learning mentioned in 

subsection 2.2.4, looking at problem solving as work involving social interactions.  

In this thesis, I will focus on factors of deep mathematical knowledge. In addition, due to the 

connection shown through the literature reviewed, I will also discuss general reasoning 

abilities and heuristic strategies. 

 

 

Figure 2. Factors contributing to successful problem solving. Reprinted from “The Place of Problem Solving in 

Contemporary Mathematics Curriculum Documents,” by K. Stacey, 2005, Journal of Mathematical Behavior, 24, 

p. 343. 

An interesting question to ask is whether it is possible to achieve good problem-solving 

abilities through pure instrumental understanding? Would it be achievable to obtain a high 

degree of knowledge and behavior within Schoenfeld’s four categories if the knowledge base 

was founded merely in procedural knowledge? Are the factors shown in Figure 2 possible to 

obtain based on purely instrumental understanding? I would agree that knowing only the how 

and not the why could serve as a problem when developing several of the components in 

Figure 2, one example being general reasoning abilities. Reasoning is considered the ability to 

see logical relationships between concepts and situations, effectively connecting everything 

together. Whilst strategies for solving problems might require use of procedural knowledge 

in order to calculate or measure, reasoning is the component which is used to determine 

whether the selected procedure is applicable (Kilpatrick et al., 2001). This example supports 
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the claim I made above, that problem solving in mathematics relies on possession of deep 

knowledge. 

 

2.3.2 Heuristics and its place in mathematical problem solving 

Through his 1945-published work, How to solve it, George Polya tried to refresh heuristics to 

a new and comprehensible form. The book is considered a guide to problem-solving 

techniques, and has been used as a base for later work on the same topic (Schoenfeld, 1985). 

“Once nearly forgotten, heuristics have now become nearly synonymous with mathematical 

problem solving” (Schoenfeld, 1985, p. 23). But what are the essential steps one need to take 

when solving mathematical problems? Polya’s (2009) work from 1945 include four phases 

necessary for learners to master in order to become good at solving problems. 

According to Polya (2009), it is first crucial that the learner understands the problem. The 

problem at hand should not be too difficult, nor too easy, and should be comprehensible for 

the learner. In order to understanding the problems, students could ask themselves questions 

like “What is the unknown?” or “What information is provided?”. Second, the learner should 

devise a plan for solving the problem. The process of coming up with a (meaningful) plan for 

solving a problem is considered the main achievement in finding a solution to the problem. 

The path to finding a plan can be a long struggle and might emerge gradually or through ideas 

that emerge. As teachers, Polya thinks the best approach is to procure bright ideas for the 

students, asking questions that might bait such thoughts. This can be seen in relation to 

Vygotsky’s ideas of scaffolding learners to help them develop (Baltzer, 2011; Hedegaard, 1993; 

Woolfolk, 2016). Third, learners must carry out the plan devised from phase two. Carrying out 

this plan is much simpler, as it relies mainly on patience and precision to be successful. Fourth, 

the learners should look back at the work they just completed in order to see if mistakes were 

made, if there are any improvements or further knowledge to be made. No problems are 

completely exhausted, and solutions could be improved and understood at a deeper level, or 

even solved in different ways (Polya, 2009). 

Several other researchers have looked to build on Polya’s classic approach. Amongst them is 

Verschaffel, Dooren, Greer, & Mukhopadhyay (2010) who devised six steps that effective 

problem-solvers go through. These steps can be summed up as (1) understanding the 
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problem, (2) creating a model to derive results, (3) using the model to derive results, (4) 

critically evaluating the outcome of the procedures conducted, (5) critically evaluating if the 

mathematical outcome make sense and (6) communicating the solution of the problem. The 

first three steps are relatively similar in both Polya’s (2009) and Verschaffel et al.’s works, as 

they both explain that students need to understand the problem, create a plan, and carry out 

this plan. Polya’s fourth phase is covered in Verschaffel et al.’s fourth, fifth and sixth steps, as 

Verschaffel’s last three steps explain a more thorough process after a plan has been carried 

out. 

As one of my research questions directly relates to how students solve problems, I intend to 

use Polya’s four phases when looking at students’ interaction with problem-solving tasks. 

Although Verschaffel et al.’s six steps are more detailed, I will focus on Polya’s (2009) four 

phases. As described, the three first steps are very similar in both approaches, and Polya’s last 

phase captures the three last steps of Verschaffel et al. Therefore I think that Polya’s approach 

also should be able to provide good indications of students’ strategies in problem solving as 

his approach contains much of the same aspects whilst limiting itself to only four phases. 

 

2.3.3 A theoretical framework for analyzing properties of good mathematics teaching 

As mentioned earlier in this chapter, research identifies connected knowledge that transfers 

to new situations as an important part of learning (Kilpatrick et al., 2001; Ludvigsen, 2015; 

Pellegrino et al., 2012). As problem-solving activities are considered tasks where the learner 

does not know the solution immediately (Lester Jr, 2013), these claims for knowledge and 

problem solving as an important part of mathematics go hand in hand. 

Using open-ended problem-solving tasks, as opposed to more “traditional” approaches where 

teacher instruction and textbook work is the main focus, has given indications that classrooms 

where problem solving takes place have a positive effect on mathematical competency 

(Boaler, 2003). Encouragement of students to represent problems, justification of answers 

and looking at problems from different angles support the development of profound 

mathematical knowledge, instead of over-scaffolding and lowering cognitive demands of tasks 

(Boaler, 2003). 
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Building on his work with problem solving and as part of the Algebra Teaching Study, 

Schoenfeld (together with Robert Floden) wanted to create a framework to analyze teacher 

performance and what results come from it (2014). “The question here is, can one identify the 

key aspects of powerful mathematics classrooms -  classrooms that produce students who do 

well on tests of mathematical content and problem solving?” (Schoenfeld, 2013, p. 406). With 

this question, Schoenfeld defines what he believes is a “powerful mathematics classroom”, 

namely one which produces students that perform well when it comes to mathematical 

content and problem solving.  

Trying to answer the questions of what classroom interactions and pedagogies which result in 

robust understanding of important mathematics, Schoenfeld and Floden created a scheme in 

order to analyze teacher performance and what results come from it. Robust understanding, 

defined by Schoenfeld (2013) as the ability of being effective at dealing with something, is in 

the context of mathematics a person’s capability of effectively solving complex and 

demanding tasks. Exploring the relationship between what is considered good classroom 

practices with the student outcomes that emerge from them was, according to Schoenfeld, 

not studied through research and needed further attention (Schoenfeld, 2013, 2014; 

Schoenfeld, Floden, R. E., & the Algebra Teaching Study and Mathematics Assessment Project, 

2014; Schoenfeld & the Teaching for Robust Understanding Project, 2016a). 

The framework, Teaching for Robust Understanding (TRU), would give implications to what 

extent students were given the possibility to enhance their mathematical abilities in the 

classroom. Five dimensions of classroom activity were identified, and to what extent these 

dimensions were applied affected what degree of proficient mathematical thinkers and 

problem solvers would emerge from those classrooms (Schoenfeld et al., 2016a). Each 

dimension has a rubric to scale a teacher’s ability within the dimensions and a more extensive 

observation guide was also developed, named the Teaching for Robust Understanding 

Observation Guide (TRU OG). This guide was intended to be used in planning, conducting and 

reflecting on observations in mathematics classes (Schoenfeld & the Teaching for Robust 

Understanding Project, 2016b). 

Although it was created from a mathematical standpoint, the framework does not limit itself 

to mathematics only. The five dimensions that constitute the framework are general and could 
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easily be used to evaluate robust learning environments in other subjects as well. These 

dimensions are Content (in this case: The Mathematics); Cognitive Demand; Equitable Access 

to Content (in this case: Equitable Access to Mathematics); Agency, Authority and Identity; 

and Formative Assessment (Figure 3). 

 

Figure 3. The five dimensions of powerful mathematics classrooms. Reprinted from “An Introduction to the TRU 

Dimensions,” by Schoenfeld, A. H., Floden, R. E., & The Algebra Teaching Study and Mathematics Assessment 

Project, 2014, p.2.  

The mathematics covers the students’ experience of the content in mathematics classrooms. 

Is the mathematics experienced as isolated facts, procedures and concepts that are to be 

memorized and practiced, or is the mathematical content coherent, meaningful and 

connected? To what extent is the teacher able to give students an understanding of the 

subject that turns them into mathematical thinkers and gives the ability to link their existing 

knowledge to new learning? Cognitive demand asks the question: “Do students have 

opportunities to engage in productive struggle, through which they develop understandings 

of mathematics and the kind of perseverance in problem solving that is valued?” (Schoenfeld 

et al., 2014. pg 10). It is important to find the right balance between too easy and too difficult, 

and to make sure that students have the ability to work through problems. With the help of 
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scaffolding (as opposed to being told how to solve a problem), students will be given 

opportunities to learn, which gives them room to develop when facing difficulties (Schoenfeld 

et al., 2014; Schoenfeld et al., 2016a). This can be connected to Vygotsky’s sociocultural 

perspectives to learning, where learning processes occur in interactions with adults of more 

skilled peers (Baltzer, 2011; Hedegaard, 1993; Woolfolk, 2016). By avoiding repetitive 

exercises, not giving step-by-step instructions and encouragement of productive struggle in 

problem solving activities, teachers help maintain appropriate levels of cognitive struggle 

(Schoenfeld et al., 2014; Schoenfeld et al., 2016a). 

To ensure Equitable Access to Mathematics, it is important for teachers to encourage 

participation from all students in the classroom. By selecting tasks that all students can engage 

with, teachers can create equal opportunities for all students to take part in the learning 

process. It is also important to remember that all students should have the same opportunities 

to discuss the mathematical topics, regardless of their mathematical competency. Agency, 

Ownership, and Identity focuses on “the extent to which students have the opportunity to 

generate and share ideas, both in a whole class and in small group settings(…)” (Schoenfeld et 

al., 2016a, p. 9). In what way do students make contributions, and is there a safe environment 

for making such contributions? How does the teacher build on contributions from students to 

enrich the teaching? Last, formative assessment sheds light on a teacher’s ability to assess a 

student’s understanding during the learning process. Are there misunderstandings that need 

to be addressed, and does the teacher create classroom activities that build on this 

assessment? In order to keep developing students’ knowledge, teachers need to meet the 

student’s suitable abilities in order to give them opportunities to develop further (Schoenfeld 

et al., 2014; Schoenfeld et al., 2016). 

These dimensions are fairly comprehensive and cover a lot of what goes on inside a 

(mathematics) classroom. The idea is that students in classrooms where these dimensions are 

constantly in play will become learners with a robust knowledge base, able to confront and 

overcome different problems and tasks in a series of ways (Schoenfeld et al., 2014; Schoenfeld 

et al., 2016a). Unlike many other frameworks, the TRU Framework does not say what to do or 

what not to do, but rather looks at learning environments where students excel, and specifies 

properties typical to those classrooms. Schoenfeld makes a point of seeing teaching as 

something complex where there are many right ways to create learning for students, and TRU 
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is a framework created in order to help teachers identify elements where they can develop 

(Schoenfeld et al., 2014, Schoenfeld et al., 2016a). 

As mentioned in 2.1, teaching where students acquire broad and deep knowledge which they 

are able to connect, in addition to developing good reasoning abilities are indications of good 

mathematics teaching (Kilpatrick et al., 2001; Ludvigsen, 2015; Ma, 2010; Putnam, 1987; 

Stacey, 2007). The TRU Framework seems to capture these broad mathematical aspects. 

Within the Mathematics dimension, the framework emphasizes the importance of teaching 

the mathematical content in a way which is coherent, meaningful and connected, as opposed 

to memorizing isolated facts, procedures and concepts. This is consistent with Skemp’s (1976) 

thoughts that students need to acquire relational understanding instead of instrumental 

understanding, and Star & Stylianides’ (2013) and Star’s (2000, 2005, 2007) ideas on obtaining 

deep levels of both procedural and conceptual knowledge. The framework also underlines the 

importance of giving students the ability to link existing knowledge to new learning and 

engaging them in the productive struggle. These aspects are connected to features of deep 

knowledge and sociocultural learning perspectives. 

In light of the research questions of this thesis, the TRU framework appears to be a framework 

that could serve the purpose of identifying qualities of teaching and learning that goes on in 

problem-solving classrooms. 
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3 Methodology 

In this chapter, I will discuss the process of using qualitative method in order to answer my 

research questions. In section 3.1, I will give an explanation of the chosen qualitative methods, 

and the aspects of reliability and validity that occur when conducting interviews and 

observation. Further, the collection and analysis of my data will be examined in sections 3.2 

and 3.3. Last, the issue of ethics in qualitative methods is reviewed in section 3.4. 

 

3.1 Qualitative methods 

Gradually becoming more accepted within social sciences, qualitative approaches are 

recognized by a large amount of different data and a variety of analytical techniques. A 

primary goal of qualitative methods is to understand social occurrences, giving interpretation 

an important role in analysis and causing challenges in terms of ethics due to the close contact 

between researcher and the subjects being studied (Thagaard, 2013). Qualitative methods are 

flexible ways of gathering data, relying on open questions to get detailed descriptions from 

the subjects, as opposed to quantitative methods where answers are based on predetermined 

alternatives for responding (Christoffersen & Johannessen, 2012). Results from qualitative 

research look to emphasize things that are not measurable in quantity or frequencies and 

gather much information on a low number of units. 

The research questions of this thesis require an interaction with the subjects being studied. 

Trying to answer questions linked to classroom practices and problem solving demands an 

approach that would give students opportunities to express themselves and elaborate on their 

experiences when learning. Therefore, conducting interviews were decided as the best way 

to gather valuable information. Although observation is another qualitative method of 

gathering data it has not been a chosen method in this thesis, which will be explained in 

subsection 3.1.2. 

In this section, I will first give an introduction of what a qualitative interview is, and to what 

extent interviews have received recognition within research in subsection 3.1.1. Following 

this, a brief explanation of other qualitative methods is examined in subsection 3.1.2. In 

subsection 3.1.3, challenges with qualitative interviews are discussed, before I in subsection 
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3.1.4 state reasons for choosing qualitative interviews as my preferred method of collecting 

data for my thesis. 

 

3.1.1 Qualitative interviews 

The term interview has been used since the 17th century and means the exchange of meaning 

and thoughts between two people in a conversation about a subject that concerns them. 

Although interviews faced much resistance early on, in today’s society interviews are 

considered useful and has influenced many social practices (Kvale, Brinkmann, Anderssen, & 

Rygge, 2009). Piaget and Freud, two of the most quoted psychologists in scientific literature, 

collected most of their empirical evidence from interviews, and in the last 50 years there has 

been a great expansion on methodological literature on how to conduct interviews (Kvale et 

al., 2009). With this expansion on literature and increased knowledge on how to carry out 

research through interviews, many disciplines now rely heavily on qualitative research, 

including psychology, sociology and education (Kvale et al., 2009). 

Qualitative interviews are the most used approach when collecting qualitative data and gives 

the possibility of gathering detailed and insightful descriptions of a topic (Christoffersen & 

Johannessen, 2012; Jacobsen, 2005; Mason, 2002). Using qualitative interviews is considered 

suitable when researching a limited amount of people, and when the goal is to gain 

information of a person’s ideas, thoughts and feelings (Jacobsen, 2005). As opposed to survey 

interviews, where the interviewer poses predetermined questions in a strict order, qualitative 

interviews are structured conversations with a purpose of gaining understanding. This 

contrasts the quantitative method, where expansion and numbers are more important than 

answering questions of what or why. Qualitative interviews are often considered more as a 

dialogue than just a questionnaire, and through interviews one intends to capture insights of 

a person’s perceptions and produce knowledge through a social interaction between the 

interviewer and interviewee (Christoffersen & Johannessen, 2012; Jacobsen, 2005; Kvale et 

al., 2009; Thagaard, 2013). (Kvale et al., 2009) use the term life world, focusing on the subject’s 

perceptions of their lived everyday world. Through interviews there are unique possibilities of 

obtaining access to what people encounter in their lives, and the researcher’s goal is to get 

unprejudiced descriptions in relation to the world of science.  
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Interviews can be conducted in several different ways, ranging from an open conversation 

with little or no structure, to a carefully organized interview where questions are 

predetermined and the order is fixed as well (Christoffersen & Johannessen, 2012; Jacobsen, 

2005; Mason, 2002; Thagaard, 2013). Open interviews give the researcher good opportunities 

to follow up stories and experiences revealed by the interviewee, but the relation between 

researcher and informant can affect the answers given by the informant. Structured 

interviews give more opportunities of comparing interviews and answers as the set questions 

might lead to information that can be easier to systemize, but they give little room for 

flexibility to adjust interviews to the individual informants. In between these two extremes, 

there is the semi-structured interview. The semi-structured interview is characterized by 

predetermined topics, but the questions posed, order and arrangement of questions and 

explorations underway will vary as the interview is conducted (Christoffersen & Johannessen, 

2012; Jacobsen, 2005; Thagaard, 2013). The qualitative interview is based on this semi-

structured form of interviewing, giving researchers flexibility, but still a somewhat narrative 

approach (Kvale et al., 2009; Mason, 2002). 

Due to the nature of interviews, there are limitations to how many informants one can 

interview and how much data one can generate from field notes to a specific study. 

Quanitative research differs because there are almost no limits to the amount of data one can 

collect and process with the technology of this day and age. For a master thesis to be 

comprehensible, the number of subjects for interviews will most likely be below ten, and the 

information they can provide will give a detailed view of their life world, but it will not be as 

easy to generalize upon this data (Christoffersen & Johannessen, 2012; Thagaard, 2013).  

In this thesis, a total of six semi-structured interviews were conducted. Five of the interviews 

were with students from Lakeside and Westwood, the last interview was conducted with a 

teacher from the mathematics section at Lakeside in order to gain insight on their curriculum 

design. The decision of choosing interviews as a method was made with a few considerations 

in mind. I wanted to research the teaching and learning in these classrooms, which is reflected 

in the research questions. Trying to gather information on the aspects of teaching and learning 

only from observation was quickly rejected as a possibility. Observation over time generates 

a massive amount of data (Christoffersen & Johannessen, 2012; Thagaard, 2013), and in order 

to get a good impression of the classroom practices there would have to be a substantial 
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amount of hours observed.  Therefore, I determined that an approach with interviews would 

be taken. 

The interview which was conducted with the teacher at Lakeside is definitely considered part 

of the study as she gave valuable information on the curriculum design. However, this has only 

been used as background information, and will not be analyzed. 

 

3.1.2 Other qualitative methods 

In this context, the other possibility of collecting data would be through the use of observation 

as a method. Observation is especially suitable in research when the aim is to record what 

people actually do (as opposed to what they might say that they do), gaining an insight in 

typical behavior in a given circumstance. Another setting where observation is appropriate 

would be to record human behavior in a particular context (Jacobsen, 2005). Both of these 

examples could have been relevant for use in my research. I am, indeed, interested in 

evaluating student behavior, both individually and in groups. However, I soon realized that 

there were limitations to only using observation. For one, I wanted to have the possibility of 

having the students voice their thoughts and opinions on learning. Secondly, I decided that 

the amounts of data would be very comprehensive if my goal was to get an idea of how 

problem-solving affected students’ learning in mathematics. This requires a large number of 

lessons observed, leading to data could possibly be too comprehensive for this master thesis. 

Within research, it is common to start off with some sort of reality or problem that one seeks 

information on (Christoffersen & Johannessen, 2012).  In order to design my research, it was 

important to fully grasp what would be the main focus and what questions I wanted to answer. 

Because I had little prior knowledge of what was actually done in these classrooms, a large 

part of my preparation phase was done whilst observing in different classrooms. This was 

helpful in giving me an idea of how the teacher and the students worked and engaged 

throughout the different lessons. A total of 58 lessons over the course of 26 days were spent 

observing, giving me a solid impression of the practices of the different classrooms. Although 

this observation could have been a tool in analyzing the learning during those lessons, I 

decided that my observation would serve two purposes. First, it would give me a solid 
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understanding in order to explain the dynamics of the problem-solving lessons.  Second, it 

would help me to choose interviewees for my data collection. This way, the observations 

served as a pre-study to the research conducted in this thesis. 

 

3.1.3 Challenges in qualitative research 

Although there are many advantages to qualitative data in research, there are also objections 

to the quality of the research which is based on information from interviews. Kvale et al. 

(2009) sum up this criticism in three categories; general conceptions of scientific research, 

stages of the interview- and analysis process, and validation/generalization of the interview-

produced knowledge. The criticism through all three categories mostly evolves around the 

fact that interviews are too person dependent, and therefore difficult to label as scientific. 

The issue of objectivity is problematic within qualitative research; the researcher poses 

questions, and results or interpretations of interviews can be accused of being biased, 

subjective and explorative. Different researchers may find different meanings when analyzing 

interviews, and this calls for a claim that interview interpretation is not inter-subjective. Like 

quantitative data, the Bartlett effect, where researchers choose data that support their 

message, is also an issue worth mentioning (Brown, 1992). In qualitative interviews, the 

Bartlett effect can be seen in connection with posing leading questions to gain answers that 

give backing to the points a researcher is trying to make. Leading questions might affect a 

subject’s answers, which is also a critique of the subjectivity of the interviewer. In addition to 

this, the low number of subjects makes it problematic to generalize findings from interviews, 

again raising the question of whether it can be regarded as scientific (Kvale et al., 2009). In my 

research, several of these aspects may be raised as challenging. There is a low number of 

interviews, making it difficult to generalize any possible results. Issues of objectivity is also 

relevant as I have both collected and analyzed the data myself. These are issues of validity and 

reliability that are discussed further in subsection 3.4.2.  

Another aspect to remember in this setting is the inexperience of myself as an interviewer. 

The key research instrument of interviews is the interviewer, and when conducting interviews 

one should have qualities that include solid knowledge, sensitivity, ability to structure and 

steer the interview, as well as being both open and critical in the process of the interview. An 
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interviewer’s qualifications will thereby have an effect on the quality of the interview (Kvale 

et al., 2009). I realize that I am not trained in conducting interviews, as this is the first time I 

have been through an interview process of this size. Some further thoughts on this is covered 

in subsection 3.2.3, where I elaborate on how the interviews were conducted. 

 

3.1.4 Qualitative research as a method for this thesis 

In this thesis, my aim is to look at the learning that emerges through classrooms where 

problem solving takes place. Though this could be achieved by testing and re-testing, I wanted 

to look at other aspects than just specifically right or wrong answers on a given test. What are 

the characteristics of these classrooms, what type of teaching promotes acquisition of 

connected knowledge, and how do the students engage in problem solving tasks? These 

questions would be impossible to answer through a quantitative approach. Therefore,  

qualitative interviews were chosen to gather the students’ perceptions on the teaching and 

learning in these classrooms. 

 

3.2 Data collection 

This section starts with a brief discussion in subsection 3.2.1 of the terms collecting and 

generating data in qualitative interviews. Then an explanation of subject selection gets 

reviewed in subsection 3.2.2. Last, in subsection 3.2.3, the execution of the interviews will be 

described. 

 

3.2.1 Collecting or generating data? 

In qualitative methods, there is a distinction to be made from the terms collecting and 

generating data, and there are different perspectives to what information from interviews can 

provide science with. Collecting data suggests that the same information is accessible to 

everyone and that the researcher is neutral when it comes to collecting this information. 

Through this positivist standpoint, the subject will give descriptions of his or her knowledge 

of the outer world based on prior experiences (Thagaard, 2013), and the knowledge that 
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emerges from the interview is considered given facts that are to be quantified (Kvale et al., 

2009). However, many qualitative perspectives reject this idea. From a constructivist position, 

data from interviews is considered a result from the social interaction between researcher 

and subject, and both are active contributors of the knowledge that will arise from the 

interview. Data is collected through active construction of knowledge in social interaction 

through one’s epistemological position (Kvale et al., 2009; Mason, 2002; Thagaard, 2013). 

These positions are important to take into concern when analyzing data. For my research, I 

accepted that both views gave important insight. On the one hand it is important to keep in 

mind that the interview is in fact a social setting, and that the roles of both interviewer and 

interviewee affects the outcome, and on the other hand that the knowledge of the 

interviewee are reflections of his or her experiences. In this thesis I take both of these 

positions into consideration and realize that both views are relevant and important to 

acknowledge. 

 

3.2.2 Subject selection 

In qualitative interviews, subjects are chosen through strategic selection. The criteria for 

selection in qualitative research is not to what extent interview subjects are accessible, but 

rather how purposeful it would be to include a subject in the research (Christoffersen & 

Johannessen, 2012; Thagaard, 2013). Mason (2002) refers to the selection process as 

sampling, a strategic way for researchers to narrow down and focus the group of people to be 

interviewed. For practical and resource-based reasons, it is important to ensure that the 

amount of subjects is not overwhelming and comprehensible for the researcher. In addition 

to this, there are sampling reasons that deal with the focus of the research. It is likely that the 

researcher is not looking for shallow information on broad subjects, but rather a deeper focus 

on specific topics or occurrences. Through this sampling of subjects, the aim is to gain a range 

of contexts or phenomena which will improve the research.  

Some interview subjects may have characteristics that can be considered better than other 

interview subjects. Good interviewees obviously give accurate answers and do not contradict 

themselves with inconsistent responses, and they tend to stay on topic whilst still giving 

examples of detailed stories, descriptions and experiences. Still, it is important to note that 
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informants who hold these characteristics do not necessarily provide the researcher with the 

most valuable information to answer the research questions at hand (Kvale et al., 2009). 

Therefore, the challenge is to recruit informants with desirable characteristics who also 

possess qualifications which may give material that enhances the study’s quality. 

There are several strategies to select subjects for interviews, and these methods depend on 

what the researcher considers valuable to the study. Identifying a strategy for selection will 

therefore ultimately decide the quality and relevance of the final sample for the research. One 

strategy is to sample informants that have extreme qualities in relation to each other and try 

to draw conclusions to what qualities within these informants that lead them to each 

extremity. The contrary would be recruiting a homogenous selection and try to label and 

locate specific traits that make them similar or different (Kvale et al., 2009; Thagaard, 2013). 

Another approach is convenience sampling, where researchers choose the subjects they find 

most convenient; an approach which is not very desirable for scientific research (Kvale et al., 

2009; Thagaard, 2013). 

For my research I decided to use quota sampling when recruiting interview subjects. This 

method is recognized by the creation of categories with certain properties to label potential 

interview subjects in (Thagaard, 2013). After this labeling, subjects from the different 

categories will be selected to the sample of interview subjects. By quota sampling, researchers 

are given the opportunity to compare special phenomena with subjects in different categories 

(Kvale et al., 2009; Thagaard, 2013). My categories were not comprehensive, but they included 

properties I found important for collecting valuable data. First of all, Peterson teaches a lot of 

classes in mathematics, and the idea was to get an impression of how students learn and 

perceive their learning in his problem-solving classes. Although one of the schools has 

progressed classes for particularly gifted mathematics students, I chose not to interview any 

of these. These particular students have chosen to take part in his classes, knowing they will 

take their 10th grade exams in the 9th or 8th grade, and one could probably argue they are more 

motivated than regular students, and some might even be considered more gifted than the 

average student. In addition to this, I thought that interviewing the students he only taught 

once per week could prove to be valuable.  They were exposed to several teachers in 

mathematics over the course of a week, and my assumption was that these students were to 

a much larger extent than other students able to compare classes that focused on problem 
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solving to their regular classes. With this in mind, I chose to interview students from the 7th 

grade class at Westwood and 10th grade classes at Lakeside where Peterson taught once per 

week. Further, I wanted a span of mathematical abilities amongst the interview subjects to 

ensure information from students with complementing capabilities. Last, I decided that both 

boys and girls should be interviewed in both classes. Although my research questions do not 

include gender-specific concerns, including both sexes is something I valued as important to 

ensure that the study focused on more than only one gender. 

Having spent a total of 26 days of observation at Westwood and Lakeside I started to get a 

decent impression of both the teacher, the teaching and the students in these classrooms. 

After categorizing the students, choosing potential subjects for interviews was not too 

difficult. I figured it would be an advantage to conduct interviews with students I had some 

pre-understanding of or if I had experienced some sort of interaction with them during these 

weeks. Connecting questions to relevant tasks I knew that these students had successfully 

solved, or having follow-up questions ready with my background knowledge in mind was 

something I believed would enhance the quality of the interviews. With these criteria, five 

students were carefully chosen and invited to take part in interviews. First, I talked to the 

students during class, asking them for permission to contact their parents regarding my study, 

and after that e-mails were sent to their parents. All parents gave consent to conduct 

interviews with their children. 

My interview subjects were as follows: 

R1: Boy from the 7th grade at Westwood 

R2: Girl from the 7th grade at Westwood 

R3: Boy from the 10th grade at Lakeside 

R4: Girl from the 10th grade at Lakeside 

R5: Girl from the 10th grade at Lakeside 

In addition to the selection of students for interviews, a teacher at Lakeside was selected for 

interview on their curriculum design. She was asked to participate after teachers at the 

mathematics section at Lakeside suggested that she would be able to give solid information 

on the curriculum design and the ideas behind it. 
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3.2.3 Conducting the interviews 

The interviews conducted had a semi-structured approach, directed by an interview guide 

which included general topics and suggestions to relevant topics. The two 7th grade students 

were interviewed in mid-December, and the three 10th grade students were interviewed in 

mid-January. The interviews took place in classrooms where there would be no interruptions. 

They ranged from thirteen to twenty-seven minutes in length, and my telephone was used to 

record the interviews. All the interviews started with a brief conversation where I gave 

information regarding the study and their rights as interviewees, in addition to talking about 

general school-related topics. It seemed that the interviewees were comfortable and relaxed 

in the situation, and as an interviewer I felt I was able to listen, and to ask relevant follow-up 

questions without leading them into certain paths. 

My overall aim was to make the students share their thoughts, descriptions and experiences 

on taking part in mathematics classes that focused on problem solving. Additionally, I asked 

them, during the interviews, to engage in one or more problem solving tasks. This would serve 

two purposes. First, it would give me an idea on how these students confronted mathematical 

problems. Second, their approaches to solving these tasks could provide me with information 

on what knowledge types and qualities these students possessed. Key topics for the interviews 

included (but did not limit itself to): 

• General thoughts on mathematics 

• Motivation, engagement at school and at home 

• Problem-solving activities 

• Differences between problem-solving tasks and other tasks they would encounter over 

the course of a week 

• Solving one or more problems 

Although the interviews were well-prepared, the quality of the interviews seemed to get 

better as I also developed in my role as an interviewer. Asking relevant follow-up questions 

and effectively guiding the conversation was something that improved during the process. The 

respondents in the interviews were named R1, R2, R3, R4 and R5 which arranged the students 

alphabetically, making it easier for me to distinguish during analysis. However, the order of 

the interviews conducted were R1 (first), R2, R4, R5, R3 (last). In the analysis there is a higher 
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frequency of R3’s statements than R1’s, as R3’s interview had a larger degree of relevance to 

the topics of this thesis than R1’s. This is likely because the quality of the interviews gradually 

became better as I developed in my role as an interviewer. 

 

3.3 Data analysis 

Analyzing qualitative data consists of three elements; describing, categorizing and connecting 

(Jacobsen, 2005). Miles & Huberman (1994) looked to similar flows of activity. First, data gets 

reduced through a researcher’s field notes or transcriptions. This reduction starts ahead of 

the data collection period, however, as a reduction starts when a researcher narrows down 

the topics for the study and research questions. The next step in analysis is displaying data, a 

process of displaying the data in ways that are easily comprehensible. Last, conclusions must 

be drawn and the study needs verification (Miles & Huberman, 1994). Describing the data in 

my research is the process of transcribing and interpreting the audio recordings from the 

interviews, and it will be covered in subsection 3.3.1. Categorization is the procedure used to 

create groups in order to place the data in different categories and general considerations of 

categorization is covered in subsection 3.3.2. Last, in subsection 3.3.3, the TRU Framework is 

presented and narrowed down for analysis. Necessary clarifications and explanations to the 

application of the framework will also be made. 

 

3.3.1 Transcribing the interviews 

As mentioned in subsection 3.1.3, there are challenges with determining the quality of 

qualitative interviews. The transcriptions’ quality is also a topic worth mentioning. 

Transcribing from recordings requires interpretations, and the difference between speech and 

text can cause several issues. First of all, with the interview being a conversation between two 

people, all other interactions between the two is hard to recover from audio recordings. 

Second, tone of voice, intonation and enthusiasm disappear in the transformation from oral 

to written language, possibly leaving out important pieces of information in the process (Kvale 

et al., 2009). 
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Transcription of the data was done soon after the interviews were held to ensure that I would 

remember as many details as possible from the conversations. Furthermore, notes were taken 

during the interviews to help me remember things that occurred as the interviews progressed, 

limiting the fragments lost in the process of transcribing. 

 

3.3.2 Interpretive readings and categorization 

Analyzing qualitative data involves taking many decisions that ultimately decide the outcome 

of the study. The issues of generation or collection of data was covered in subsection 3.3.1, 

but following this process of retrieving data there are different ways for researchers to read 

the data at hand. With transcribed interviews, it is common to read the transcriptions using 

an interpretive technique (Mason, 2002). Interpretive readings are made when researchers 

construct a version of what they believe can be referred from the texts, using their own 

subjective interpretations of the transcriptions (Mason, 2002).  

Furthermore, an approach of categorical indexing of the transcriptions was conducted. By 

using constant categories, data can systematically be positioned into specific sections of 

similar information. However, this type of cross-sectional indexing has three possible 

limitations. Creating categories for analysis of a text can be difficult, possibly making them too 

broad for application in more than one text. Interviews also tend to bring up more than one 

topic, possibly making serial indexing impossible. As mentioned in 3.1.1, qualitative interviews 

are characterized by a semi-structured form, which does indexing in sequences difficult due 

to its lack of order (Mason, 2002). Creating relevant categories and subcategories for indexing, 

which were both interrelated and unrelated, that could also be applied for all five semi-

structured interviews, was something that was never considered an option for this thesis. If 

such categories were created, the outcome would likely be a poor analysis with little or no 

foundation in relevant theory. 

Ryen (2002) explains what she calls analytical depth. Categories are often created based on 

the data description, leading to categories with minimal analytical basis. By linking the 

categories to relevant research, however, it will lead to depth in the analysis and better 

analytical quality (Ryen, 2002). 
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3.3.3 The TRU Framework as tool for analysis 

As a part of creating the TRU Framework which is outlined in subsection 2.3.3, Schoenfeld et 

al. (2016b) developed an observation guide for collaborative partnerships between teachers 

and observers. Observations were meant to done in series and should focus on one or more 

of the dimensions from the TRU Framework. As a tool for discussion after the series of 

observations, a conversation guide for reflection was also created (Schoenfeld et al., 2016a). 

The TRU OG includes aims for both students and teachers within each of the five dimensions 

of the TRU Framework, giving traits of what are desired actions, behaviors and engagement 

from teachers and students in classrooms that create proficient mathematical thinkers 

(Schoenfeld et al., 2016b). With the abovementioned challenges of creating categories for 

analysis, using this framework as a base for indexing appeared to be a suitable way of 

analyzing the interviews. 

There is one critical issue with this thesis’ use of the TRU Framework (and observation guide) 

as a tool in analyzing teacher- and student behaviors in the classroom. Schoenfeld et al. 

created the observation guide in order to give guidelines for observation which are pre-

planned where focus points get created prior to observation. Observers are given points to 

assess and can actively search for traits as the teaching takes place. This thesis uses a very 

different approach, taking a student perspective to this analysis. The researcher in this thesis 

has observed classes and interviewed the five selected students, but the characterizations of 

the teaching and learning come solely from the students’ point of view and the interviews 

should capture true and real stories from the students’ experiences in the classrooms. Another 

point is that Peterson had no idea that his teaching would be analyzed through the TRU OG 

measures and no way to prepare specifically for this, which is contrary to the suggested usage 

of the framework. This use of the observation guide is definitely something which can provoke 

discussions. However, I believe that student perspectives to characterize measures of the TRU 

Framework could give assessments which are not necessarily discovered through peer-

observation, giving a breadth to the conducted research. That Peterson did not know he would 

be assessed on certain measures ensures that the student accounts are consistent with what 

is the normal behavior in the classroom. 



 40 

Considering that the analysis would be in light of the student accounts, there were elements 

of the TRU Framework that proved to be more informative for analysis through interviews 

than others, in addition to the fact that a complete analysis would be either too 

comprehensive or too shallow to complete in this thesis. Therefore, some dimensions were 

considered more valuable than others, and I will now explain why The Mathematics, Cognitive 

Demand and Equitable Access to Mathematics were chosen for analysis: 

The aspect of The Mathematics was obviously important to capture the content taught and 

learned in these classes. To which extent these classes challenged the students’ Cognitive 

Demand was also considered important, bearing in mind the previously mentioned 

importance of deeper learning. All students’ Equitable Access to Mathematics also needs to 

be addressed, giving information on whether the teaching practices affect the whole 

classroom or if there are groups of students that do not benefit from the activities performed. 

The dimension of Agency, Ownership and Identity proved to be a difficult item to measure 

using only student interviews as a source. This dimension looks to the students’ opportunities 

to explore and reason on emerging ideas in the classroom, and being able to build identities 

through ownership over the content. These types of behaviors were definitely captured 

through observation, but as qualitative interviews have been the chosen method this has not 

been taken into consideration and will therefore not be covered through the data analysis. 

Formative assessment is also a dimension that would be easier to capture through 

observation, asking questions like “do students provide specific and accurate feedback to 

fellow students?”, characteristics that seem more valuable if they are witnessed than through 

interviews.  

After narrowing it down to the three dimensions The Mathematics, Cognitive Demand and 

Equitable Access to Mathematics, another reduction had to be made within the TRU 

Observation Guide. A total of fifteen measures of student characteristics and seventeen 

measures of teacher characteristics in powerful classrooms are listed in these three 

dimensions, giving a total of thirty-two points to analyze through these interviews. This would 

also prove to be very extensive, demanding me to prioritize certain measures ahead of others. 

The selected measures have been highlighted in the tables below which are gathered directly 

from the TRU OG. For reasons of transparency, the full list of measures from the three 



 41 

dimensions have been included in the tables. This is in order to show that there are several 

measures that were not analyzed during this study. 

 

Table 2. Measures of The Mathematics in the TRU OG. Reprinted from “The Teaching for Robust Understanding 

(TRU) observation guide for mathematics: A tool for teachers, coaches, administrators, and professional learning 

communities,” by A.H. Schoenfeld and the Teaching for Robust Understanding Project, 2016. Appendix: p. 1.  

 

Table 3. Measures of The Cognitive Demand in the TRU OG. Reprinted from “The Teaching for Robust 

Understanding (TRU) observation guide for mathematics: A tool for teachers, coaches, administrators, and 
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professional learning communities,” by A.H. Schoenfeld and the Teaching for Robust Understanding Project, 

2016. Appendix: p. 2. 

 

Table 4. Measures of Equitable Access to Mathematics in the TRU OG. Reprinted from “The Teaching for Robust 

Understanding (TRU) observation guide for mathematics: A tool for teachers, coaches, administrators, and 

professional learning communities,” by A.H. Schoenfeld and the Teaching for Robust Understanding Project, 

2016. Appendix: p. 3.  

The measures from the TRU OG include descriptions of student- and teacher behavior which 

are to be used for analysis of the interviews conducted. However, one of the student-

measures seems difficult to analyze because it assumes specific knowledge not mentioned in 

the TRU Framework: “Each student engages with grade level mathematics in ways that 

highlight important concepts, procedures, problem-solving strategies, and applications” 

(Schoenfeld et al., 2016b. Appendix: p. 1). This requires me to define what problem-solving 

strategies are, in order to understand whether the students possess these strategies. Using 

Polya’s (2009) four phases of problem solving, I will analyze the students’ abilities in using 

problem-solving strategies (heuristics) when solving mathematical problems. Although Polya’s 

approach to problem solving is not mentioned in the TRU Framework or the TRU OG, 

Schoenfeld (1985) looks to Polya’s work as important in reviving heuristics as a key part of 

problem solving. Through the four steps to solving problems, Polya’s method will provide a 

tool for analysis that will be effective whilst not overshadowing the TRU Framework which the 

analysis primarily relies on. 
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One final clarification is needed before presenting the analysis. Having a total of five 

respondents and many measures to analyze, statements and data from all interviews have not 

been gathered for each measure, and not even for each dimension. In some subsections, the 

data has been retrieved from only two respondents. This has been done in order to create an 

analysis of the teacher- and student characteristics that is able to connect and describe with 

flow and precision. In addition to this, using statements from every respondent in each 

subsection would lead to the analysis becoming too comprehensive to complete in this thesis. 

However, all students are represented within each of the sections 4.2 (Teacher characteristics 

in light of TRU measures) and 4.3 (Student characteristics in light of TRU measures), ensuring 

that the analysis has a certain depth. 

 

3.4 Ethical considerations in qualitative studies 

Due to the nature of qualitative interviews, where interactions between subject and 

researcher lead to detailed descriptions of the subject’s thoughts, ideas and experiences, 

there are many ethical issues and considerations important to address. One of the most 

important ethical aspects in qualitative research is that it should not cause any harm to the 

people being interviewed. The interviewer is responsible of maintaining trust between both 

parts through the process of the research, taking the subject’s best interest into consideration 

whilst still conducting informative interviews (Thagaard, 2013). In order to secure anonymity, 

all projects that handle personal information of informants need approval from the Norwegian 

Center for Research Data before carrying out any part of such research. This process is 

explained in subsection 3.5.1. The aspects of validity, reliability and generalization are also 

important in terms of ethics in qualitative research. To what extent a study is trustworthy, has 

been carried out appropriately, and to what degree the research can make general claims are 

discussed in subsection 3.5.2. 

 

3.4.1 Approval from the Norwegian Center for Research Data (NSD) 

The National Comitee for Research Ethics in the Social Sciences and Humanities (NESH) in 

Norway has developed ethical guidelines directed towards research, ranging from concern of 
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other individuals to funding and public debate participation. In master theses, the aspects that 

deal with personal data are the most relevant as many of the other guidelines are directed 

towards higher levels of research and science (NESH, 2016). 

In order to perform research that deals with personal data, researchers are obliged to seek 

approval from the NSD. This process ensures researchers’ knowledge of how to properly 

manage personal data. Researchers are required to gather informed consent from all 

participants, treat all gathered information confidential and store personal data responsibly 

and describe this process in the application (Christoffersen & Johannessen, 2012; Thagaard, 

2013). Obtaining consent has to be done in a way that ensures both the free will of the 

participants, but also that they receive proper and sufficient information on what involvement 

in the study means. With children under the age of 15, informed consent from parents is 

needed. Through the process of gathering information it is important that personal data is 

processed confidentially, ensuring that the information the researcher possesses cannot be 

passed on to identify the informants. In respect to confidentiality, it is the researcher’s 

responsibility to ensure individuals’ anonymity when using data actively in research. In cases 

where storage of data is necessary, the data containing identifiable information must be kept 

safely and separately from other parts of the data (NESH, 2016). 

Because subjects in this research were students, consents were retrieved from parents as well 

as students. Both students and parents received basic information on the study and the use 

of data and were notified that the withdrawal from the study could be done at any point in 

the research. 

 

3.4.2 Validation and reliability 

The evaluation of qualitative research relies on the factors of validity and reliability. These 

elements question the credibility and trustworthiness of the research and its processes 

(Thagaard, 2013). Reliability in research refers to whether another researcher would get the 

same results using the same methods. The issue of reliability concerns the accuracy of the 

interview process, transcription and analysis, affecting the research process as a whole. In 

order to make a study reliable, all aspects of the research process need to be as transparent 
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as possible, ensuring a fair predictability that a similar project will lead to similar results 

(Christoffersen & Johannessen, 2012; Kvale et al., 2009; Mason, 2002; Thagaard, 2013). Using 

detailed descriptions of how the research has been conducted, in addition to a solid base of 

theory, I hope that the research from this thesis will be considered reliable. 

Questions of validity involve to what degree a statement (or in research: the results of the 

study) is true, correct and strong. Results derived from data need to be coherent with what 

has been studied, and as a researcher one should be able to demonstrate that outcomes can 

be measured as claimed (Christoffersen & Johannessen, 2012; Kvale et al., 2009, Thagaard, 

2013). Using qualitative interviews is definitely something that makes for difficult 

reproduction of results, due to the specific nature of interview results. Researchers can never 

be completely objective (Christoffersen & Johannessen, 2012), and my own perceptions and 

thoughts could possibly lead to answers I was looking for. However, during the interviews I 

tried to remain as objective as possible, asking open questions without leading the students 

in any direction: The research has gathered results based on what was in fact studied. 
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4 Analysis 

The findings in this chapter are based on the analysis of the qualitative interviews presented 

in Chapter 3. The connection between the TRU Framework, which was argued as traits of good 

mathematics teaching in 2.3.3, and the students’ experiences and learning outcomes in 

Peterson’s classrooms will be exemplified, giving a base for discussion in chapter 5. 

In order to understand learning outcomes from these classrooms, it is essential to gain a 

general idea of how these lessons were structured and what goes on in these classrooms. 

Although my 58 lessons over the course of 26 days of observation are not considered a 

method used in this thesis, I did develop a good understanding of both teacher- and student 

activity, and how the lessons evolved. These subjective descriptions are used simply to give 

ideas of the behavior in the classroom. The analysis of the data is therefore mostly based on 

the students’ account of the mathematics teaching, but a few aspects include examples of 

tasks from the classroom gained through observation. 

The chapter will be divided into four sections. First, in section 4.1, I will give subjective 

descriptions and explanations of the teaching, student behavior and atmosphere in the 

classrooms observed. Then, teacher- and student characteristics in light of TRU OG measures 

will be analyzed in sections 4.2 and 4.3 respectively. The teacher characteristics will rely solely 

on statements which arose during the interviews. The student characteristics, however, 

include more of the dialogue between respondent and interviewer. Because many aspects of 

the student characteristics became visible through working with problem-solving tasks, this 

section will include several excerpts of the conversations in addition to statements. Last, 

section 4.4 will elaborate on the students’ use of heuristics in interaction with problem-solving 

tasks, analyzing the students’ problem-solving work through Polya’s (2009) four phases of 

solving problems. As explained in 3.3.3, Polya’s four steps will be used to cover one of the 

measures from the TRU OG, giving me a tool for analyzing the students’ interaction with the 

problem-solving tasks. 
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4.1 Classroom behaviors 

Although there were individual differences to every lesson, most of the observed lessons 

followed a similar pattern. The lessons would start off with students and teacher greeting each 

other before Peterson would present a problem on the board, giving little or no information 

on how to solve it. He would also rank the difficulty of the problem before the students would 

start, claiming for example “this problem is a grade 5 on the 10th grade exam” or “this is grade 

7+” (relating it to the Norwegian scale for grading, which goes from 1-6, with 6 being the best), 

giving the students a general idea of how difficult the problems are. Next, the students were 

given some time to solve the task either individually or in groups as Peterson would walk 

around the classroom observing and giving feedback to the students on their progress in 

solving the problem. After a while, one or more solutions to the problem were shown on the 

board before another (similar) problem was given for the students to solve. These general 

observations of the lessons were shared by the interviewed students, as they had many of the 

same experiences as I had witnessed. Respondent number three (R3) said:  

A typical lesson? It often starts with a problem on the board, where he gives us a 

limited amount of information and lets us work for 10-20 minutes on that task by 

ourselves or in groups. And if he notices that many of us get stuck, he will send us in 

the right direction. So even the students that didn’t have a clue will be able to finish. 

(…) You’re working with a task that you don’t know exactly how to solve, but when you 

finally do you might be able to use that solution in other tasks as well (R3) 

The students in the classrooms did not have assigned seats, instead they were given the choice 

to select who they wanted to work with, and the size of the groups they wanted to work in. 

This way, all of the students were given the option to work together with peers, individually 

or with other students they chose. In some lessons Peterson would start off with asking the 

students whether they had any questions regarding their homework, or other tasks they had 

encountered since the last time they met. These questions would be used as an entry for 

discussion in the classroom where the students were given the opportunity to work out 

solutions for themselves. Following this, Peterson usually followed up with a similar task to 
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the one being asked about. An example of this is these two tasks that were used during the 

same lesson: 

“A large tent has a surface consisting of two isosceles triangles and three rectangles. The 

shortest side in the tent’s base makes up 5/6 of the tent’s height. Each triangle’s circumference 

is 55 meters. How high is the tent?” 

There are many difficult parts to this task and how to go forward when solving it. But the 

Pythagorean theorem came back in all of the students’ solutions, ending with an equation 

similar to “ℎ2 + 
5

12
ℎ2 =  𝑥2“ with h representing the height and x representing the equal 

sides of the triangle. However, most of the students failed to apply proper use of parenthesis 

as a correct equation would have the whole fraction term squared: “ℎ2 + ( 
5

12
ℎ)2 =  𝑥2“. 

Peterson took advantage of this mistake which most of the students made, and came up with 

a similar task which forced them to work further with the proper use of the theorem: 

“A flat screen TV has the dimension of 50”. What is the size of the other sides of the TV if we 

know that the ratio between the longest and shortest sides are 16:9?”  

This task would highlight the importance of proper parenthesis usage in each term, helping to 

reinforce the learning the students had just acquired through the previous task. Classroom 

discussions would arise with students saying things like “No, it is not supposed to be 16𝑥2, it 

is (16x)2 !” 

As R3 said, this way the students would learn something and immediately be able to use it in 

other tasks as well. R5 explained this process in the following way: 

(…) there’s a problem on the board, a difficult problem. And then he says that we 

should try to solve it. And then you try, some are able to solve it, and some are not, 

and then after a while he will go through it and show different ways of solving it. And 

then he will give us a similar task, or a task that has similar aspects in it, so that you get 

to use the methods he just used, and then you almost always find ways to solving it 

(R5) 
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Another example of this occurred in a lesson where the focus was work on similar triangles. 

Peterson drew a task on the board (Figure 4), explaining it like this: 

“A group of boy scouts are out camping. Close to their camp site there is a river they want to 

cross, and they need to figure out if it would be possible to jump across it or not. They 

determine the dimensions surrounding the river and end up with the following measurements. 

Is it possible to jump across the river?” 

 

Figure 4. The River-task. 

The task has several different solutions, resulting in the students solving it in a variety of 

different ways. Peterson took his time in letting the students solve the task, and as soon as a 

student had finished solving it he/she was encouraged to find another solution. Following the 

students’ work with the task, different solutions were shown and explained on the board. 

Although the task has several solutions, one particular way of solving it was highlighted, which 

involved expressing side consisting of the end of the campsite to the edge of the river as “25 

+ x”, using this in an equation of ratios. 

Following this task, Peterson drew another task on the board; a trapezoid with diagonals 

connecting the opposite corners (Figure 5): 

“AB = 9,0 cm, CD = 4,0 cm and AC = 6,5 cm. AB is parallel to CD. AC and BD intersect at E. Find 

the value of CE.” 
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This task, just like the River-task, has several possible points of entry. In addition to the obvious 

part of proving that triangles ABE and CDE are similar, expressing sides CE and AE involves 

similar aspects to what the River-task had; one way being EC = x and AE = 6,5 – x. Activities 

like this, and the build-up of these activities, constituted the major part of Peterson’s lessons. 

 

Figure 5. The Trapezoid-task. 

 

4.2 Teacher characteristics in light of TRU measures 

The research questions of this thesis, covered in section 1.3, are primarily directed towards 

student behavior and learning, as opposed to teacher characteristics and teaching. So what 

importance do teacher characteristics have in this analysis, when the aim is to answer 

questions regarding student behavior and learning? In order for the students to emerge with 

good mathematics competency, the teacher plays a crucial role in creating learning 

environments where the students can develop and flourish (Schoenfeld et al., 2016a). As 

Schoenfeld states, the answer is tied to the connections between Peterson’s expectations and 

disciplinary ideas, and the learning outcomes that emerge from these factors. The teacher’s 

approach, ultimately leading to good or poor learning outcomes, needs to be addressed in 

order to fully understand the students’ learning process. Through an analysis of teacher 

characteristics of the TRU OG it will be possible to get an understanding of what classroom 

practices take place in these lessons, in addition to understanding the connections between 

teacher- and student behavior. This, together with the analysis of the student characteristics, 

will give me the opportunity of answering the three research questions of how the students 
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engage (RQ1), how they interact with tasks (RQ2) and whether problem solving develops 

powerful mathematical competency (RQ3).  

In this section, teacher characteristics of the dimensions Mathematics, Cognitive Demand and 

Equitable Access to Mathematics will be analyzed in subsections 4.2.1, 4.2.2 and 4.2.3 

respectively. 

 

4.2.1 Teacher characteristics of The Mathematics 

The goal of the dimension The Mathematics in the TRU OG is that “All students work on core 

mathematical issues in ways that enable them to develop conceptual understandings, develop 

reasoning and problem-solving skills, and use mathematical concepts, tools, methods and 

representations in relevant contexts” (Schoenfeld et al., 2016b. Appendix: p. 1). Through key 

characteristics from teachers this can be made possible. 

Looking to the Observation Guide, the following two points lay the ground for a basis in 

mathematics teaching: “Teachers use materials or assignments that center on key ideas, 

connections and applications” and “teachers support students in seeing mathematics as being 

coherent, connected and comprehensible” (Schoenfeld et al., 2016b. Appendix: p. 1). These 

two measures go hand-in-hand, as they both focus on the teacher’s ability to connect 

mathematics. Through a focus on important ideas and applications, teachers should strive to 

help students experience mathematics as a coherent subject. 

R1 had the following description of the approach to the assignments given in Peterson’s 

classes:  

We kind of… We have to use different ways to solve the tasks. We have to look at them 

from different perspectives. ... We have to use several parts of mathematics in the 

same task too. So you have to look at the tasks in different ways (R1) 

Through the use of problem solving tasks, the students are given opportunities to access 

materials that connect the different mathematical topics together. As R1 states, the tasks 
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given require them to look at tasks from different points of view and to use several 

mathematical topics in the same task. R5 underlines the same points:  

You get to use a lot more of the mathematics, if that makes sense? … Yeah, if you have 

to find the area you need to remember how to do that, and maybe put it into an 

equation, or maybe you have to use that knowledge in similar triangles, you know. You 

get to use all of it in one task. And it… It requires a lot more knowledge, if that makes 

any sense (R5) 

In describing the challenging tasks she encounters in Peterson’s lessons, R5’s statements are 

related to important aspects of deeper learning. Solving the tasks is not necessarily just 

reproducing knowledge, but an active process of using current knowledge in tasks where this 

knowledge has not yet been applied. R1 and R5 do not only solve these tasks, they also reflect 

on what the essential parts of these tasks are. One aspect of working with problem solving is 

for students to be able to solve the tasks given, but in this context it is important to notice the 

fact that the students in Peterson’s class also recognize mathematics as being coherent, 

connected and comprehensible, which according to Schoenfeld et al.’s framework are 

important features for teachers to accomplish in order for students to learn. 

Furthermore, teachers should also “highlight important ideas and provide opportunities for 

students to engage with them” (Schoenfeld et al., 2016b. Appendix: p. 1). Using flipped 

classroom as a method for teaching, all students are given the opportunity to access and 

engage with important aspects of mathematics. It also ensures that students are able to 

participate in the solving of tasks, at the level they are, at any given time. R5’s experiences 

from regular mathematics classes is an interesting contrast to Peterson’s teaching: 

I feel like I learn a lot more that one Monday per week than I have been over the 

duration of half a year. Namely because you get to try all these different possibilities. 

And Isaac kind of knows… He gives us challenging tasks that are useful (R5) 

Peterson highlights important ideas, or as R5 names them; possibilities. R5 claims that these 

lessons are very valuable to her learning, as the tasks are considered useful. As she mentions 
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possibilities, she looks to important aspects of mathematics that are emphasized in these 

weekly classes. She further says: 

Working with square roots, for example. We haven’t worked with it a lot, but now we 

have to use it all the time in these tasks, and you get a lot better at it. As opposed to… 

For example working six months with simple algebra, which some people find very 

simple, but some think it’s really difficult (R5) 

Having observed these classes, I interpret R5’s ideas on square roots not necessarily as how 

important this is by itself, but the principle of doing calculations with square roots (e.g √2), pi 

or 
1

3
 in order to get accurate answers. The key idea of this is not the calculation with square 

roots, but the ability to perform calculations (e.g solve equations) without using numbers; 

which are important parts of being efficient in mathematics. Again, R5 looks to the application 

of these skills, as she compares them to what they have been doing in regular classes. 

Repetition and simple tasks within algebra create superficial procedural knowledge, as 

opposed to the usage of algebraic representations in problem solving activities. She looks to 

the constant use of these representations in relation to solving tasks as a way she has really 

developed a better understanding of the concepts. 

 

4.2.2 Teacher characteristics of Cognitive Demand 

Teachers should seek to challenge students with moderate to demanding tasks, giving room 

and support for growth. Promoting a productive struggle, a student’s battle with solving a task 

with the perfect difficulty, is key in order to enhance learning and engaging student’s in 

learning mathematics (Schoenfeld et al., 2016b. Appendix: p. 2). 

Analyzing the interviews gave many examples of students who found themselves in the 

productive struggle during Peterson’s classes. One example has already been mentioned in 

4.1, where the students were given the task of finding the height of a tent. The TRU 

Observation Guide looks to teachers to “Monitor student challenge, adjusting tasks, activities 

and discussions so that all students are engaged in productive struggle” (Schoenfeld et al., 
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2016b. Appendix: p. 2). With this example, Peterson showed a way of examining the students’ 

work with the problem and adjusted his task to engage all the students towards a productive 

struggle within the same mathematical matter. R3 and R5’s accounts mentioned in 4.1 of the 

teaching emphasize this as well. Both of them express the teaching as a process where tasks 

and activities are adjusted or altered in order to promote learning and deeper understanding. 

R2 relates the lessons of problem solving to regular mathematics classes, giving examples of 

the contrast of the activities done: 

Here we get really difficult tasks and such, while in regular classes we get simple tasks 

where it is more like “It is okay if you can’t solve them, it’s fine!”, and it’s… We don’t 

really get challenged, there’s no “I really really want to solve this!”, there’s no 

challenge. And that’s what is great with Isaac’s lessons, you know? There is something 

grand about solving a task (R2) 

R2’s contrast of the problem-solving lessons and regular classes include interesting remarks 

towards motivation as well as insights on the cognitive demand of these different classes. First 

of all, her account on regular classes is that the tasks offered are simple with little demand of 

mathematical ability. In addition to this, she offers a perspective on what is expected of the 

students, expressing that it is widely accepted not being able to solve tasks. The idea that it is 

okay to fail and being unable to solve tasks are steps on the way to becoming good at 

mathematics is obviously important, but R2 expresses this in a way as it is not expected that 

the students struggle while working with mathematics. This is largely in contrast to her 

opinions of the atmosphere in the problem-solving classes, where she is constantly engaged 

and eager to solve demanding tasks. The attitude towards working with mathematics is fairly 

different, from “it is okay if you can’t solve them” to “there is something grand about solving 

a task”. In Peterson’s lessons, the students get engaged in the productive struggle, and all the 

students are expected to actively participate and battle with the tasks. 

Another measure within of the dimension of cognitive demand claims that the teachers should 

“support students without removing the challenge from the work they are engaged in” 

(Schoenfeld et al., 2016b. Appendix: p. 2). As mentioned in the previous paragraph, R2 finds 

the tasks challenging in the problem-solving lessons. However, R3’s statement in 4.1 gives the 
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impression that students sometimes get stuck or have difficulties completing tasks. Unlike 

what is described in R2’s regular mathematics classes where students aren’t expected to solve 

all tasks, R3 portrays a classroom where Peterson supports students on their way to solving 

tasks. The support is not through providing the students a final answer, but guiding them along 

the way so that they get an opportunity of solving the tasks as well. 

Finding the desired difficulty for tasks is definitely something that is demanding for 

mathematics teachers. Building on points from Chapter 2, the provided tasks should promote 

conceptual understanding whilst also leading to deeper learning. The work in the classroom 

should therefore have its nature in activities that connect existing knowledge in new 

situations. The TRU OG seeks out for teachers to “Use or adapt materials and activities to offer 

challenges that students can use, individually or collectively, to deepen understandings” 

(Schoenfeld et al., 2016b. Appendix: p. 2), also addressing the importance of stimulating 

deeper learning in mathematics. R3, again reflecting on the differences between problem-

solving classes and his regular mathematics class, shared the following thoughts on the tasks 

given: 

In regular lessons it’s more like… Right now we have a lot of repetition, but usually we 

work on new things. And then we do a lot of small simple tasks, so we don’t get to use 

it properly because it is the same pattern of solving them. And then you don’t really 

learn how to use it in different situations. (…) It is different. ... Having problem solving 

instead of doing a bunch of tasks. Because you kind of work with it on a deeper level 

and learn different techniques (R3) 

R3’s descriptions of the contrasting work being done in the problem-solving classes and his 

regular classes are very closely related to the definitions of deeper learning. As mentioned in 

chapter 2, deeper learning has occurred when the learner is able to transfer what was learned 

to new situations. In R3’s regular classes he works with many tasks that follow a similar 

pattern, which he thinks does not enable him to learn a topic properly. He links this to the 

problem-solving work where these skills are used in different situations, and even uses the 

phrase “work with it on a deeper level” realizing that this way of learning empowers him to 
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gain knowledge that has a larger relevance and higher quality than what he gains through 

repetitive learning of procedures. 

 

4.2.3 Teacher characteristics of Equitable Access to Mathematics 

Every classroom has a diverse range of learners, with different qualifications and abilities. 

Teachers should work to engage all students in activities that support learning within core 

mathematical topics. Using tasks with several solutions is a possibility of enabling all students 

to participate and access the mathematics (Schoenfeld et al., 2014; Schoenfeld et al., 2016a).  

Isaac often starts with sharing a task on the board. Or he might say that the homework 

was this and that, and check if we paid attention. But mostly different tasks on the 

board. Sometimes equations, sometimes visual number patterns, or… Or something 

that we just learned. And then after a while he’ll walk us through the task. And then 

he talks a bit, explaining if anyone has questions and such. It’s not like you’re afraid to 

ask questions, you know (R2) 

R2 addresses several key features of what teachers can do in order to ensure equitable access 

to mathematics. For one, she points out how questions that arise in the classroom get 

explained and followed up, “Expect[ing] and support[ing] meaningful mathematical 

engagement from all students, helping them contribute (…)” (Schoenfeld et al., 2016b. 

Appendix: p. 3). The classroom practice opens up for the students to get involved and 

participate through task solving and asking questions. But there is also an expectation from 

Peterson that all students engage in their homework, using tasks that build on the topic(s) 

covered in the homework, both ensuring and expecting an active participation from his 

students. In addition to this, the safe environment in the classroom is brought up as R2 clarifies 

that students aren’t afraid to ask questions. There is an atmosphere where students 

participate, and trial and error is considered a step on the way to learning.  

R2’s reflections described in subsection 4.2.2 also emphasizes this support and expectation 

towards the mathematical engagement. In her reflections, R2 draws a line between the 
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different mathematics classrooms she participates in. In her regular classes, she expresses 

that her teacher has low expectations towards the students solving tasks, basically removing 

the aspect of active engagement in difficult tasks. Lower-achieving students get an “easy way 

out” as they are taught that not being able to solve tasks is okay. Peterson’s classes differ in 

the sense that there is an expectation that students engage actively in the given activities 

whilst still being allowed to fail. R2 expresses the problem-solving classes as a place where 

there is a desire of solving tasks, but also the possibility of asking questions and getting 

support when stuck. 

Other parts of the analysis show how Peterson has “buil[t] and maintain[ed] norms that 

support every student’s participation in group work and whole class activities” (Schoenfeld et 

al., 2016b. Appendix: p. 3). R5 states that: 

There’s not only one student that takes up the teacher’s time to help. And it’s more 

like, you get one task to work with the whole lesson, perhaps two. Instead of what I 

mentioned earlier, working with booklets and such. And there’s more like… 

Cooperation in a way. You get to ask the students around you, and work together you 

know. (…) In lessons with other teachers we have to be really quiet. You can work 

together, but it has to be quiet. But with Isaac you work two-and-two, and you can talk 

to the ones in front of you if they solved it and such (R5) 

Again, a contrast between the different mathematics lessons emerges. The norm of the 

problem-solving classes is that students are encouraged to participate in groups. Primarily 

two-and-two, but as R5 clearly expresses the group work between students is not limited to 

their closest classmate but they are also encouraged to work with other students close by. R5 

relates this to the classroom norm she is most used to, where cooperation is stimulated, but 

limited to silent work between two students. In the problem-solving classes however, the 

accounts of R5 gives the impression of a practice where students actively engage with the 

content whilst working together with other students. The fact that the teacher is supportive 

in the students’ collaborative work is an essential part of building a classroom norm where 

cooperation between students takes place. This classroom practice can also be seen in 
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connection with the aforementioned measure, looking for teachers to “expect and support 

meaningful mathematical engagement from all students, helping them contribute and build 

on contributions from others” (Schoenfeld et al., 2016b. Appendix: p. 3). In these classrooms, 

where students are encouraged to work together, the students’ statements indicate that 

there are possibilities for learning how to contribute and how to build on other students’ 

contribution while solving problems. 

A point that several of the respondents mentioned was how they were expected to solve the 

given tasks in several different ways. 

I think it’s clever. That way you don’t limit yourself to one method all the time. Because 

I think it’s easiest to solve [geometrical] problems through the use of similar triangles, 

and I think it’s hard to solve them using equations. But then it’s nice that we get pushed 

into solving them that way so that you learn, you know? (…) You have to think about 

how to solve the tasks, and you have to think “should I use similar triangles”, “should 

I use ratios”, “should I use the Pythagorean theorem” or whatever. And there’s no… 

It’s not set for you. You kind of have to arrange it for yourself (R4) 

As R4 claims, she has preferred methods of solving tasks, which might often be enough. 

However, through tasks that have several entry points, the students are challenged and 

expected to solve them in ways that test more of their mathematical knowledge. Another 

feature of this is that using tasks that can be solved in a variety of ways opens up for a wider 

range of approaches, giving more students the possibility of solving tasks effectively. The 

importance of this is expressed through the measure “Teachers use tasks and activities that 

provide multiple entry points and support multiple approaches to the mathematics” 

(Schoenfeld et al., 2016b. Appendix: p. 3). The tasks described in 4.1 are good examples of this 

practice. The River-task can be solved in a large variety of ways, some are fairly easy, for 

example applying simple calculations with ratios. However, for the skilled students, this task 

could pose problems in terms of solving equations with three unknown variables, advanced 

use of similar triangles or solving with use of area between the triangles and the trapezoid 
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making up the campsite. The Trapezoid-task that followed also had many points of entry, 

enabling the students to use their newly acquired knowledge in the following task. 

 

4.3 Student characteristics in light of TRU measures 

Covering the characteristics of Peterson’s teaching in these classrooms give an idea on how 

teaching can lay a foundation where learning can occur. However, the most important part is 

in fact what student outcomes that emerge from the teaching. How do the students engage 

and what are the characteristics of the students in these classrooms? Is there a correlation 

between the teacher characteristics and student engagement, or between the teacher 

characteristics and students’ learning? 

Some of the measures from the TRU OG require insight on what opportunities the students 

get or what abilities they acquire from these classrooms. In order to analyze this, parts of this 

analysis have been made on the foundation of the students’ work with tasks during the 

interviews. The tasks presented were familiar to the students as they had worked with them 

before, enabling them to share their thoughts on the experiences from this work. The tasks 

used in the interviews were the following:  

 

Task 1 

 

Figure 6. Task 1. 

 

 

 

 

AQC = APB = 90. 

 

Find the value of the unknown length. 
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Task 2 

 

Figure 7. Task 2. 

 

The total area of the 

parallelogram is 60 cm2. 

 

Find the value of the unknown 

length. 

Task 3 

 

Figure 8. Task 3. 

 

 

 

 

 

Find the area ratio between 

triangles ABC and DEF. 

 

 

In this section, characteristics of the students in the problem-solving classrooms are analyzed 

through the dimensions of Mathematics, Cognitive Demand and Equitable Access to 

Mathematics. Subsections 4.3.1, 4.3.2 and 4.3.3 will cover these three dimensions 

respectively. 

 

4.3.1 Student characteristics of The Mathematics 

Activities in classrooms should provide opportunities of growth where students become good 

mathematical thinkers; being knowledgeable, flexible and resourceful in their approach to 

mathematics through working with key ideas (Schoenfeld et al., 2016b. Appendix: p. 1). In 
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what way did the students from the problem-solving classrooms give the impression that 

these activities and practices took place? 

R5: I like algebra. And problem solving, like we do with Isaac. (…) We don’t have time 

to do that (problem-solving activities) in our regular classes. But I think it’s fun because 

it’s challenging, and when you solve the tasks it is very fun. (…) 

I: (…) What do you think separates problem-solving tasks from regular tasks? 

R5: You get to use a lot more of the mathematics, if that makes sense? Kind of like… 

Uhm… Yeah, if you have to find the area you need to remember how to do that, and 

maybe put it into an equation, or maybe you have to use that knowledge in similar 

triangles, you know. You get to use all of it in one task. And it… It requires a lot more 

knowledge, if that makes any sense. 

A measure within Mathematics in the TRU OG explains that “Each student engages with grade 

level mathematics in ways that highlight important concepts, procedures, problem solving 

strategies, and applications” (Schoenfeld et al., 2016b. Appendix: p. 1). R5’s statements of 

problem-solving activities in Peterson’s classes go a long way in suggesting that these features 

take place. First of all, it is obvious that the mathematics are relevant for the grade level, if 

not at a higher level (this is especially apparent with the 7th grade students from Westwood, 

frequently solving tasks from 10th grade exams). Further on, R5 shares her idea of the tasks 

and activities including a larger part of mathematics than regular tasks, claiming that they are 

fun due to the challenging nature of combining and drawing lines between different 

mathematical topics. This is a clear indication of R5’s engagement towards the mathematics, 

being an active student and learner in these classes. With the nature of the problem-solving 

tasks being that students connect current knowledge in ways they have not done before, I 

also believe it is fair to say that they work with the mathematics in ways where important 

concepts, procedures and applications are highlighted. Supposing that the students apply 

problem-solving strategies during problem-solving classes is a fair assumption, and their use 

of strategies will be covered in 4.4. 
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Examples of work with important concepts, procedures, problem-solving strategies and 

applications was found during the interviews when the students were asked to solve different 

tasks. Working with Task 2 (Figure 7), R2 had the following reflections: 

R2: Well, we’re supposed to find that length. And we know the total area is 60cm2 and 

that this length is 15cm and that one is 5cm, and those sides are the same and those 

angles are the same. And then… If you see… The whole length here is 15cm. So then 

you see that… This one is 5cm down, but we do not know the height. I know that it is 

60 cm2. (…)15 multiplied by 4 is 60. That’s how I would think. (…) 

I: Okay? 

R2: Yes, and then I know that the height is 4. And then everything gets easier. Because 

then I know that the height is 4, and I know the Pythagorean triples, so I know that 

that one is 3. So… That’s how I would solve it. Because now I know that the unknown 

side is 12 (R2) 

Many key aspects of mathematics emerge through R2’s work with Task 2. First of all, his work 

with the task shows that R2 is trained in reading tasks thoroughly and gathering important 

information. Her first action is identifying the information provided in the task, realizing that 

it is a parallelogram after detecting similar angles and sides on the figure. Further on she 

realizes that the height of the figure is not given, identifying that the area of a parallelogram 

is given by multiplying the base and height. With this knowledge, R2 is able to do a quick 

calculation (15  4 = 60) in order to figure out that the parallelogram’s height is 4. The 

calculation she explains orally is a somewhat reduced solution of the following equation: 

15  x = 60,         
15  x

15
=  

60 

15
,      x = 

60 

15
,  x = 4 

After figuring out that the height of the triangle is 4 cm, R2 uses knowledge of Pythagorean 

triples (3, 4, 5) in order to find the length of the shortest side in the right triangle. However, 

using understanding of Pythagorean triples in that situation presupposes other pieces of 
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knowledge. First of all, R2 identifies that it in fact is a right triangle. Then she recognizes that 

the unknown side of the triangle was in fact the shortest side as well. Connecting these pieces 

of knowledge, R2 is successfully able to identify the sides in the triangle as Pythagorean triples, 

drawing the conclusion that the shortest side has to be 3 cm. The last part of the task is 

probably the easiest, subtracting 3 from 15 and finding the unknown side as 12 cm. Solving 

this task, R2 engages in several important aspects of mathematics, connecting concepts, 

procedures, problem-solving strategies and applications in order to being successful. 

Another important measure of student activity in powerful classrooms, is to which extent each 

student “has opportunities for mathematical reasoning, orally and in writing, using 

appropriate mathematical language” and “explains their reasoning processes as well as their 

answers” (Schoenfeld et al., 2016b. Appendix: p. 1). Working with Task 1 (Figure 6), R1 

reasoned in the following way with similar triangles: 

R1: Maybe we could see if these triangles have similar shapes. See if they are similar 

triangles.  

I: Okay, what can you tell me about that? 

R1: We can check if two of the triangles have the same angles. And figure out if they 

are similar. (thinks) Both of these two triangles have a right angle. And they both share 

this one. So they are definitely similar (R1) 

R1’s identification of the similar triangles is simple, but not necessarily easy. The task offers 

no information on the angles’ value aside from the right angles. R1 finds that two of the 

triangles have a right angle, and that one angle is common. His reasoning further includes that 

he classifies the triangles as similar: Because the last angle of each of the triangles is not 

shared, but because the value of the angles in a triangle always add up to 180 the last 

remaining angle must be the same as well. Working with Task 3 (Figure 8), R3 gives a similar 

reasoning process towards congruent triangles: 

I: What about this task that you worked with yesterday, what can you tell me about 

that? 
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R3: Well, first of all, with the information given, the two large triangles are equilateral. 

And then we can say that because they are equilateral, the three smaller triangles are 

congruent. 

I: Okay, how do you know that? 

R3: Well, you can use calculations and figure out that the angles are similar. And then 

the longest side forming the right angle is equal in all three triangles because it is equal 

to the sides in the equilateral triangle DEF (R3) 

The language used by R3 reveals several interesting points. First of all, through TRU measures, 

R3 shows confidence in mathematical terms, using them fairly precise. Secondly, R3 seems to 

be trained in sharing his reasoning, as he has little problems explaining the conclusions he 

made as he was working with the task. Last, when asked “what can you tell me about [Task 

3]?”, R3’s response to the question does not include the answer, nor calculations or 

procedural matters. His focus is on the concepts and problems within the task, the important 

information and reasoning necessary to possess in order to successfully work with the task. 

When it comes to explanation of reasoning processes, R2 explains that: 

(…) we have to look carefully at the figure to understand the task. Not just guess or 

assume. In regular classes, if you had known the answer you would have just written it 

down and gotten it right. But here you kind of have to show what you’re doing, you 

know, and explain how you’re thinking. And show your calculations. (…) Sometimes 

you might find the correct answer, but your calculations might have been incorrect 

(R2) 

R2 clearly addresses the expectation Peterson has for the students to reason when solving the 

tasks. Just solving tasks is not considered as sufficient, the students are required to properly 

understand and interpret the tasks, as well as being able to understand and explain their 

thought processes as they were solving the tasks. Engaging in the mathematics is not simply 
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solving tasks, but also an active use of reasoning orally and in writing, explaining thought 

processes as they go along. 

 

4.3.2 Student characteristics of Cognitive Demand 

Task 3, which was discussed in 4.4.1, was given during class the day before the interview was 

conducted with R3. During the interview it was revealed that he solved it another way in class 

than what he showed me during the conversation. 

R3: Yesterday when I was working on it during class, I didn’t realize that the smaller 

triangles had angles with values of 30, 60 and 90 degrees. So I ended up with something 

much more difficult. 

I: So you realized that later? 

R3: (Laughing) Yes! (R3) 

How R3 continued his work with the task, even after class, is worth analyzing further. The task 

involves many difficult aspects which put R3 in the productive struggle, causing him to actively 

engage in the task even after the lesson had finished. The level of the task had a difficulty to 

where R3 was struggling with solving it, while still having the needed abilities and knowledge 

to solve it successfully. His work during class probably involved many other mathematical 

aspects while looking for a correct solution, which he found later after class had finished. First 

of all, this is an example of a student’s continued “wrestle with an idea after the teacher 

leaves” (Schoenfeld et al., 2016b. Appendix: p. 2). Second, although the task was demanding 

and R3 probably could have solved it easily if support had been given (however, this probably 

would have removed the rich challenge R3 was experiencing), he continued to grapple with it 

on his own. According to the TRU Framework, this is a characteristic of a powerful classroom; 

students relentlessly working with difficult tasks in order to develop. 

Another feature of the class and R3’s work with this and similar tasks is how they “engage 

both individually and collaboratively with challenging ideas” (Schoenfeld et al., 2016b. 



 66 

Appendix: p. 2). The collaborative nature of the work in Peterson’s classes has been described 

in 4.2.3. How the students engage with challenging ideas has also been discussed, but can also 

be summed up by the accounts of R5’s work with the same task (Task 3): 

R5: I thought it was special that it had no numbers. No measurements or nothing. The 

angles in the triangles are the same, and these three triangles are congruent. And these 

two are equilateral. 

I: You said that the task has no numbers, but are there other things that make it 

challenging? 

R5: I didn’t really know how to find the area of the large triangle. But then.. Yes, that 

was challenging, finding the area of both of them. Realizing how to do that. 

I: But you did solve it? 

R5: Yes, and I had tried solving it like three times and I had had some careless mistakes 

every time. But so much fun to finally nail it! (R5) 

 Through her explanation of the task, R5 shares many examples of her engagement with this 

particular task. It goes without saying that R5 is actively engaged with the challenging factors 

of Task 3. Trying and failing multiple times with the same task shows a committed participation 

in the mathematics. The ideas in this task, are the relation between the two equilateral 

triangles, and how to define the three smaller triangles as congruent. In addition to this, the 

sense of solving a task that has no numbers (the sides were not given any values) with only 

algebraic representations is also a challenging idea. 

Another example is R4’s encounter with similar triangles in Task 1: 

R4: (…) I would think that... Maybe... That triangle (AQC) is similar to that triangle 

(ACP). 

I: Yes, okay. Can you be certain? 
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R4: Yes. Both of the triangles have a right angle, and if you draw a line from C to Q… 

They both share one additional angle. So yes, they are definitely similar. 

This reasoning is very much alike R1’s explanation of the same thing, which was covered in 

4.3.1. The challenge in this reasoning is finding and identifying the similarities between the 

triangles, and ultimately proving whether or not they are to be considered similar or not.  

Furthermore, in solving Task 3, R5 definitely explores “the limits of [her] current 

understanding(s)” (Schoenfeld et al., 2016b. Appendix: p. 3), as she encounters an unusual 

task without measurements, numbers or other valuable information, forcing her to step 

outside her common frame of task solving. The unusual nature of the task causes R5 to use 

her current mathematical knowledge in ways she has not done before, building what she 

already knows to this task with a challenging format. R4’s insecurity of whether the two 

triangles in task 1 were similar or not can also be an indication of R4 moving towards the limit 

of her own understanding in order to explore the properties of the triangles. This process of 

reasoning of R4 and R5 in tasks 1 and 3 can be found as a measurement in the TRU OG, as 

“(e)ach student reasons and tests ideas in ways that connect to and build on what they know” 

(Schoenfeld et al., 2016b. Appendix: p. 2). These manners of reasoning have been exemplified 

and discussed several times in subsections 4.2.1 and 4.2.2, as the students actively work with 

tasks and try to connect them to current knowledge. 

 

4.3.3 Student characteristics of Equitable Access to Mathematics 

The dimension of Equitable Access to Mathematics tries to measure whether all students have 

the possibility of joining meaningful engagement within the mathematics. The goal is for all 

students to be engaged in the mathematical content, and it is interesting for teachers to figure 

out in what way more opportunities for participation can be made. Trying to look at the 

student characteristics is difficult, because of the dimension’s focus on all students. The 

questions for the interviews were not designed to specifically answer these questions, and 

therefore the respondents have primarily answered with themselves in mind. However, some 

points did arise during the interviews, and were analyzed as aspects of Equitable Access to 

Mathematics. 
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The measures which consider student engagement have been described in several ways in 

subsection 4.2.3. R5’s description on the contrast between the collaborative work in her 

regular mathematics classes and the problem-solving classes she has with Peterson provide 

valuable insight in the students’ engagement as learners in these lessons. As the students 

interact (somewhat) freely in the investigative work of problem-solving tasks, the impression 

of the problem-solving lessons is one where each student “actively listens to other students 

and build on their ideas”, and “participate meaningfully in the mathematical work of the class” 

(Schoenfeld et al., 2016b. Appendix: p. 3). This meaningful participation is further emphasized 

by R4’s explanation of how she engages in the problem-solving classes: “A lot of his teaching 

is really a matter of getting and understanding everything he says and trying to learn as much 

as possible.” (R4) If this was read out of context, R4 could be considered an inactive student 

who learns purely through listening to the teacher. In this setting, however, with the nature 

of Peterson’s classes having students work in pairs or groups on challenging tasks, R4’s 

explanation of “getting and understanding” involves an active engagement in the activities.  

Through the use of problem-solving activities, the students were encouraged and expected to 

work in groups as mentioned earlier in this chapter. R5 further explained how she learned the 

best, giving examples of collaborative work with peers as her preferred approach to learning: 

I feel like I learn a lot more than in these classes than I do in our regular classes. (…) I 

learn the most when I work in groups that have the same level as I do. And when you 

get to use several elements of the mathematics in the same task (R5) 

This further underlines two of the traits with the classes observed; that the students were 

working with problem-solving tasks with several entry points, and that the students were 

collaboratively struggling to solve these tasks. 

On being asked how he felt about working with problem-solving tasks, R1 provided the 

following thoughts: “It has been exciting. Because there are many different tasks that require 

you to use many different techniques to solve the tasks” (R1). R1’s idea of work in class is 

explained through his excitement of the work with the problem-solving tasks. The tasks 

involve the use of several diverse techniques, forcing the students to connect knowledge from 

large parts of the curriculum in the same task. Stating that there are many different techniques 
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they can use, R1 describes that there are several ways of engaging and solving the different 

tasks, similar to what R5 mentioned in the previous paragraph. This can be considered an 

indication that there are many ways for the students to participate and make meaningful 

contributions in the classroom. 

Furthermore, the four tasks explained in 4.1 were reviewed in order to give examples of the 

activity in the chosen classrooms. The descriptions of these tasks do, however, give valuable 

insight into what extent “Each student explains, interprets, applies and reflects on important 

mathematical ideas” (Schoenfeld et al., 2016b. Appendix: p. 3). The Tent-task, for example, is 

impossible to solve if they are not able to make use of important mathematical ideas. Solving 

the task is dependent on the understanding of key mathematical terms, the Pythagorean 

theorem, fractions, algebra and several other aspects. The River-task is a completely different 

task, but also requires the students to make interpretations and reflect on mathematical 

concepts. Examples from the analysis have covered that the students actively engage in the 

provided tasks. Evaluating the tasks as problems that require the students to interpret, reflect 

and explain, this can be considered implications that this measure is also fulfilled in these 

classrooms. 

 

4.4 Using heuristics in problem-solving tasks 

Sections 4.2 and 4.3 have covered teacher- and student characteristics in light of the TRU 

Framework. This section will look at one of the measures from the TRU OG, analyzing it with 

the help of Polya’s (2009) four phases of successfully solving problems. As mentioned in 3.3.3, 

this is merely a tool for helping me analyze how the students interacted with the problem-

solving tasks, and is not a part of Schoenfeld et al.’s (2016a) framework. 

Investigating the tasks given during the problem-solving classes could have made up a thesis 

in itself. Each of the mentioned seven tasks (four in 4.1 and three in 4.3) are complex problem-

solving tasks, rich in concepts and designed to challenge the students in a number of ways. 

Going in-depth on the tasks is not my intention with this subsection. The idea is to look at how 

the students from the problem-solving classes worked with these tasks, and the knowledge 

and skills connected to their work.  
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Heuristics is considered an important part of becoming efficient problem solvers. Learning 

strategies, tools and principles to navigate through problems is of importance, as it decides 

how to use one’s knowledge effectively when facing challenging tasks (Liljedahl, 2016; Polya, 

2009; Schoenfeld, 1985). Definitions of problems were covered in Chapter 2, however solving 

problems is considered “(…)to search consciously for some action appropriate to attain a 

clearly conceived, but not immediately attainable, aim“ (Pólya, 1981, p. 117). 

The first student measure within The Mathematics dimension of the TRU OG is that “Each 

student engages with grade level mathematics in ways that highlight important concepts, 

procedures, problem solving strategies, and applications” (Schoenfeld et al., 2016b. Appendix: 

p. 2). The analysis through the TRU OG gave many examples of the students’ work with the 

mathematical content. The way in which the students faced the mathematics using problem-

solving strategies, however, has not yet been discussed. Analyzing the interviews gave several 

implications of the students having strategic abilities when it came to solving problems. This 

was evident both from the students’ work with problem-solving tasks, but also through their 

own reflections on how they usually worked in these lessons. Two of these general reflections 

were given by R2 and R5, generalizing the steps they made when facing problem-solving tasks. 

Although these reflections were cited in subsections 4.3.1 and 4.3.2, they are re-cited here for 

further reference: 

 (…) we have to look carefully at the figure to understand the task. Not just guess or 

assume. In regular classes, if you had known the answer you would have just written it 

down and gotten it right. But here you kind of have to show what you’re doing, you 

know, and explain how you’re thinking. And show your calculations. (…) Sometimes 

you might find the correct answer, but your calculations might have been incorrect 

(R2) 
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R5: I thought it was special that it had no numbers. No measurements or nothing. The 

angles in the triangles are the same, and these three triangles are congruent. And these 

two are equilateral. 

I: You said that the task has no numbers, but are there other things that make it 

challenging? 

R5: I didn’t really know how to find the area of the large triangle. But then.. Yes, that 

was challenging, finding the area of both of them. Realizing how to do that. 

I: But you did solve it? 

R5: Yes, and I had tried solving it like three times and I had had some careless mistakes 

every time. But so much fun to finally nail it! (R5) 

In simple ways, R2 and R5 guide us through Polya’s (2009) four phases of solving problems. 

First, it is important to fully understand the task at hand, properly analyzing what the goal of 

the task is and what information is given, which both R2 and R5 mentioned first. Then, there 

is a process of finding a way to the solution which might be difficult and strenuous, followed 

by the process of carrying out the plan for finding the solution. Explaining, applying and 

interpreting are important when devising a plan, as R2 emphasized the importance of 

explaining thought processes as she goes along and R5 stressed the challenging part of 

realizing how to find a way to solve it. Carrying out the plan is done as the problem has been 

solved and proper calculations and measurements have been made. R5’s statement shows 

examples of how careless mistakes can affect the final answer, leading to wrong answers 

although the devised plan was correct. Finally, it is important to look back at the work done, 

as R2 explains that there might have been mistakes made along the way. Other aspects would 

be further understanding of the solution or being able to solve the problem in another manner 

(Polya, 2009), this practice has been explained in 4.2.1. 

With these examples, R2 and R5 gave broad examples of how they strategically worked with 

problem solving tasks, navigating through Polya’s (2009) four steps. In the analysis of the 
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mathematical content in 4.3.1, these steps were recurrent in all of the students’ work with 

the tasks (although not all the steps in every citation).  

Using Polya’s (2009) first phase in his work with Task 3, R3 starts off identifying what the 

problem of the task is in addition to finding the important information to solving the problem: 

“Well, first of all, with the information given, the two large triangles are equilateral. And then 

we can say that because they are equilateral, the three smaller triangles are congruent” (R3). 

In doing this, he retrieved all the relevant and accessible information available from the task, 

having understood the problem and the important aspects of the task.  

Furthermore, devising a plan and then carrying it out come as the next phases. These two 

phases are covered in R1’s encounter with Task 1: 

Maybe we could see if these triangles have similar shapes. See if they are similar 

triangles. (…) We can check if two of the triangles have the same angles. And figure out 

if they are similar. (thinks) Both of these two triangles have a right angle. And they both 

share this one. So they are definitely similar (R1) 

Trying to devise a plan, R1 suggested that he could check if the triangles in Task 1 were similar. 

A part of Polya’s second phase includes the possibility of using strategies from previous tasks, 

and it is possible that R1 uses that strategy in this case. From before he had encountered both 

the River-task and the Trapezoid-task from 4.1, both of which having solutions where using 

similar triangles is effective. R1 carries out his plan as he recognizes that two of the triangles 

have a right angle, and they have one angle in common as well. Although this is not the final 

solution to the task, when using this way to solve the task he had completed a major part of 

the solution when figuring out the two triangles were both similar. As mentioned in 4.3.2, R4 

had a very similar encounter with the same task. In solving it, she also looked for similar 

triangles. Her strategies also showed that she looked for different ways of finding a solution, 

battling to devise a plan. Looking to the knowledge she had on similar triangles, she also found 

a plan she could use in order to solve the task. 

 R2’s work with Task 2 sums up the whole process: 
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Well, we’re supposed to find that length. And we know the total area is 60cm2 and that 

this length is 15cm and that one is 5cm, and those sides are the same and those angles 

are the same. And then… If you see… The whole length here is 15cm. So then you see 

that… This one is 5cm down, but we do not know the height. I know that it is 60 cm2. 

(…) 15 multiplied by 4 is 60. That’s how I would think. (…) Yes, and then I know that the 

height is 4. And then everything gets easier. Because then I know that the height is 4, 

and I know the Pythagorean triples, so I know that that one is 3. So… That’s how I would 

solve it. Because now I know that the unknown side is 12 (R2) 

Navigating through the task, R2 uses all of Polya’s first three steps. First she investigates and 

ensures that she understands the task “we’re supposed to find that length. And we know the 

total area is 60cm2 and that this length is 15cm and that one is 5cm, and those sides are the 

same and those angles are the same”. Moving on, she devises a plan for finding the unknown 

side in the parallelogram; by first finding the height of the figure. This devising of her plan is 

not transcribed, as she pauses and thinks. Her plan however, is to find the height of the 

parallelogram. In order to do this, she uses her knowledge of calculating the area of the 

parallelogram: “I know that it is 60 cm2. (Devises plan) 15 multiplied by 4 is 60”. After this, 

carrying out the plan is easy mathematics for R2 as she uses her knowledge of Pythagorean 

triples and simple subtraction to solve the remainder of the task. 

Last, it is important for the students to look back at their solution, figuring out if there is any 

further learning to be derived from the work done or if there are any other solutions to the 

problem. As I was conducting the interviews, this was not asked from the students. However, 

they did not express a request to do so neither. The accounts from R2 and R5 do however 

suggest that the students normally act in this manner, as they state that they have to show 

their solutions and try to solve the tasks in several different ways. 

An important point to emphasize is that the selected tasks were known to some of the 

students, as they had already solved them prior to the interviews. With this not being their 

first encounters with the tasks, the validity of their answers can be discussed. However, if the 

tasks were to be unfamiliar and the students were to solve them on their own, it would first 
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of all be a lengthy process to cover in an interview. The fact that it would be different to the 

situation they usually would encounter the problems in is also important, as they usually had 

the opportunity of solving them in groups. Having the students solve problems they had 

encountered before provided a different valuable opportunity, however. Working on a task 

they had worked with before gave the students the possibility of giving detailed explanations 

of how they worked with it, analyzed it and went about in finding solutions. 

 

5 Discussion and conclusion 

In Chapter 4, my analysis of the data was presented. The analysis has given me the possibility 

of claiming something about teacher- and student characteristics in the two classrooms 

observed. In this chapter, I will use the findings to answer the three research questions given 

in Chapter 1. I will do this by connecting the findings from Chapter 4 with the literature 

reviewed in Chapter 2. 

This chapter will be divided into four sections, where the three research questions from 

Chapter 1 will be answered in sections 5.1, 5.2 and 5.3 respectively. Last, in 5.4 I will conclude 

this thesis, giving implications of my study as well as suggestions for further research. 

 

5.1 How the students engage 

The first research question was: “In mathematics classrooms where problem-solving activities 

constitute the main part of teaching, how do the students engage?”. A topic that occurred 

frequently in the data analysis was the interactions that were made between the students as 

they were solving problems. This practice of collaborative work was mentioned by all the 

students during interviews, and the students shared details that underlined its importance. 

The best example of this is R5’s accounts discussed in subsection 4.3.3, as she states that she 

learns the most when given the opportunity of working in groups with other students that 

have similar mathematical abilities that she does. This practice goes hand-in-hand with a 

sociocultural perspective to learning, where learning takes place in social interactions 

(Pellegrino et al., 2012). The collective impression from the interviews was that there is a 
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larger degree of cooperation in the problem-solving classrooms compared to their regular 

classes, and as R5 stated in subsection 4.3.3 that the students were encouraged to work 

together, often in groups. Through moderate to demanding tasks, the aim for teachers is to 

position the students in a productive struggle (Kilpatrick et al., 2001; Putnam, 1987; 

Schoenfeld, 2013, 2014; Schoenfeld et al., 2014; Schoenfeld et al., 2016a; Stacey, 2007; Wilson 

et al., 2005). The term productive struggle seems to fit well with Vygotsky’s idea of ZPD, a 

balance between easy and too difficult, where students understand the challenges they 

encounter whilst still giving them opportunities to succeed by themselves (Schoenfeld et al., 

2014).  

Approaching these productive struggles together with other learners would be a way for the 

students to enhance their learning through scaffolding each other. As mentioned in subsection 

2.2.4, scaffolding is when adults or more capable peers support a learner in order to 

understand something. However, when peers who are considered equally competent in 

mathematics are working together in groups trying to solve problems, their diversity in 

abilities can also lead to scaffolding in itself. (Note: Students can be considered equally 

competent in mathematics, but still have different abilities within the mathematical topics.) 

Going from collaborative work to individual understanding is what Vygotsky considered 

development (Woolfolk, 2010), and devising plans for solving a problem is considered the 

most difficult part of problem solving (Polya, 2009). Coming up with plans together give 

learners the possibility of sharing thoughts, possibilities and ideas. When students actively 

work together with problem-solving activities, the exchange in ideas during the productive 

struggle may cause that each student’s fundamental understanding leads to solution to 

problems. Using peers to scaffold is described by R5 as her preferred way of learning through 

her statement in subsection 4.3.3. Although there was a lot of emphasis on the student-

student interactions in the analysis, there were also accounts of interactions between the 

teacher and the students. In section 4.1, R3 describes the teacher’s scaffolding as an important 

part of giving all the students access to the mathematical content, as he would ensure that 

students that were struggling were assisted to come up with ideas that would guide them 

towards relevant strategies. This is related to what Polya (2009) explained as procuring bright 

ideas for the learners. The scaffolding from the teacher is not by giving the students a final 
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answer, but rather giving them ideas that help them devise proper plans in order to find 

solutions. 

Schoenfeld et al. also use the term scaffold (Schoenfeld, 2014; Schoenfeld et al., 2014; 

Schoenfeld et al., 2016) in order to describe the right balance of difficulty related to the 

teacher’s role, and how the students are to develop. For this scaffolding to occur, it implies 

meaningful participation from the students. This participation was analyzed as a part of an 

expectation from the teacher of an active involvement in the mathematics, based on accounts 

from R2 in 4.3.2 and 4.3.3. Boaler (2008), Cohen & Lotan (1997) and Schoenfeld (2002) 

(retrieved from: Schoenfeld et al., 2016a) emphasize the importance of the teachers 

encouraging participation, as this is a characteristic of effective teaching. These effective 

teachers use problems that engage all students, giving each learner access to the challenging 

content. Using problems with multiple entry points is one of the ways of accomplishing this 

(Schoenfeld et al., 2016a) 

The students’ involvement was described as active engagement with the content as they 

worked together with other students, in a classroom where this was considered the proper 

norm. The work was characterized by own contributions and building on others’ contributions 

as they actively engaged in the mathematics, another important aspect of ensuring all 

students’ equitable access to the mathematics (Schoenfeld et al., 2014; Schoenfeld et al., 

2016a, 2016b). This activity of sharing contributions between peers can be related to the 

aforementioned thoughts of Vygotsky’s ZPD and scaffolding. 

The literature on knowledge types and quality mentioned in Chapter 2 described different 

ways and levels of understanding and learning. A desired effect of learning is that the learner 

receives knowledge which is diverse and can be transferred to new situations, also called 

deeper learning (Pellegrino et al., 2012). With a sociocultural perspective of learning in mind, 

a claim can be made that learning mathematics (at school) relies heavily on the relations 

between the students, and between students and teachers. Transferring current knowledge 

to other unknown domains is something that could be explained as taking place in the ZPD 

through scaffolding with other peers. As the students engage in groups with other students, 

they are able to transfer the knowledge they already possess from collaborative work to new 

understanding that they comprehend on their own. 
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This progression of learning was explained through the accounts of R3 in 4.4.2. While working 

on a difficult task (Task 3) with peers during class, he was unable to solve it completely. 

However, after the lesson was over, the learning that occurred in his interaction with the other 

students evolved and led to a new and better understanding of the problem. Working with his 

peers in class a series of cognitive structures were processed, and the internal processes that 

followed led to new knowledge. What started as collaborative work ended up with an 

individual understanding of the problem, which is what Vygotsky explained as development 

(Woolfolk, 2010).  

R3’s behavior in this case is not necessarily normal for all students, as his engagement went 

beyond the mathematics lesson at school. But the interviewed students did indicate an active 

engagement in the problem-solving classes. R5 gave examples of the active participation in 

Peterson’s classes in subsection 4.2.3, describing the norm of these classrooms as 

environments where involved engagement takes place and is also expected. R2 addressed her 

enthusiasm of getting challenged in subsection 4.2.2, similar to the way R1 expressed 

excitement when solving problems in subsection 4.2.3. R3’s reports of the problem-solving 

classes in section 4.1 underline these accounts as he describes students that are engaged in a 

productive struggle for 10-20 minutes at a time as they are working with tasks. 

 

5.2 How students interact with problem-solving tasks 

The second research question was: “How do the students in these classes interact with 

problem-solving tasks?”. Analyzing how the students interacted with the three problems 

discussed in section 4.1 gave clear characteristics of how they dealt with difficult problems. 

Although no instruction on heuristics was observed nor documented through the interviews, 

the students provided answers that suggested that they had good abilities in strategies for 

solving problems, even being able to reflect on the necessary steps to take as they were 

battling with challenging tasks. 

Because a student’s strategic knowledge decides how well he/she will direct her knowledge 

and skills in appropriate ways when solving problems, it is essential that students have good 

heuristic abilities. This is an example of how Kilpatrick et al.’s (2001) different strands of 
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proficiency intertwine, as knowledge and skills serve little purpose if there are poor strategic 

abilities to accompany them. Building on Polya’s (2009) four steps to solving problems, the 

analysis in section 4.4 pointed to the students’ use of strategies when facing mathematical 

problems. The students seemed to be trained in carefully reading and interpreting tasks, in 

addition to gathering required and relevant information that the tasks posed. This helped 

them in gathering an idea of what needed to be done in order to solve the problem, giving 

them good possibilities of finding paths to solutions. When devising plans, the students looked 

for similarities between problems they had encountered before, in addition to using reasoning 

techniques to consider and control whether assumptions and suggestions were reliable and 

valid. Carrying out their plans, the students used their mathematical knowledge, relying on 

procedural fluency in order to calculate, measure and solving the problems without making 

mistakes. This is consistent with Kilpatrick et al.’s (2001) characteristics of being proficient in 

mathematics. Last, the ability of looking back at the problems was described by the students 

in the demand of explaining and showing calculations in order to fully understand what they 

had done, in addition to looking for other and better solutions to the same problems. 

The students were able to use expedient strategies when facing problem-solving tasks. 

Although they did not clearly express that they were consciously applying strategies, the 

students seemed trained in solving tasks using certain steps. Their interaction was 

characterized by an initial investigation, followed by devising and carrying out plans for 

possible solutions. Through these steps the students were using their mathematical 

knowledge; doing calculations, connecting their knowledge in new situations and applying 

reasoning in order to solve the problems effectively. 

 

5.3 How students develop powerful mathematical competency 

The third research question was: “To what extent does problem solving activities promote 

deep learning which supports development of powerful mathematical competency?”. To 

answer this question, it is important to first look at the analysis and the knowledge base 

possessed by the interviewed students. This will be addressed in section 5.3.1, before using 

these clarifications to answer the third research question in 5.3.2. 
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5.3.1 A knowledge base for solving problems  

Skemp’s (1976) thoughts on the word understanding, distinguishing the term between 

instrumental and relational types of understanding, in addition to Hiebert’s (1986) Star’s 

(2000, 2005, 2007) and Star & Stylianides’s (2013) conceptions of knowledge are relatable to 

the findings from the analysis.  

Understanding the important concepts and ideas of a subject is formed through students’ 

experiences of the environments where the discipline is taught. In classrooms where the 

primary focus is memorizing techniques, following step-by-step procedures or acquiring 

automated knowledge, the students will probably not emerge with a solid understanding, nor 

an appreciation of the subject (Schoenfeld et al., 2016a). Learning mathematics should involve 

more than remembering isolated facts or formulas, as this rote type of knowledge is fragile 

(Kilpatrick et al., 2001; Ma, 2010; Pellegrino et al., 2012; Stacey, 2007). Forgetting how to 

encounter a mathematical issue can cause a student to getting stuck or simply giving up as 

there are no strategies for re-generating the required procedures (Schoenfeld et al., 2014). 

The essential understanding of a discipline should be the desired outcome of teaching, as this 

will lead to students having a deep comprehension and the ability to use their mathematical 

knowledge effectively (Schoenfeld et al., 2016a). In order for students to use the mathematics 

usefully, the teaching needs to be coherent and connected, with a focus on developing a 

comprehension of connections in mathematics and regenerative understanding (Schoenfeld 

et al., 2014).  

Explaining the importance of making connections in the tasks in 4.3.1, R2 gave several 

examples of how the work in the lessons required conceptual knowledge. She clarified how it 

was necessary to carefully analyze the tasks to understand what was needed to be done; a 

clear indication that it wouldn’t be possible to go through simple step-by-step procedures. 

Furthermore, R2 stressed the importance of explaining what she had done and what her ideas 

were in the same section. When students are able to explain their thought processes, the 

“why”-aspect of subject conception, students have acquired what Skemp (1976) explained as 

relational understanding or knowledge which can be defined as being conceptual (Hiebert, 

1986). 
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Acquiring conceptual knowledge enables students to identify connections between concepts 

and methods. A student with conceptually based knowledge can be identified by the ability of 

representing mathematical situations in a number of ways and being able to use the different 

representations in the most beneficial way (Kilpatrick et al., 2001). As he explained the 

assignments he worked with during the problem-solving classes in 4.2.1, R1 reveals that the 

needed knowledge for working with the tasks as conceptual. Calling for the need of making 

connections between methods and different mathematical topics, he addresses the 

importance of possessing knowledge that is able to make these connections. In the same 

subsection, R5 made similar points whilst emphasizing the ability of using different 

representations when solving the tasks. 

R5’s answers from 4.3.1 provided information on how her procedural fluency was developed 

in these classes. Working with problem-solving tasks, she linked the solving with using proper 

procedures; in this case using square roots as a representation in different calculations. 

Kilpatrick et al. (2001) explained the importance of fluency within procedures being accurate 

and effective when performing them, as this frees capacity for the working memory 

(Pellegrino et al., 2012; Putnam, 1987). These procedural skills were emphasized as important 

parts of mathematics in the problem-solving classrooms. R5 compare her work in the 

problem-solving classes with the procedural work in her regular, describing her regular classes 

as working for lengthy periods of solving simple algebra. Solving simple tasks within algebra 

is, according to Skemp (1976), considered something which only requires instrumental 

understanding. Because it mainly mainly consists of rules which only requires the learner to 

go through straight-forward calculations, being the very definition of instrumental 

understanding. Working with big ideas within mathematics, the students were able to work 

on their procedural fluency while still solving challenging tasks. In this process, they had the 

opportunity of attaining deep levels of knowledge within both procedural and conceptual 

knowledge types as described by Star (2005). 

Using tasks and activities that had several points of entry was mentioned in subsection 4.2.3 

as a way of ensuring that all students were participating in the mathematical work of the class. 

Using such tasks is also important in developing conceptual understanding on a deeper level. 

This was accounted for by R4 in subsection 4.2.3, explaining the practice as a way for her to 

certify her connections in knowledge. The students were expected to solve tasks in a number 
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of different ways, with several different representations and methods. In doing so, Peterson 

guaranteed that the students would look at the selected problems from different points of 

view and used a larger array of procedures when answering the different tasks. This is a way 

of ensuring that the students go through Polya’s (2009) fourth phase of solving problems, as 

they review their current solution and find new and better ways of solving the problems. 

Through this manner of teaching, the students would develop their mathematical 

understanding within several domains and connect these pieces of understanding together in 

work with the same activity.  

R3’s descriptions in subsection 4.2.2 explain the cognitive struggle he encounters in the 

different mathematics classes he participates in. As mentioned in the analysis, his thought on 

the problem-solving lessons are closely related to aspects of deeper learning. The work he 

does in his usual classes can be looked upon as procedural in nature, describing amounts of 

repetitive tasks that follow the same pattern in solutions (Kilpatrick et al., 2001; Hiebert, 1986; 

Star, 2000, 2005, 2007). This is similar to R2’s reflections in the same subsection; giving clear 

indications of the procedural work in her regular classes as opposed to the challenging 

conceptual work being done in Peterson’s problem-solving classes. 

The analysis suggests that the students in the problem-solving classes experienced 

mathematics that focused on key ideas and aspects of mathematics. The teacher- and student 

characteristics of the three TRU dimensions which were analyzed in Chapter 4 gave accounts 

from the students, where the mathematical content was examined as being connected and 

coherent. The content was described as activities where they needed to use several parts of 

the mathematics and connecting the topics together, emphasizing that the tasks and activities 

required “more knowledge” than regular tasks. This is consistent with claims that the teaching 

needs to be connected and coherent in order for the students to use their mathematical 

knowledge usefully (Schoenfeld et al., 2014; Schoenfeld et al., 2016a, 2016b), as well as Star’s 

(2000, 2005, 2007) emphasis on attaining deep levels of both conceptual and procedural 

knowledge. The students faced tasks that had multiple points of entry and the activities 

focused on key ideas within the discipline, building on theory stating that mathematics needs 

to be centered around important ideas and provide access to all students in order for the 

teaching to be viewed as successful (Schoenfeld et al., 2014; Schoenfeld et al., 2016a, 2016b). 
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5.3.2 Deep learning as a result of problem solving 

Schoenfeld (1985) narrowed down successful problem solving into four categories, with 

Stacey (2005) defining seven factors that all come in to play when working with mathematical 

problems. As mentioned in Chapter 2, this thesis has its focus on factors of (deep) 

mathematical knowledge, general reasoning abilities and heuristic strategies. The traits of the 

students’ mathematical knowledge have already been argued in subsection 5.3.1, as well as 

the students’ use of heuristics which were discussed in section 5.2. In this last subsection, I 

will take a look at the students’ use, and need for, reasoning abilities in the problem-solving 

classes, connecting this to acquisition of deep knowledge. 

After learning new concepts and procedures, students are required to practice them for a 

period of time in order to become fluent in using them, becoming able to validate and explain 

them in relation to other concepts and procedures they already possess (Kilpatrick et al., 2001; 

Newell, 1990; Rosenbloom and Newell, 1981). Reasoning is the process of steering through 

the different methods, procedures and concepts a learner has, trying to fit them together and 

making sense of the connections (Kilpatrick et al., 2001). It is far more comprehensive than 

just seeing connections, however. When solving mathematical problems, a student might use 

heuristics in order to find the correct strategy of solving a problem, but the reasoning process 

is what decides if a chosen strategy is considered legitimate for use in a given situation. This 

is also important when choosing procedures for calculating an answer, as reasoning plays a 

role in determining if an approach is believed to be suitable or not (Kilpatrick et al., 2001). In 

the TRU Framework, reasoning abilities play an important role in students’ possibilities of 

becoming “knowledgeable, flexible, and resourceful disciplinary [mathematical] thinkers” 

(Schoenfeld et al., 2016b. Appendix: p. 1). Within the three selected dimensions of the TRU 

OG, reasoning abilities in students emerge through the measures “Each student has 

opportunities for mathematical reasoning, orally and in writing, using appropriate 

mathematical language”, “Each student explains their reasoning processes as well as their 

answers” and “Each student reasons and tests ideas in ways that connect to and build on what 

they know” (Schoenfeld et al., 2016b. Appendix: p. 1-2). 
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A goal for future teaching is that students gain a deeper learning of the content being taught. 

Through transfer of what (knowledge) has already been learned to new situations, the effect 

of deeper learning occurs. If students develop this transferable knowledge, they will have a 

larger probability of applying using this knowledge to solve problems or to react well to new 

situations (Pellegrino et al., 2012). The idea of gaining transferable knowledge relies on the 

possibilities learners get to acquire this understanding. I will argue that there is a connection 

between mathematical reasoning abilities and deeper knowledge. Through reasoning, 

learners use and navigate their current understanding into new situations, much like the 

explanation of transferable knowledge’s importance within deeper knowledge. Therefore, an 

essential part of being able to transfer mathematical knowledge is the acquisition of sound 

reasoning abilities, gaining the power to understand, explain and direct the different skills in 

ways that ultimately connect them in correct ways. 

So, did the activity in the problem-solving classes promote the students’ possibilities of 

developing good reasoning abilities? R1 and R4, working with Task 1 in 4.4.1, both reason in 

the same way when they try to determine whether or not two triangles are similar or not. 

Their reasoning involves investigation of the task at hand, examining and discovering 

properties of the triangles in order to draw conclusions. Their current knowledge involved that 

the angles in all triangles add up to be 180. Furthermore, they discovered that both triangles 

had a right angle, and one angle was common between them. Through reasoning, they 

concluded that the last angle had to be the same as well. This reasoning process is similar to 

what can be used in the River-task covered in 4.1, but also elements of the Trapezoid-task 

covered in the same section. 

As R2 was solving Task 2, she used reasoning consistently as she was working to find the 

answer. One example is her path to finding the height of the parallelogram. Recognizing that 

the total area was 60 cm2 and the base was 15 cm, she quickly realized that the height had to 

be four. This is a clear indication that R2 has the ability to think logically between relationships 

in concepts and procedures, turning around the formula for finding the area of a 

parallelogram. If her understanding of the formula had been on a rote level, she probably 

would not have been able to determine the height through calculations. 
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Working with Task 3, reasoning is used by R3 in order to decide the properties of the triangles 

in the task. First of all, he identified that the two larger triangles are equilateral. On his further 

path to solving the task, he reasons his way to understand that the smaller triangles are 

congruent. This reasoning consists of two steps. First, like R1 and R4 did in task 1, he used the 

properties of triangles’ sums to state that the three smaller triangles were similar. Following 

this, he correctly reasons that with the longest side in the right angle of all the three triangles 

being equal in length, the triangles must be congruent. In doing so, R3 was able to “navigate 

through the many facts, procedures, concepts, and solution methods and to see that they all 

fit together in some way” (Kilpatrick et al., 2001, p. 129). 

Having a complex range of knowledge is essential in achieving deeper learning. “Deeper 

learning involves coordinating all five types of knowledge” (Pellegrino et al., 2012, p. 84). The 

third research question looked for the relationship between using problem solving activities 

and achieving deep learning. Through the analysis, I believe I have given examples that the 

students needed Kilpatrick et al.’s (2001) strands of mathematical proficiency when solving 

problems. One strand, productive disposition, has not found its place in the literature review 

or in the analysis; as it deals with students’ sensemaking and beliefs within mathematics. This 

was not a topic during the interviews and has not received focus in this thesis. Aside from this, 

I believe the data has shown indications that solving problems puts students in situations 

where they apply and develop knowledge within procedures and concepts, strategic 

competence and reasoning abilities; and constantly work with these types of knowledge in 

relation with each other. 

 

5.4 Conclusion 

My research started as a curious investigation of Isaac Peterson and his teaching at Lakeside. 

Through a unique curriculum design, together with the use of problem-solving activities in his 

classrooms, his students seemed to consistently deliver excellent results on the 10th grade 

exams. Results in mathematics can be measured in a variety of ways, testing being one of 

them. The mathematics exams on the 10th grade should give an indication to how competent 

the students are at mathematics, but there are definitely abilities that cannot be measured 

through a single, written exam.  
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This thesis has tried to answer questions to what type of learning emerges from classrooms 

that focus on problem solving. Using literature that discusses a desired type of knowledge 

base to emerge from mathematics teaching, in addition to a quality of knowledge that 

promotes deeper learning, I have tried to make the case for important aspects of learning 

mathematics. Building on this, I have looked at research on problem solving and analyzing the 

collected data through a framework designed to specify attributes of classrooms that promote 

high levels of student learning. 

The observed classrooms which were observed at Lakeside and Westwood received the same 

characteristics from the interviewed students on what type of student-involvement was 

expected and found place in the lessons. As mentioned in Chapters 2, 4 and 5, this thesis takes 

a sociocultural perspective to learning, a perspective that proved to be very fitting in the two 

problem-solving classrooms at Lakeside and Westwood. Through work with problem-solving 

activities, the students were given the opportunity and was encouraged to work in pairs or 

larger groups to enhance their chances of successfully solving problems. Accounts from the 

students described classrooms where the students would actively and openly listen and 

discuss ideas with other students, building on each other’s ideas and approaches. Vygotsky’s 

views on learning in social interactions, ZPD and the aspect of scaffolding (Baltzer, 2011; 

Hedegaard, 1993; Woolfolk, 2010) is important in this context, as the results showed that the 

learning that took place was relatable to these characteristics.  

The degree of student involvement was part of classroom norms that had evolved from 

Peterson’s expectations that all students should engage and contribute. But this also had a 

mathematical aspect, expecting all students to engage actively with the mathematical 

activities provided. The best example of this is the account of the student who brought his 

struggle with a mathematical problem outside the classroom and kept struggling with it after 

the lesson was over. All of the mentioned characteristics of classroom behavior are quality 

measures of powerful classrooms from the TRU OG. 

Analyzing how the students interacted with the three tasks from section 4.1 gave clear 

characteristics of how they dealt with difficult problems. Although no instruction on heuristics 

was observed nor documented through the interviews, the students provided answers that 

suggested that they had good strategies for solving problems, they were even able to reflect 
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on the necessary steps to take as they were battling with challenging problems. As they were 

using strategies for solving problems, their mathematical competency was used to calculate, 

connect domains of knowledge and reason, all in order to solve the problems faced. 

A focus for future teaching is for students to acquire deeper learning (Pellegrino et al., 2012). 

Deep levels of learning occur when students have knowledge in concepts, procedures, are 

able to reason, application (through strategies) and see sense in the discipline (Ludvigsen, 

2015; Pellegrino et al., 2012). So what about the learning that emerged from the problem-

solving classes at Lakeside and Westwood? I believe that the analyzed data showed that the 

students’ knowledge in concepts, procedures, reasoning and strategies in mathematics were 

visible teaching outcomes Peterson’s classrooms. The students seemed to acquire a profound 

understanding of mathematical connections, being able to apply their knowledge in 

challenging and comprehensive problem-solving tasks, consistent with Ma’s (2010) ideas on 

mathematical knowledge. Having the ability to transfer current knowledge to new situations 

is considered a prerequisite for gaining deep knowledge, and this knowledge occurs when the 

transfer occurs together through reasoning and understanding in new situations. Through my 

analysis and discussion, I have tried show that these factors emerged from the classrooms at 

Lakeside and Westwood. 

Schoenfeld (2013) defined a “powerful mathematics classroom” as a classroom where 

students emerge with good performances within mathematics tests and problem solving. 

Through the research questions, the question which would remain is whether there are 

sufficient indications that the observed problem-solving classrooms at Lakeside and 

Westwood could be considered powerful. The students did not go through tests as part of this 

thesis, so that part of Schoenfeld’s definition is impossible to evaluate. I do believe, however, 

that there are indications of the students in those classes performed well when facing 

problems. Through social interactions with other students, they solved challenging 

mathematical tasks using appropriate knowledge and strategies. 

Pellegrino et al.’s summary on research of American mathematics classrooms is a reasonable 

balance to the subjects discussed in this thesis: 

These studies present a remarkably consistent characterization of mathematics 

teaching (…) in the US: Students generally work alone and in silence, with little 
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opportunity for discussion and collaboration (…) They focus on low level tasks that 

require memorizing and recalling facts and procedures rather than tasks requiring 

high-level cognitive processes, such as reasoning about and connecting ideas or solving 

complex problems” (Pellegrino et al., 2012, p. 128). 

The students in the American classrooms, who consistently have delivered worse results than 

hoped (Kilpatrick et al., Ma, 2010; Pellegrino et al., 2012), appear to have opposite 

characteristics to the interviewed students from Lakeside and Westwood. They do not work 

in social interactions with other students, removing the aspect of learning in relation with 

others. This way, the tasks they encounter do not put them in their ZPD (Baltzer, 2011; 

Hedegaard, 1993; Woolfolk, 2010); as the classroom practices focus primarily on reproducing 

facts and methods, only giving the students opportunities of acquiring superficial procedural 

knowledge (Star, 2000, 2005), and a limited understanding of concepts, connections and 

reasoning within the discipline (Kilpatrick et al., 2001; Ludvigsen, 2015; Pellegrino et al., 2012). 

 

5.4.1 Implications 

Completing this study, what are the general results? The students gave accounts of 

challenging problem-solving lessons where they were expected to engage (in groups), and 

forced them to look at the problems from different angles and being required to use several 

parts of the mathematics in the same problem. This way they were constantly working with 

different topics and different domains of knowledge at the same time, as opposed to the 

mathematics being seen as disconnected fragments within the same discipline. Having this 

approach caused the students to see connections and being aware that they were in fact 

working with connecting the different parts together in the different tasks. Through problem 

solving, the students also needed to use proper strategies to solve the problems at hand. All 

of these traits are important factors in attaining deep mathematical knowledge. 

Looking back to Stacey’s (2005) research on curriculums, it is interesting to discuss problem 

solving as a means or end result of learning mathematics. Lester jr (2013) argued for problem 

solving being a means for attaining mathematical competency, and this thesis can also imply 
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that problem solving as a means approach to mathematics teaching can result in students 

obtaining deep levels of knowledge and ultimately a powerful mathematical competency.  

Another implication is the effect of student interaction when engaging in problem-solving 

activities. Through active collaboration with peers, the students gave accounts that they were 

able to discuss and learn from each other in a constant exchange of knowledge. This seemed 

to be an important aspect of the students’ learning, as they benefitted from the joint 

knowledge in the group work. 

 

5.4.2 Suggestions for further research 

There are definitely limitations in this study, and other aspects within problem solving would 

have been interesting to research. Through this thesis, two classrooms have been observed 

and only five students were interviewed. In addition, the same teacher taught in both of these 

classes, possibly making the claim that the teacher characteristics could be the key to the 

students’ learning and not the method used. Having no control group or comparisons with 

other teachers, students and classrooms that focused on other methods weakens the results 

of this study. In addition to this, the observed classrooms had no low-achieving students. 

Lakeside’s curriculum design mentioned in 1.4 is meant to build the students’ mathematical 

knowledge in a way that constantly connects and intertwines different types of knowledge 

and skills, ultimately leading to the students becoming good at solving problems. Would the 

profit of problem solving be the same if the curriculum design had not been laid out in a way 

where good problem-solving abilities was a key objective? 

Another factor worth researching is what type of motivation occurs in mathematics 

classrooms where problem solving is the main focus. Motivation has been mentioned briefly 

in this thesis, but in no means to the extent that could be done in a future study. Does the 

problem-solving approach lead to a higher degree of motivation in the students, ultimately 

leading to more learning? 
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5.4.3 Concluding remarks 

I have tried to argue that a problem-solving approach to teaching has the potential to enable 

students in gaining deep, conceptual knowledge, and these learning outcomes could be 

interesting to pursue further. 

As R5 stated when comparing her two different mathematics classes: 

“[W]e don’t have time to do [problem solving] in our regular classes.” 

Through my work with this thesis, I have learned that problem solving can lead to valuable 

effects on learning in mathematics. Ending a thesis where there are implications that problem 

solving should be more of a means- than an end result of mathematics teaching, I intend to 

find time for problem solving in my future mathematics teaching. 
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