
1 
 

 

Cycles in oceanic teleconnections and 1 

global temperature change.  2 

 3 

Knut L. Seip and Øyvind Grøn 4 

OsloMet- Oslo Metropolitan University; Faculty for Technology, Art and Design 5 

Pilestredet 35, POB 4 St. Olavs plass N-0130, Oslo, Norway 6 

E-mail knut.lehre.seip@oslomet.no; oyvind.gron@oslomet.no 7 

 8 

  9 

mailto:knut.lehre.seip@oslomet.no
mailto:oyvind.gron@oslomet.no


2 
 

 

Abstract 

Three large ocean currents are represented by proxy time series: the North Atlantic 

oscillation, NAO, the Southern oscillation index, SOI, and the Pacific decadal oscillation, PDO. 

We here show how  proxies for the currents interact with each other and with the global 

temperature anomaly, GTA, applying a novel method which identifies running average 

leading lagging, LL- relations, between paired series. We find common cycle times for paired 

series of 6 - 7 years and 25 - 28 years and identify years when LL- relations switch. Switching 

occurs with XXX 20 years interval for the short 7 years cycles and with 27± 15  years  

intervals for the 25-28 years cycles. During the period 1940 – 50, the LL- relations for the 

long cycles were circular (nomenclature x leads y: x → y): GTA → NAO → SOI → PDO → GTA.  

However, after 1960, the LL- relations become more complex and there are indications that 

GTA leads both NAO and PDO. The switching years are related to ocean current tie points 

and reversal points reported in the literature.  

1. INTRODUCTION 
Recently, it has been suggested that there 

are strong relationships between variables 

that describe water movements in the 

oceans and regional or global climate 

change. Climate model simulations, Meehl 

et al. (2011) and  Trenberth (2015), 

suggest  that heat is being stored in the 

deep ocean, e.g, the Pacific ocean ( 660 

106 km3)  during pauses in temperature 

increase, the so called hiatus periods.  

Others give a prominent role to the 

Atlantic ocean (310 106 km3) and the 

Atlantic meridional overturning 

circulation, e.g., Bryden et al. (2005) 

McCarthy et al. (2015), Caesar et al. (2018) 

and Thornalley et al. (2018). Based on 

these suggestions we examine leading and 

lagging relationships between three 

potential water movement variables: the 

North Atlantic Oscillation, NAO, The Pacific 

decadal oscillation, PDO, and the Southern 

oscillation index, SOI. We compare cycle 

length, phase shifts and leading – lagging, 

LL- relations to global temperature 

change, as Global temperature anomaly, 

GTA. However, although the three 

variables are used extensively as proxies 

for heat transfer between regions, they 

are only indirect measures of heath 

transfer.  

We examine possible causal relations in 

long term (1880-2014) and shorter term, 

multidecadal and decadal, perspectives. In 

the decadal and multidecadal perspective 

we examine “before” and “after” 

relationships for (quasi-) oscillatory 

movements. To be a causal agent the 

cause has to come before the effect. On 

the other hand, if the candidate causal 

variable peaks after the target variable, 

this weakens the causality hypothesis. For 

cyclic phenomena, the leading – lagging, 

LL- statement can be interpreted as a 

requirement for the peak (or the trough) 

of a causal agent to come before the peak 

(or the trough) of the effect. Since the sign 

of the variables is arbitrary, it may be 

convenient to change the sign of some 

variables based on knowledge of the 

studied system and on anticipation of 

what the LL- relations will express.  We 

examine two “versions” of each time 
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series, i) the raw time series and ii) series 

smoothed to identify decadal or 

multidecadal patterns. However, leading – 

lagging signatures may also result from 

other mechanisms than causal relations 

(Granger 1969).  This will be examined in 

the discussion section. 

Hypotheses. We propose three hypothesis 

for the relationships between GTA and 

ocean oscillation variables. i) Firstly, the 

large ocean currents, or their proxies, will 

impact each other in a concerted 

sequence throughout our study period 

1880 – 2014, that is, the teleconnection 

hypothesis is supported. ii) Secondly, 

global temperature change, in particular 

the hiatus periods, will be associated with 

particular changes in the ocean current’s 

leading, lagging, LL- relations. iii) Thirdly, 

common cycle times for paired variables 

will correspond to cycles that are found in 

both of the single variables that contribute 

to the pair 

The rest of the paper is organized as 

follows. In Section 2 we present the global 

warming variables, in Section 3 we present 

methods for i) pretreating the data, ii) 

quantifying running average leading-

lagging relations, iii) smoothing the data 

and iv) a Monte Carlo method that gives 

uncertainty estimates. In Section 4, we 

present the results and in Section 5, we 

discuss relationships between GTA and 

proxies for ocean currents. In Section 6, 

we summarizes the results. 

2. MATERIALS 
The global temperature series. We use the 

GISS Global  land – ocean temperature 

Index in 0.01 degrees Celsius  from NASA’s 

Goddard institute for space studies, 

NASA(GISTEMP) (2014).  The series are 

updated every month and may change 

within their margin of error (R.  Ruedy 

personal communication, 2014). For this 

series Zhen-Shan and Xian (2007) and  

Mazzarella and Scafetta (2012)  both 

found that during the period 1880 to 2009 

GTA has dominating cycle lengths of 6-8 

years, 20 years and 60 years. White and 

Cayan (1998) and Keeling and Whorf 

(1997) found cycle lengths of 2-13 years. 

The data were taken from the web site: 

http://data.giss.nasa.gov/modelforce/ghg

ases/GHGs.1850-2000.txt.    

The hiatus periods. There are two periods 

with little and no warming in the global 

temperature index. Here we use the 

periods suggested by Trenberth (2015) 

and Meehl et al. (2014). The first of these, 

1943 to 1975 is called the big hiatus, and 

the last hiatus period runs from about 

1998 to 2014. It is probably also relevant 

to define a hiatus period from 1902 to 

1920. We introduce a variable for the 

hiatus periods, setting it to 1 during the 

hiatus periods and to zero elsewhere. We 

also identify hiatus periods by smoothing 

the GTA series 1880 to 2015 and 

calculating the 1st derivative with respect 

to time.  The hiatus periods are those 

periods where the slopes (β – coefficients) 

are in the negative, or small, slope tail of 

the slope distribution. The two first hiatus 

periods are included in the tails, but not 

the last. However, we use all three 

periods. 

The oscillation series are proxies for 

oscillations that occur in wind stress, 

water movements, heath transfer and 

http://data.giss.nasa.gov/modelforce/ghgases/GHGs.1850-2000.txt
http://data.giss.nasa.gov/modelforce/ghgases/GHGs.1850-2000.txt
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regional temperature anomalies. There 

will most probably be mechanisms that 

disturb concerted oscillations in these 

variables, and there may be phase shifts 

between them. In the following, we use 

the term “ocean oscillation variables” for 

the three oscillating patterns described 

below.  

The North Atlantic oscillation index 

measures the air pressure difference 

between a Southern station, e.g., Lisbon 

and the Northern station, Reykjavik (p 

Lisbon – p Reykjavik).  We use monthly NAO 

index values as reconstructed by 

Luterbacher et al. (2002) and obtained 

from the web site: 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/h

istorical/north_atlantic/nao_mon.txt.  

When the NAO index exhibits an 

increasing trend, European Winter time 

temperatures are frequently higher than 

normal, Hurrell (1995), McCarthy et al. 

(2015).  

The Southern oscillation index, SOI, or the 

El Niño Southern Oscillation, the ENSO. 

The Southern Oscillation Index, SOI, is a 

standardized index based on the observed 

sea level pressure differences between 

Tahiti and Darwin, Australia (p Tahiti – p 

Darwin). The ENSO also have an oceanic 

component measured as the sea surface 

temperature in the equatorial Pacific 

(Kestin et al. 1998).  Prolonged periods of 

negative SOI values coincide with 

abnormally warm ocean waters across the 

eastern tropical Pacific, typical of El Niño 

episodes, and positive values of the SOI 

show the opposite, (La Niña). Typically, 

temperature anomalies happen at 

irregular intervals of 2 to 8 years (Kestin et 

al. 1998). The El Niño was exceptionally 

strong during the period 1997 /1998 

(McPhaden 1999).  The data were 

obtained from the web site: 

http://www.bom.gov.au/climate/current/

soihtm1.shtml 

The Pacific decadal oscillation, PDO, is 

closely related to the interdecadal Pacific 

oscillation, IPO, but has a more northern 

hemisphere focus, (Gehne et al. 2014); 

Trenberth (2015). PDO is measured by the 

PDO index that is the leading empirical 

orthogonal function (EOF) of monthly sea 

surface temperature anomalies (SSTA) 

over the North Pacific after the global 

mean SST has been removed (poleward of 

20° N, south of 65o N and between Asia 

and the west coast of North America). A 

positive IPO is related to an increase in  

mean sea level pressure, SLP,  in the South 

Pacific region west of 170°W (Salinger et 

al. 2001). IPO shows reversals in 1925, 

1947 and 1997 (Wu et al. 2011). Models 

show that a negative phase of the PDO 

(IPO) is characterized by cooler-than-

normal average surface temperatures over 

the tropical Pacific, with opposite sign 

anomaly in the northwest and southwest 

Pacific (data from the years 2000 -2014). 

Positive  phases of the PDO are 

characterized also by weaker trade winds  

that allow less heat to be mixed into 

subsurface waters and therefore cause an 

increase in global average surface 

temperature, Meehl et al. (2014), 

Trenberth and Fasullo (2013). The data 

were obtained from the web site: 

http://www.atmos.washington.edu/~man

tua/abst.PDO.html) 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/historical/north_atlantic/nao_mon.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/historical/north_atlantic/nao_mon.txt


5 
 

 

The data for CO2 were only used to show 

its relation to GTA. The data were 

obtained from the web site: 

http://data.giss.nasa.gov/modelforce/ghg

ases/GHGs.1850-2000.txt 

The five variables are depicted in their raw 

format in Figure 1a.  Figure 1b shows the 

five variables after detrending, smoothing 

and normalizing to unit standard 

deviation. The figures will be explained 

further in the method section. 

Ocean currents in the Atlantic ocean are 

also  monitored by  two addional 

measures, the Atlantic meriodional 

overturning circulation, AMOC and the 

Atlantic multidecadal oscillation, AMO. 

The AMOC is a measure of water 

transport, measured in Sverdrups (1Sv = 

106 m3 s-1), zonally along a across a 

transect (e.g. 24.5oN) from the African 

coast to the Bahama islands.  It is shown 

to be  slowed by about 30% between 1957 

and 2004  (Bryden et al. 2005).  Several 

studies suggest that changes in the AMOC 

influences global warming (Zhang and 

Wang 2013; Duchez et al. 2014; Lynch-

Stieglitz 2017). The AMO is defined in 

several ways. It is the detrended area 

weighted sea surface temperature, SST, 

from the Atlantic west coast to the 

eastern coast and from 0oN to 60o N.  The 

time series for NAO, AMOC and AMO are 

shown in supplementary material 1.

  

http://data.giss.nasa.gov/modelforce/ghgases/GHGs.1850-2000.txt
http://data.giss.nasa.gov/modelforce/ghgases/GHGs.1850-2000.txt
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Figure 1. Global warming variables: Global temperature anomaly, GTA, Carbon dioxide, CO2, 

North Atlantic oscillation, NAO, Southern oscillation index, SOI and Pacific decadal 

oscillation, POD. a) Raw data, shifted vertically. b) Data smoothed with the LOESS smoothing 

algorithm, f = 0.3, p = 2, and shifted vertically. c) Principal component plot, (loading plot) for 

raw, detrended variables 1900 - 2000, d) Principal component plot, (score plot) for 

GTA (bottom), CO
2
, NAO, SOI, PDO (top)
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LOESS smoothed: GTA (bottom), CO
2
, NAO, SOI, PDO (top)
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smoothed, detrended variables 1900 – 2000. e) score plot corresponds to c. f) score plot 

corresponds to d. Arrow in c indicates trajectory direction, arrows in f shows cluster of years. 

H indicates position of the Hiatus variable. See text 

 

3. METHODS 
In this section, we first describe 

pretreatment of our data. Thereafter we 

describe a relatively novel method for 

quantifying leading and lagging LL- 

relations.  Thirdly, we discuss the rationale 

for smoothing the data and our choise of 

smoothing prameters. Finally, we describe 

the method used to estimate uncertainty. 

3.1 Data pretreatment 

We first detrend the data by calculating 

the residuals from a linear regression of 

the variables against time. Thereafter, we 

identify decadal and multidecadal cycles 

for the five time series GTA, CO2, NAO, SOI 

and PDO using the LOESS smoothing 

algorithm (to be described in section 3.3). 

The parameters for the LOWESS 

smoothing are f = 0.3 and p = 2. Lastly, we 

normalize the variables to unit standard 

deviation. The results are shown in Figure 

1b. The next figures show principal 

component, PCA, score plot, c, and loading 

plot, e, for the raw, detrended series. 

Results for the  smoothed series are 

shown in d and f. All plots are restricted to 

the period 1900 - 2000 to avoid end 

effects from the smoothing algorithm, and 

because the first 20 years of observation 

may be more uncertain than the data after  

the 1900.   

3.2 Quantifying running average 

phase shifts for pairs of variables 

The method has previously been 

described in Seip and Grøn (2017). Here 

we give a short summary which allows the 

method to be copied and applied. The 

basis of the method is the dual 

representation of paired cyclic time series, 

x(t) and y(t), as time representation (the x- 

axis represents time and the two series 

are depicted on the y-axis) and as phase 

plots where the paired time series are 

depicted on the x-axis and the y-axis on a 

2D graph (a scatter plot). If one series 

leads another with less than ½ a cycle 

length (for example by having a causal 

effect on the other), then we will have a  

persistent rotational direction of the series 

trajectories in the phase plot. Figures 2a 

and b give an example with two sine 

functions 

(1)  x (t) = SST = sine (t) ;  y (t) = Sun  = 

sine (t + π/4). 

To choose a well-known example of 

leading and lagging variables, we let the 

first series, x(t), represent sea surface 

temperature, SST, normally peaking in July 

– August on the western hemisphere, 

denoted SST in the graph. The second 

series, y(t), could represent Sun insolation 

peaking in June. Since Sun insolation is 

associated with heat transfer to the sea 

surface, t is a candidate cause forSST. 

Thus, it should peak before SST, as it does 
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in the figure. Real pairs of Sun insolation 

and SST do the same (Seip 2015).  

With series for SST (x- axis) and  Sun 

insolation (y- axis) normalized to unit 

standard deviation, the  trajectories will 

form an elliptic form centered in the origin 

and  with the long axis either in the 1:1 

direction or in the 1, -1 direction. 

Trajectories in the phase plot will  rotate 

clock-wise, Figure 2b.  If the candidate 

cause had come after the target, with SST 

still on the x-axis and Sun still on the y-

axis, the rotation would be counter clock-

wise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relation between time series and phase plot. a) The candidate cause, Sun, peaks 
before, and close to the target, SST. They could represent sun insolation (cause) and sea 
surface temperature, SST, (effect). b) Phase plot for Sun and SST (target,SST, on x –axis); c)  
two uniformly random time series (upper series); bars (lower part) show the angles θ as 
positive and negative bars. The angle θ is measured by Eq. (5) in the main text. Note that 
when ∑ θ ≈ 2π, a circle-like curve is closed and the number of time steps used to close the 

Candidate cause +0,785 and target

Time

0 2 4 6 8 10 12 14

V
a

lu
e

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

 

Phase plot: Candidate cause + 0.785 and target

Target (SSTemperature)

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

C
a
n
d

id
a
te

 c
a
u
s
e

 (
+

0
.7

8
5

, 
s
u
n
)

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

0

1

2

3

4

5

6

7

8

9

10

11

12

 

SST 

a) b) 

Sun 

θ 

λ 

 

 Random, uniformely distributed time series;
positive = counter clock-wise rotations

negative = clock-wise rotations

Year

0 2 4 6 8 10 12 14 16 18

A
n
g

le
, 
v
a
lu

e

-4

-2

0

2

4

6

8

10

Rand1SD+5 

Rand2SD+5 

Angle 

 

Random series as phase plot

Random 1

-3 -2 -1 0 1 2

R
a
n
d

o
m

 2

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

 

c) 
d) 

PS 



9 
 

 

curve corresponds to the common cycle time of the two contributing time series; d) Phase 
plot for paired uniform series. 

 

LL- relations. To see which variable peaks 

first, we quantify rotational directions and 

apply a LL- strength measure that 

expresses the persistence of one rotational 

direction for the trajectories in the phase 

plot for the paired time series. The formula 

for quantifying the rotational direction, θ, 

is,1 

(2) 1 2
1 2

1 2

( ) Arccossign
 

     
 

v v
v v

v v
. 

The strength, LL - strength, of the 

mechanisms that cause two variables to 

either rotate clock-wise or counter clock-

wise in a phase portrait is measured by the 

number of positive rotations (counter 

clock-wise rotations by convention) minus 

the number of negative rotations, relative 

to the total number of rotations over a 

certain period, in this study, 9 years.  

(3) LL = (Npos -Nneg )/(Npos+Nneg). 

We use the nomenclature: LL(x, y) = [-1, 1] 

for leading- lagging strength: LL (x, y) < 0 

implies that y leads x, y→x; LL(x, y) > 0 

implies that x leads y, x→y. The LL- strength 

for the series in Figure 2a is LL = -1. The 

positive (counter clock-wise) and negative 

rotations for the paired random series in 

the upper part of Figure 2 c are shown as 

positive and negative bars in the lower part 

                                                           
1 It can be implemented in Excel format: With 

v1 = (A1,A2,A3) and v2 = (B1,B2,B3)  in an Excel 

spread sheet, the angle is calculated by 

pasting the following Excel expression into C2:  

=SIGN((A2-A1)*(B3-B2)-(B2-B1)*(A3-

of the figure. A phase plot of the series 

trajectories is shown in Figure 2d.  

The cycle length, CL, of two paired series in 

Figure 2a is 2π ≈ 6.28. The wedge defined 

by the origin and the points “1” and  “2” 

defines an angle centered in the origin. 

Summing the angles for all wedges that fill 

the ellipse gives the angle 2π, and counting 

the number of points that is required to fill 

the ellipse with wedges  gives n ≈ 6. 

Generally, there is a correspondence 

between the cycle length of the paired time 

series and the rotation of trajectories in the 

phase plot. The cycle length can be 

approximated as: 

(4) 𝐶𝐿 = 𝑛 × 2𝜋 /(∑ 𝜃𝑖−1,𝑖,𝑖+1
𝑛−1
2 ). 

The cycle times we identify, should ideally 

be based on (almost) full rotations in the 

phase plots for the paired time series, but 

noise, or other superimposed signals may 

not allow full rotations to be completed as 

a significant series. The example in Figures 

2a and b gives CL = 6.30 which is close to 

the design cycle time of 2π = 6.28. 

Phase shifts, PS. The regression slopes, s, or 

the β – coefficients, will for cyclic series 

give information on the shift, or time lag, 

between the series. For a linear regression 

applied to paired time series that are 

normalized to unit standard deviation, the 

A2))*ACOS(((A2-A1)*(A3-A2) + (B2-B1)*(B3-

B2))/(SQRT((A2-A1)^2+(B2-B1)^2)*SQRT((A3-

A2)^2+(B3-B2)^2))). 
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regression coefficient, r, and the β – 

coefficient will be identical. If the two 

series co-vary exactly, their regression 

coefficient will be 1, and the time lag zero.  

If they are displaced half a cycle length, the 

series are counter-cyclic, and the 

regression coefficient is r = - 1. Lead or lag 

times, PS, are estimated from the 

regression coefficient, r, for sequences of 5 

observations, PS (5).  With λ as cycle length, 

an expression for the phase shift between 

two cyclic series can be approximated by:  

(5) PS ≈ λ/2π × (π/2- Arcsine (r)). 

For r = 1, Arcsine(r) = π/2, the right hand 

parenthesis is zero giving PS = 0. For r = -1, 

arcsine(r) = -π/2 and the right hand 

parenthesis is 2 × π/2 = π and PS = λ /2.   

3.3 Smoothing 

We use smoothing for two major 

purposes. Firstly, we smooth the raw time 

series to identify long term, multidecadal 

cyclic patterns, and secondly we smooth 

the LL- results to emphasize patterns. To 

smooth the variables we use the LOESS 

standard smoothing algorithm, 

SigmaPlot©. The algorithm is available in 

many statistical packages. The smoothing 

algorithm has two variables. The first, f, 

shows how large fraction of the series is 

used for calculating the running average. 

The second, p, is the order of the 

polynomial function used to make 

interpolations. We always use p = 2. For 

calculation of LL- relationships, we use 

two versions of each variable: i) the raw 

data and ii) LOESS smoothed data with f = 

0.3 and p = 2. To emphasize patterns in 

the figures showing rotational angles, we 

smooth the raw data, f = 0.3, p = 2.The 

smoothed curve can be compared visually 

to bars that represent the angles based on 

running average calculations with n = 3. 

The raw and the smoothed data are 

subsequently examined with principal 

component analysis, PCA. 

3.4. Uncertainty estimates 

To find an expression for the uncertainty 

in our estimates we ran Monte Carlo 

simulations on two paired uniformly 

random series and found for series n =  9 

entries long series that rotations are 

significant if LL < - 0.32 or LL > + 0.32.  The 

period length, n = 9, is a tradeoff between 

confidence in the results and the 

possibility of detecting changing LL- 

relations. We made all calculations in Excel 

and with SigmaPlot 12©.  

To examine the effect of smoothing and 

detrending procedures, we smoothed the 

series for GTA and NAO with a negative 

exponential smoothing algorithm, and we 

detrended the same variables with a 4th 

order polynomial equation, using the 

residuals as the new detrended variable. 

The results became essentially the same 

as with LOESS smoothing.  

4. RESULTS 
We first examined the variables and their 

relationship to each other using the 

principal component analysis, PCA plots. 

Thereafter, we examined cycle times and 

phase shifts between the variables.  We 

used both a power spectral density 

algorithm applied to the single series and 

the expressions for common cycle times 

between paired variables, Eq. (4), and for 

their phase shifts, Eq. (5). Lastly, we 

examined leading and lagging 

relationships between the variables using 
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our algorithm for LL- strength, Eq. (3). The 

results are explained with reference to the 

relations between GTA and PDO. We have 

chosen this pair because  the Pacific ocean 

oscillation, PDO is hypothesized to have a 

particularly large impact on GTA, e.g., 

Meehl et al. (2011) and Thompson et al. 

(2015).  Supplementary material 2 shows 

details of the results for all 6 pairs of the 4 

variables. 

4.1   Relationships between GTA, CO2 

and ocean oscillation variables. 

Principal component, PCA, results for GTA 

and CO2 and the three ocean oscillation 

variables were summarized in the loading 

and score plots of Figures 1c to f. With raw 

annual observations, PDO and NAO are 

correlated and SOI is negatively correlated 

to both, Figure 1c. GTA and CO2 are 

correlated, but relative to ocean currents 

both variables are either uncorrelated or 

phase shifted (≈ ¼ cycle time, see 

discussion).  There appears to be a time 

trend in the series, so that in the long-term 

states do not repeat themselves, Figure 1e. 

With smoothed series, that is, with decadal 

or multidecadal patterns, PDO and SOI are 

still negatively correlated, but NAO is either 

uncorrelated or phase shifted relative to 

the two first ocean oscillations, Figure 1d.  

The H in Figures 1c and d suggests the 

position of the hiatus variable in a PCA with 

the full data set and including the dummy 

variable for the hiatus periods.  However, 

the PCA shown was made without the 

hiatus variable. 

There are three clusters of system states: 

1913 - 1929, 1951 - 1974 and 1993 – 2000, 

Figure 1f.   These clusters correspond fairly 

well to the reversal times reported for 

PDO in 1925, 1947 and 1997,  (Wu et al. 

2011). 

4.2  Cycle times and phase shifts 

Power spectral density for single variables. 

We calculate cycle times for single 

variables by using an algorithm for power 

spectral density, SigmaPLot©. We apply 

the algorithm to the raw data and to the 

LOESS smoothed data with potential 

cycles in the range 1 to 40 years.  Figure 

3a shows the results for the raw data and 

Figure 3b shows the results for the LOESS 

smoothed data.  
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Figure 3. Cycle times for single variables and for paired variables. a) Power spectral density 
for raw data. Two lower series represent GTA; the smooth series shows the detrended GTA 
and the wiggling series the raw GTA. Both the raw and the detrended GTA variable have 
prominent cycles of 5 years, NAO has prominent cycles at 11 and 17 years, SOI has cycles at 
7 years and 21 years, and PDO has prominent cycles at 3 years and 7 years.  b) Power 
spectral density for LOESS smoothed data. GTA has a prominent cycle at 5 years, CO2 has a 
prominent cycle at 3 years, NAO has a cycle at 5 -7 years and a prominent cycle at 11 years, 
SOI has a prominent cycle at 6 - 7 years and PDO a prominent cycle at 3 years. c) Common 
cycle lengths for paired variables, raw and smoothed data; d) Phase shifts for paired 
variables, raw and smoothed data. Legends are shortened to one letter for clarity: G = Global 
temperature anomaly, GTA, N = North Atlantic oscillation, NAO; S = Ssouthern oscillation 
index, SOI; P = Pacific oscillation index, PDO. The standard deviations is for 5 years running 
average  
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Cycle times and phase shifts for paired 

series. Our method allows us to calculate 

common cycle lengths for paired series. 

For all pairs we calculated cycle times and 

phase shifts based on Eqs. (4) and (5). The 

results based on the raw data and the 

LOESS smoothed time series for GTA and 

PDO are shown in Figures 4c and d. The 

blue shaded areas show periods where 

cycles are significant. The cycle time for 

the GTA, PDO pair with annual average 

values for the significant periods from 

1900 to 2000 is 7.5 ± 1.9 years. The phase 

shift is 1.76 ± 0.5 years. For the smoothed 

data the cycle time for the significant 

periods from 1900 to 2000, is 25.8 ± 8.2 

and for the phase shift we obtain 7.3 ± 3.2 

years. The trends in cycle times and phase 

shifts were not, or only weakly, significant.  
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Figure 4. Global temperature anomaly versus Pacific decadal oscillation GTA vs. PDO. Panels 
in left column:  Raw data normalized to unit standard deviation; Panels in right column: 
LOESS smoothed data normalized to unit standard deviation.  a) Raw data (upper two series) 
and running average (n = 9) β- coefficient (slope) displaced 4 units down, b) LOESS smoothed 
data, f = 0.3, p = 2, c) Raw data: Cycle times (filled circles) and phase shifts (open circles), d) 
Smoothed data: cycle time (filled circles) and phase shift (open circles); e) Raw data: LL- 
relations as angles. Bars are running average (n=3) and line is smoothed values, LOESS, f = 
0.3, p = 2    f) Smoothed data: LL- relations as angles. Bars are running average (n=3) and line 
is smoothed values, LOESS, f = 0.3, p = 2. Blue rectangles indicate significant LL – relations. 

The common cycle times for all six pairs 

were shown in Figure 3c.  The average 

cycle time identified for the 6 pairs of the 

raw data is 6.6 ± 0.70 years, and for the 6 

pairs of LOESS smoothed data is 28.8 ± 3.5 

years. Thus, we find two common 

dominant cycle times in the series, around 

7 years and around 28 years.   

4.3 Leading lagging relationships 

between paired series. 

We illustrate the leading- lagging, LL- 

relations with the pair GTA and PDO. The 

two variables are shown as annual 

averages in Figure 4a and as smoothed 

series in Figure 4b. The curves in Figures 

4e and f are LOESS smoothed (f = 0.3) and 

summarize the trends in the LL – relations. 

With annual average values, we find five 

periods where GTA is significantly lagging 

PDO: 1896-1904, 1914 -1919, 1934- 1943, 

1965-1969, 1986 – 1997.  (We have 

allowed up to 3 non-significant in-

between years). We compare LL-relations 

among several pairs below.  

To identify similarities and differences 

between LL- relations for the 7 pairs, we 

show PCA plots for LL- relationships based 

on the raw data and the smoothed data 

for the period 1900 to 2000 in Figures 5a 

and b. In addition to the variables, we 

have added the dummy variable for the 

hiatus periods. The explained variance for 

the principal components is shown in the 

figures.  Adding the values for the hiatus 

periods will contaminate the pattern for 

the LL-relations, but the bias turned out to 

be small.  

For both the raw and the smoothed data 

we outline two major paths that pass 

through the origin (blue shaded areas). 

Since the paths are close to perpendicular 

to each other, this suggests that the cycles 

in the two sets are shifted a quarter of a 

cycle length relative to each other. 

(Perfect sines that are shifted λ/4 to each 

other will show a circle in the phase plots, 

giving an explained variance of zero for 

the scatterplot of sampled sines.)  Based 

on these paths, we depict LL- relations 

that lie along the same paths, that is, 

move in approximately the same way, in 

two plots for the raw data and the two 

plots for the smoothed data set Figures 5c 

to f.  The LL- relations for the raw data set, 

identify 7 years cycles and suggest a three 

to four peak pattern, whereas the LL- 

relations for the smoothed data set 

suggest a two-peak pattern. For the two 

bottom panels e and f we have also added 

a curve showing the decadal average 

temperature anomalies following 

Trenberth (2015). 
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Figure 5 
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Figure 5. Leading- lagging relationships a) PCA loading plot for LL-relations based on raw 
data (Cycle lengths are 7.5  ± 1.9  years);  b) PCA loading plot for LL- relationships based on 
LOESS smoothed data (Cycle lengths are 28 ± 10 years; c) Three LL- relations (based on raw 
data) that correlate (NAO -SOI with negative sign).  d) Three LL- relations (based on LOESS 
smoothed data) that correlate (GTA - PDO with negative sign); e) Three LL- relations (raw 
data) that correlate (GTA - NAO with negative sign); f) Three LL- relations (LOESS smoothed 
data) that correlate (NAO - PDO with negative sign). Shaded areas suggest periods with 
consistent LL -relations. Note that the smoothed LL- relations are based on the full series 
from 1880 to 2014, except the PDO series that start in 1900. For the PCA plots, we restrict 
the series to the period 1900 to 2000 to avoid end-effects. 

 

For the 7 years cycle during the period 

1940 to 1950 and the 25- 28 years cycle 

during the period 1930 to 1945, Figures 5c 

and d, the LL- patterns can be depicted as 

in Figures 6a and b. The variables in Figure 

6 are arranged so that the NAO is to the 

West (left), the PDO to the East (right) and 

the SOI at the bottom, corresponding 

roughly to their position on a map with 

Europe- Africa in the middle.  GTA is at the 

top.  For the 25-28 years cycles preceding 

the big hiatus 1943- 75, we obtain the 

sequence GTA → NAO  → SOI → PDO → 

GTA.  It is a circular LL-relationship. We 

also find that PDO precedes NAO, and SOI 

precedes GTA. To get from the curves in 

Figure 5 to the directional graphs in Figure 

6, the directions can be read from the 

graphs according to the heading at the top 

of the panels.  
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Leading- lagging, LL- relations between GTA and three ocean oscillation variables 
(proxies for the “ocean currents”). To get from the time series in Figure 5c to f to the 
sequential patterns in Figure 6, the inset coordinate system in Fig 6 may be helpful. Assign 
the first variable to the x-axis and the second variable to the y-axis. If the rotation is positive 
(counter clock-wise), we have x → y.  a) Sequences for the seven years cycles during the 
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period 1940 – 50. Colors suggest regionally high temperature anomalies when the indexes 
have a high value.  b) Sequences for the 25 years cycles during the period 1930 to 1945..  c)  
Sequences for the 7 years cycle during 1970-90, d) Sequence for the 25 years cycle during 
the period 1970 to 1980. Although there are exceptions, the LL- relations appear to change 
in concert. Light shaded arrows suggest weak LL- relations. 

However, for the period 1970 to about 

1990  the LL- patterns for the 7 years cycle 

seem to start with global temperature, 

GTA, preceding both NAO and PDO, 

although weakly. Then we get PDO → SOI 

→ NAO as shown in Figure 6c. Figure 6d 

shows that the 25 years cycle is different. 

Global temperature anomaly still affects 

NAO, GTA → NAO, but now the Pacific 

decadal oscillation affects GTA, PDO → 

GTA. However, PDO also affects SOI, and 

SOI again affects NAO.  

4.4 The hiatus periods.  

We do not find a significant relationship 

between the hiatus periods and LL- 

relations for the ocean currents in the raw 

data set. However, for the smoothed 

variables, Figures 5b, d and f, the bimodal 

pattern is more pronounced, and the 

relationships between the Hiatus period 

and LL(GTA,SOI), LL(GTA,NAO) and – 

LL(GTA,PDO) are stronger, but not 

significant.  

5. DISCUSSION 
We first discuss our results on ocean 

oscillations and teleconnections. 

Thereafter we discuss possible 

implications for pauses in global warming, 

the hiatus periods. Thirdly, we discuss the 

two cycle frequencies we find for ocean 

oscillations and compare them to 

frequencies found in other studies.  

Fourthly, we try to identify mechanisms 

that cause cycles in one ocean basin to 

impact cycles in another ocean basin, that 

is “bridges” for interferences between 

ocean water bodies. Lastly, we discuss the 

leading –lagging method and its 

application to atmospheric and ocean 

variables. 

5.1 Ocean oscillations and 

teleconnections 

We find that leading and lagging relations 

between ocean current oscillations change 

direction in concert.  Assuming that the LL- 

relations correspond to cause – effect, we 

can infer several interaction patterns 

among the ocean oscillation variables. 

(Possible causal mechanisms will be 

discussed in section 5.5.)  When one 

interaction pattern changes, there are 

corresponding changes also in the other 

interaction patterns, Figures 5 a to f.  The 

results support our first hypothesis that 

the large ocean currents interact in 

concert, partly supporting the 

teleconnection hypothesis.  However, 

whereas there is a circular LL- sequence 

before 1960s, global warming appears to 

exert a larger influence on the LL- 

relations after the 1960s. This finding 

corresponds with climate modeling 

evidence for an increasing frequency of 

extreme El Niño events due to greenhouse 

warming found by Cai et al. (2015), and 

with an apparent breakpoint in oscillation 

volatility in 1960 found by Torrence and 

Webster (1999) and Kestin et al. (1998). 

Wang et al. (2013) suggest that 

greenhouse gases are increasingly 

important precursors to the ENSO after 
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1960s. A more concerted movement in 

IPO, SOI and El Niño after 1945 was found 

by Power et al. (2006).  Loeb et al. (2012) 

and Johnson et al. (2016) found that on an 

interannual time scale 2001-2011, ENSO 

events lead to potentially large 

perturbations in the top of the 

atmosphere, TOP, radiation.    

Wu et al. (2011) discuss leading- lagging 

relations between PDO and the Atlantic 

multidecadal oscillation, AMO. They found 

that on an interannual time scale (< 10 

years, corresponding to our 7 years 

cycles), PDO leads the AMO by 1 year, but 

on a  multidecadal time scale (> 10 years, 

corresponding to our 25 years cycles) 

AMO leads PDO by 11 -12 years.  These 

results are consistent with our findings 

except that we find a shorter lead-time of 

7 years for the multidecadal cycles. We 

compare raw and smoothed data for NAO, 

AMOC and AMO in supplementary 

material 1. 

5.2 Hiatus periods and global 

temperature change 

There are two large scale ocean circulation 

systems that have been hypothesised to 

be major parts of the heat engine of the 

global climate system, the PDO, (Meehl et 

al. 2011) and the Atlantic meridional 

overturning circulation, AMOC  (McCarthy 

et al. 2015). A summary is given in 

Hedemann et al. (2017) 

The hiatus periods. The slowdown in the 

rate of global warming in the early 2000 as 

well as a slowdown in the period 1943 to 

about 1975 (and probably also the period 

1902-20) have been associated with 

storing of heat in the deep oceans (depth 

> 700 m), Trenberth (2015), Meehl et al. 

(2011), and Meehl et al. (2014).  The 

hiatus periods seem to be most closely 

related to the 25-28 years cycle, Figure 5b.  

The hiatus periods occur when GTA leads 

SOI, and NAO, but PDO leads GTA.  In spite 

of results not being significant at the 0.05 

level, it is interesting to compare them to 

findings in other studies.  GTA leading SOI 

means that GTA peaks about 7 years 

before the SOI peaks. If we “translate” the 

SOI peak into regional sea surface 

temperature, SST, we find that an increase 

in  GTA is followed about 7 years later by 

abnormally warm waters across the 

tropical Pacific, typical of El Niño episodes, 

but with colder sea surface temperatures 

near 30o to 40o N and S latitude in the 

Pacific and Atlantic,  Meehl et al. (2011), 

on SST.   

Our results also suggest that PDO is a 

leading variable to GTA during hiatus 

periods. In terms of GTA and SST, this 

suggests that an increase in the average 

SST over the tropical Pacific, (PDO 

increases) and a colder-than-average 

temperature in the northwest and 

southwest Pacific is followed about 7 

years later by an increase in the GTA.  This 

corresponds well with results by Meehl et 

al. (2014), Trenberth (2015) and Dai et al. 

(2015) that a positive phase of PDO 

increases the global average sea surface 

temperature.  The leading time has been 

reported to be about 7 years. Thus, ocean 

heath transfer may compensate for an 

increase in GTA caused by CO2 and thus 

contributes to a hiatus period.  This 

supports our second hypothesis, that the 

hiatus periods are associated with 

particular events in the ocean current 

cyclic system. However, there are only 3 
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entries available for the hiatus periods, so 

the results should be treated with caution.  

The AMO, the AMOC and NAO share the 

same general time series pattern but 

peaks and troughs are shifted in time, and 

the AMOC shows a generally decreasing 

trend. The recent slowdown in AMOC  has 

been hypothesized to cause a cooling over 

the northwest Europe, (Bryden et al. 2005) 

which has been compensated by 

greenhouse warming (Thornalley et al. 

2018). Thus, both PDO (our results) and 

the AMOC may compensate for 

greenhouse warming. In addition, changes 

in the AMOC  have been associated with 

the seesaw effect, that is, temperature 

changes in the southern and northern 

hemisphere are out of phase (Stocker and 

Johnsen 2003).  Results by Yao et al. 

(2017) higlight the importance of multiple 

oceans on the multi-decadal global 

warming rates. Hedemann et al. (2017), 

however, suggest that it is not possible to 

entangle contributions to the hiatus from 

oceans and from changes in radiative flux 

imbalances at the top of the atmosphere, 

TOA. 

The effects of both ocean warming  and 

greenhouse gases may also help explain 

the puzzle that global temperature leads 

CO2 during the period from about 1960 to 

2003, (Kuo et al. 1990; Seip and Grøn 

2017). 

5.3  Data interpretation.  

The time series we analyze are frequently 

used proxies for oscillations in ocean 

system variables. We here tacitly assume 

that the series represent large ocean 

currents, although two of the series, SOI 

and NAO, measure atmospheric 

phenomena and one series measures sea 

surface temperature, PDO. To our 

knowledge, there are no systematic survey 

of leading – lagging relationships between 

global ocean oscillation variables like NAO, 

SOI and PDO, and water movements, or 

variations in regional temperature 

anomalies.  The two variables, AMOC and 

AMO measure more complicated aspects 

of the Atlantic ocean; AMOC measures the 

net effect of surface and subsurface flows 

and AMO is an area averaged areal 

measure. A study of the three Atlantic 

ocean time series, NAO, AMOC and AMO, 

however, are outside the scope of the 

present study. 

5.3.1 Smoothing 

It is customary to smooth the raw time 

series data both to remove noise and to 

identify underlying cycles in the observed 

time series.  There are several ways to 

smooth the data for ocean currents.  For 

example, Chylek et al. (2014 a) used 5 

years moving averages and Caesar et al. 

(2018) uses a 20 years locally weighted 

LOWESS smoothing. Our series are 

smoother than those presented by Chylek 

et al. (2014 a), their Figure 2, but show a 

similar pattern in the period 1900 to 2000. 

Our smoothed series  for PDO show the 

same periods with positive values as the 

IPO series used by Meehl et al. (2014), 

that is, negative in the periods 1960 - 80 

and 1998 -  2010 and positive in the period 

1980 -98. The inverse relationships we 

find between SOI and PDO for both the 

annually averaged values and the 

smoothed values correspond with the 

relationships found by Finlay et al. (2015) 

in their study of hardwater lakes and 

atmospheric warming.  Positive values of 
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NAO and SOI are associated with positive 

temperature anomalies in central North 

America. We find  that the hiatus periods 

correlate with SOI and – (minus) PDO in 

agreement with  the result of Meehl et al. 

(2011) and Trenberth (2015). 

5.4 Cycle time and phase shifts 

We found 6 to 7 years cycles  in the raw 

data and 25-28 years cycles in the 

smoothed series both in all single series by 

applying the Power spectral density 

algorithm, and with our algorithm for 

identifying common cycles for paired 

series.  

To partly validate the chronology in LL-

relations we  compare the timing of 

changes in LL-relations to tie events; 

either to endogenous events (for example 

the El Niño 1997/98 extreme event) or to 

events identified by other authors. 

5.4.1 The 7 years cycles. 

There are several findings that support the 

years 1916, 1942, 1957, 1967 and 1980 

identified as turning points in our 7-years 

cycles as tie events in teleconnection 

studies. i)  The peak and troughs in the LL- 

relations are found for many pairs, also for 

pairs that do not share a common ocean 

oscillation variable. ii) The years coincide 

well with the years found by Swanson and 

Tsonis (2009) for synchronization of 

variables of the Northern Hemisphere 

climate system  (ENSO, PDO, NAO, The 

North Pacific index), with years for regime 

shifts or alternating polarity in the Pacific 

sector around  1920, 1940  and 1976/77 

found by Minobe (1997) and an 

identification of regime shifts in 1920, 

1940, 1970 and around 2000 found by 

Chen and Wallace (2015). Lastly, it 

corresponds with the finding of global 

impacts of regime shifts in the 1980s by 

Reid et al. (2016). iii) Kestin et al. (1998) 

found a range of cycle times, but with 

particularly high power around  3-4 years 

and 7 to 10 years.  They also identified 5  

periods with short cycles of 2.4 years, and 

4 of these correspond with years where 

we find short cycles. (However, Kestin et 

al. (1998) attribute these cycles to poor 

time localization.) iv) We have found two 

studies that suggest that there are 

changes in East - West propagation of the 

ENSO (Zhang et al. 1998; Zhu et al. 2011).  

These two last studies also use subsurface 

temperature anomalies. 

5.4.2 The 25 – 28 years cycles 

For the smoothed variables, we obtained a 

consistent cycle time of about 25 - 28 

years. The 25 - 28 years period is longer 

than the 20 years period for the 

interdecadal pacific oscillation, IPO 

identified by Meehl et al. (2014), their 

Figure 2 or the 23 year cycle, 1661 to the 

present,  identified by Biondi et al. (2001). 

Torrence and Webster (1999), using 

wavelet analysis, also found cycle times in 

the range 20 – 30 years. There may also be 

cycles that are much longer, but our 

period 1880 to 2014 is too short to 

identify such cycles. The studies referred 

to above use different techniques to 

analyze climate time series, suggesting 

that the information found in the series 

are not artefacts of the methods.  

Thus, our third hypothesis was partially 

supported, we found cycles that also could 

be found in the single variables, but only 

the two sets 6 - 7 and 25 - 28 years cycles 

were carried over between ocean 
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currents.  However, cycles shorter than 

about 5 years may be an apparent pattern 

caused by stochastic movements between 

paired series (Seip and Grøn 2017 b). 

5.5  Candidate causal mechanism, 

“bridges”.  

By pairing ocean cycle series we find that 

cycles in one ocean water body impact 

cycles in another, neighbouring ocean 

water body. “Bridges” that facilitate 

transport of warm, or cold waters and air 

have been identified in the literature, e.g., 

Zhang et al. (1998) on subsurface ocean 

“bridges”, Yao et al. (2016) on 

atmospheric “bridges”.  There may also 

exist a common factor which influences 

two, or all three currents, discussed in this 

study, (Graham et al. 2011). 

Meehl et al. (2015) relate a cooling 

incident over U.S. to a transition in the 

interdecadal Pacific Oscillation, IPO. Davis 

et al. (2011) show that wind stress 

magnitude during the period 1980 -2005 

correlates with the PDO index and with 

basin scale wind, and that the latter is 

leading the PDO index (SST) by 3 months. 

They also show that the basin scale air – 

heath exchange correlates with the PDO, 

and that there is zero time lag between 

wind stress and net heat flux. Durski et al. 

(2015) show that the near coastal 

alongshore surface currents show 

seasonal variability which mostly 

corresponds to that expected from 

response to wind stress.  Kestin et al. 

(1998) show that the cycle – year state of 

SOI, SST and equatorial rainfall capture the 

same phenomena. 

There are also some studies that address 

reversals in circulation or flow directions. 

Graham et al. (2011) summarize 

indications for historic shifts in global 

circulation patterns. During the period 

1976 - 77, an apparent reversal of polarity 

began to occur with changes in circulation 

pattern in the Pacific. (Zhang et al. 1998).  

Around 1975-82  the ENSO was initiated in 

the South American coast and propagated 

westward along the equator (Zhu et al. 

2011). This may fit with SOI leading NAO 

during the period 1970-1980 both over 

short (7 years) and long (25 years) cycles. 

However, around 1980, the long cycles for 

SOI ceased to lead NAO (Fig 5f), and  in 

1982  el Niño was reported to propagate 

eastward from the central basin (Zhu et al. 

2011).  

5.6 The LL- method 

Our LL-strength method distinguishes 

itself from  other methods, e.g., cross 

spectral methods, cross correlation 

methods, (Granger 1969) to identify LL-

relations, cycle lengths and phase shifts in 

that it is local. LL-relations can be 

determined with n > 3, but require longer 

series, e.g., n ≈ 9, to allow calculation of 

confidence estimates.  Alternative 

methods that we are aware of require 

observational time series of sufficient 

duration to enable stable spectra,  (Gehne 

et al. 2014). Kestin et al. (1998) use 3 

methods that are based on fixed 21 year 

windows or on adaptive windows (range ≈ 

10 to 50 years).   

Most often a peak in one variable which is 

closely before the peak in a second 

variable, is interpreted to mean that there 

is  a causal effect from the first to the last 

variable. (Hartmann 2016).  However, the 

variables may affect each other, but the 
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time it takes for the effects to act is longer 

than half their common cycle times. 

Therefore, an alternative interpretation is 

that the second variable is affecting the 

first, but with a long time delay, (> ½ cycle 

length). For the oceanic oscillations 

studied here, this is a possibility. 

Incorporating more teleconnections into 

the system studied, e.g., like Tasambay-

Salazar et al. (2015), may help tightening 

relations and help confirm real causal 

relations.   

We believe that the method used in the 

present paper is robust for most cyclic 

time series, in particular with regard to LL- 

relations. However, there are several 

challenges that should be addressed 

further. Noise, as well as superposition of 

cycles with different cycle lengths (and 

opposite LL- relations)  may bias the 

results, as is the case for all alternative 

methods. However, if contaminations of 

the signals are too great, the LL- strength 

measure will show that the series, or 

portions of the series, are non-significant. 

Furthermore, cycles longer than 6 years 

have a probability less than p = 0.05 to 

occur by chance, suggesting that cycles 7 

years or longer are real. Our study is not 

addressing dynamic explanations, which is 

outside the scope of the present study.  

We tested other methods for detrending 

(4th order polynomial) and smoothing 

(negative exponential), and the results 

were similar.  Se supplementary material 

3. We believe that the new method would 

be very useful if it is applied together with 

simulation models for global temperature, 

wind and ocean currents. 

6. CONCLUSION 
We find interaction patterns between 

global temperature change and proxies for 

three major ocean variables, the north 

Atlantic oscillation, NAO, the southern 

oscillation index, SOI (related to La Niña 

and El Niño) and the Pacific decadal 

oscillation, PDO.  

We found two dominant cycle times in the 

temperature/ ocean current system, one 6 

- 7 years cycle and one 25 - 28 years cycle. 

Global temperature and the three ocean 

oscillations show concerted interactions.  

Before about 1960 the 25-28 years ocean 

oscillations showed a circular sequence 

GTA → NAO→  SOI → PDO → GTA.  During 

the period 1970-80 this pattern changed. 

After about 1970, the superimposed 7- 

years cycle appears to be dominated by 

GTA, but not significantly.   Thus, the years 

around 1960 may be a break point in 

oceanic teleconnections. The slowdown in 

temperature increase which occurs during 

the hiatus periods  is closely associated 

with periods where GTA is a leading 

variable to SOI. Increases in GTA will cause 

typical El Niño episodes with warm waters 

across the tropical Pacific, but colder 

water North and South. The results for 

cycle times, phase shifts and leading – 

lagging relations were calculated as 

running averages over 3 to 9 years. This 

made it possible to identify patterns in the 

variation of the major ocean variables by 

the LL- method that will be hidden when 

LL- relations based on averages over 

longer time series are examined.  
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