
  

Abstract— The detection of low quality solder joint quality in 

hard disk drive (HDD) manufacturing is a time consuming, 

error-prone and costly process that is often performed manually. 

This paper thus proposes two automated optical solder jet ball 

joint defect inspection methods for head gimbal assembly (HGA) 

production. The first method uses a Support Vector Machine 

(SVM) for fault detection and the second method uses vertical 

edge detection to identify solder ball and pad burning defects. 

The methods were tested with 5,530 HGA images, and their 

performance was compared to a Bayesian-based method. 

Experimental results show that the vertical edge detection 

method gave the best results, with an under reject rate of 0.75% 

and an over reject rate of 1.88%. The accuracy of the vertical 

edge detection method was 98.2%, which is higher than the 

accuracy of 89.9% for the Bayesian-based method, and 84.6% for 

the SVM-based method. 

 
Index Terms— optical inspection; solder jet ball joint defect; 

vertical edge detection; HDD manufacture 

 

I. INTRODUCTION 

he amount of digital information is believed to have 

grown rapidly during the last decades. It has been 

estimated that hard disk drives (HDDs) account for 52% 

of this information [1] and the HDD market is expected to 

grow further [2]. The HDD data storage density has increased 

dramatically while the physical HDD size has shrunk. A 

typical 2.5 inch form factor HDD is  69.85 mm wide, 100 mm 

deep, and 9.5 mm high [3].  

Product output is often increased to meet the demands of 

the HDD market. This is achieved by improving the automatic 

or semi-automated HDD production line for each sub-process. 

One of the semi-automated production lines builds the Head 

Gimbals Assembly (HGA) which is a key component of the 
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read/write part of a HDD. A HGA consists of a slider and a 

suspension mechanism. Mistakes that cause defects occur 

when solder jet bond (SJB) machines are used to assemble the 

slider and suspension mechanisms. Fig. 1 shows an example 

of a solder ball burning defect. 

 

Solder ball burns  at 

pad borders 

 
 
Fig. 1.  Example HGA solder ball burnt defect. 

 

In the HGA production line that was the subject of this 

study, the SJB machine first connects the suspension circuit to 

the slider body. Then, the HGA is placed on pallets and 

transferred via a conveyor belt to a Visual Inspection and 

OCR Reading (VOR) machine. Nine cameras take photos for 

defect analysis. First, two cameras on the left and right side 

take two on-the-fly shots. Next, the remaining seven cameras 

capturing various angles that are triggered simultaneously. 

The VOR employs COGNEX for automatic vision processing. 

HGA images are processed to detect HGA defects and the 

results are sent to the module controller. The inspection 

system is shown in Fig 2.  

The COGNEX typically results in a high false positive rate. 

Therefore, the many HGAs that are flagged as defect by 

COGNEX are therefore inspected manually using microscopes 

with 40x magnification. Manual inspection occasionally fails 

to detect defects. Inspectors may experience fatigue, the skill 

and experience of the inspectors vary, and it is challenging to 

control environmental factors such as lighting conditions. The 

motivation of this study was therefore to develop an 

automated visual inspection procedure to achieve higher 

reliability, faster fault detection and lower production costs. 
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Fig. 2.  HGA visual inspection system 

 

 

 This study focuses on the potential defects in the solder 

joint between the slider and the suspension mechanism caused 

by errors in the soldering process using the solder jet bounding 

(SJB) machine. Errors occur at the point where the solder balls 

and the melting pad area meet. Defect characteristics include 

uneven pad edges or black traces along pad borders.  

This paper is organized as follows; related work is 

described in Section II, the proposed support vector machine 

and vertical edge detection method is described in Section III, 

experimental results is provided in Section IV, and limitation 

of this study in Section V. Finally, Section VI concludes the 

paper. 

II. RELATED WORK 

A. Previous work 

There is a vast body of research into detecting 

semiconductor defects in general. Shankar et al. [24] described 

a vision-based system to detect defect on semiconductors. 

They applied subtractive correlation for matching reference 

images and test images. Morhphological operators were also 

used to identify defects. Their method successfully detected 

chip out, bridging, and scratched regions on semiconductor 

wafer surfaces. Zontak and Cohen [25] described a reference-

based method for wafer defect detection using anisotropic 

kernel reconstruction of the source image from the reference 

image. Tsai and Luo [26] used mean shift to detect human 

fingerprints and contaminations on multicrystalline solar 

wafers. Gray scale wafer images were converted into entropy 

images and then mean shift filtering was applied to remove 

noise and preserve the defective pixels in the filtered images. 

Yuan et al. [27] proposed a multistep semiconductor wafer 

defection procedure comprising defect denoising, defect 

clustering, pattern identification and finally fine-tuning. A 

more detailed description of related work on semiconductor 

inspection can  be found in Hung and Pan’s [23] recent 

survey. 

Comparatively, there are fewer documented studies on the 

specific problem of HGA jet bonding defect detection. 

Ieamsaard and Fuangpian [4] proposed a visual inspection 

system using morphology and template matching for solder 

ball bridging ball defect detection and solder ball incomplete 

defect detection and compared the results to those obtained 

using a chain-code descriptor-based method. The morphology 

and template matching method provided 99.0% accuracy for 

both solder ball bridging and solder ball incomplete defect 

detection, respectively. The chain-code descriptor-based 

method provided an accuracy of 88.4% for solder bridging 

detection and 85.6% for solder ball incomplete detection. K-

mean clustering was used for missing solder ball defect 

detection [4] to detect the contour of each pad. The complete 

contours forming loops were counted and finally classified. 

The method achieved a high accuracy of 99.6%. A Sobel-

based vertical edge detection approach was also proposed for 

solder ball burning defects detection [4]. However, the 

performance of the Sobel-based method depends on the 

quality of the test image as false detections are easily caused 

by reflections due to the illumination.  

Mak et al. [3] proposed a Bayesian approach to inspect 

solder jet balls in the HGA process, using Tree Augmented 

Naïve Bayes Network (TAN-BN) plus check classifier. The regions 

of interest and statistical features are used to describe the 

differences between good and bad solder balls. The Bayesian 

approach yielded an accuracy of 91.52% for classifying solder 

joints into the defect and non-defect groups.   

Kunakornvung et al. [19] detected the presence of 

contamination on the Air Bearing Surface (ABS) of the slider 

using texture characteristics. Fak-aim et al, [20] proposed a 

system to inspect the completeness of soldering joints in X-

Ray images of Flip-Chip components. They used a Genetic 

Algorithms (GA) to detect the edges of solder joints and 

compared their results with those obtained with the 

conventional Sobel and Canny edge detection methods. GAs 

provided the highest corrective percentage compared to Sobel 

and Canny. Withayachumnankul et al. [12] designed a filter 

kernel to detect hairline crack defect edges on the surface of 

hard disk amplified piezoelectric (PZT) actuators. The kernel 

filter detected lines at multiple angles. Chow et al.[21] 

presented a detection system for defects on HDD media 

surfaces using spectral imaging. They proposed thresholding 

and connecting-components labeling method and compared 

the results with results obtained using a mean-shift clustering 

method. The thresholding and connecting-components 

labeling was found to be a suitable method for media 

inspection. Gulphanich et al. [22] proposed a 3D object 

measurement and inspection system for measuring the hard 

drive dimensions (width and length) and for checking the 

tighten screw on the HDD assembly. HDD images were 

acquired using laser lighting sectioning, and these laser strip 

profiles were used to extract the object coordinates to 

determine the object size and screw defect. 

III. METHOD 

Two approaches to defect detection are proposed herein, the 

first uses based on a support vector machine to classify solder 

balls and the second uses vertical edge detection to identify 



critical features. The two methods are also compared to the 

Bayesian based method introduced by Mak et al. [3]. 

A. Bayesian based method 

In our adaptation of Mak et al.’s approach [3], the region of 

interest (ROI) containing the solder balls were segmented into 

45×420 pixel sub-images from the 2400×2000 pixel HGA top 

view image. Sub-images were binarized using Otsu’s method 

[5]. Each binary sub-image contained eight pads, and each of 

these pads were segmented into a 45×50 pixel area. The 

following statistical features were measured for each pad:  

1) Size; the area of the detected object in the pad area. 

2) Length; the perimeter of detected objects. 

3) Shape; length squared divided by area. 

4) Aspect ratio; the ratio of height of objects detected in the 

pad area; (height / width) × 100 

5) Relative size; the ratio of bounded area. (height × width)/ 

(45×50) ×100. 

6) Area ratio; the ratio of area of objects. (Size)/ (45×50) 

×100. 

7) Elements; the number of objects detected within the pad 

area. 

Fig 3 shows example features for both a burnt pad and non-

defective pads. The features were used as classifiers in the 

Bayesian classification process. 

 
Elements 

Size Length Shape 
Aspect  
Ratio 

Area 
Ratio 

Relative 
Size 

 

1 1366 149.9 16.5 67.8 60.7 81.4 Non-defective 

1 1330 148.5 16.6 66.1 59.1 79.5 Non-defective 

1 1333 147.0 16.2 68.2 59.2 79.2 Non-defective 

1 1335 147.6 16.3 66.6 59.3 79.4 Non-defective 

1 1320 148.0 16.6 65.8 58.7 78.6 Non-defective 

1 1343 147.9 16.3 67.2 59.7 80.0 Non-defective 

1 1342 148.0 16.3 66.9 59.6 80.0 Non-defective 

1 1487 176.0 20.8 77.4 66.1 100.4 Burnt pad 

Fig. 3 Example non-defective and burnt pad features. 

Bayesian classifiers can be used when the predictors of each 

class are independent. Data is classified using training data by 

estimating the parameters of a probability distribution 

assuming predictors for the class are conditionally 

independent. The posterior probability is computed for any 

unseen test data that belong to each class. The class that has 

the highest probability is declared the ‘winner’ and is assigned 

the class label for that combination of evidence. The posterior 

probability distribution of )|( yYXP =  is given by Bayes’ 

rule 
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Where )|( XyYP =  is the likelihood that the probability of 

predictor given class, )(XP  is the prior probability of the 

class, and )( yYP =  is the prior probability of the predictor. A 

Bayesian classifier with a Kernel distribution was applied to 

the classification of solder joints as non-defective or defective.  

A total of 94 burnt pads and 800 non-defective pads were 

collected to find the close-to-optimal number of training 

samples. The training size was set according to the condition 

% 1  e 1 =
 
where 

 
is the number of training samples and 

1e is the under reject rate.  In order to determine the optimal 

training parameters the number of burnt pads were varied from 

10 to 94 (in steps of 10), while the number of non-defective 

pads were varied from 30 to 800 in increasing steps of 20, 30 

and 100. For each configuration the Bayesian-based method 

was executed and the over and under reject rates were 

recorded.  

The under reject was less than 1% with 50 to 100 non-

defective pads and 66 to 94 defective pads. Fig. 10 shows the 

result of setting the number of defective pads to 70%, 80%, 

90% and 100% with 100 non-defective pads, while Fig. 11 

shows that the under reject rate was less than 1% with 50-100 

non-defective pads in the training set. Fig. 12 shows that the 

accuracy and precision are low when the under reject rate is 

less than 1%. Based on these observations a training set with 

66 burnt pads and 800 non-defective pads was used in the 

experiments as these parameters provide the highest accuracy. 

 
Fig 10. The over reject rates and under reject rates for different defective pad 

training set sizes. 

 

 
Fig 11. The over reject rates and under reject rates for different non-defective 

pad training set sizes. 

0

10

20

30

40

50

10 30 50 70 90

P
e
r
c
e
n

t 
E

r
r
o

r

Over reject

Under reject

Percent of burnt pad train

0

10

20

30

40

50

60

70

80

90

100

30 50 80 100 200 300 400 500 600 700 800

P
e
r
c
e
n

t 
E

r
r
o

r
s

under reject at 70%

under reject at 80%

under reject at 90%

under reject at 100%

over reject at 70%

over reject at 80%

over reject at 90%

over reject at 100%

number of non-defective pad train

under reject

< 1%



 

 
Fig 12. Precision and accuracy for different non-defective pad training set 

sizes. 

 

B. Support vector machine based method 

Support vector machines are supervised learning models 

that are commonly used for classification tasks [15-17]. SVMs 

are capable of performing both linear and effective non-linear 

classification using the kernel trick in high dimensional space. 

This study set out to explore the suitability of support vector 

machines for classifying defect versus non-defect pads.  

After the ROI was segmented the region-based and 

statistical features were extracted including size, length, shape, 

aspect ratio, relative size, area ratio, and the number of objects 

detected in the pad area. The SVM uses these features to 

classify pads as non-defective or defective. Given a set of 

training samples, the SVM training algorithm builds a model 

that assigns new examples into one of the two categories. A 

radial basis function (RBF) kernel was used as it yields a high 

performance in term of accuracy compared to others kernels. 

The RBF kernel is defined as [15] 

 

 

 

where ix  and jx  are samples, and 0 is a constant that 

defines the kernel width. The optimal kernel function 

parameter   was found experimentally to be 0.4. 

In order to determine the optimal training parameters the 

number of burnt pads were varied from 10 to 94 (in steps of 

10), while the number of non-defective pads were varied from 

30 to 800 in increasing steps of 20, 30 and 100. For each 

configuration the Support Vector Machine-based method was 

executed and the over and under reject rates were recorded.  

The under reject was less than 1% with 30 to 200 non-

defective pads and 18 or more defective pads. Fig. 13 shows 

the effects of varying the number of defective with 100 non-

defective pads. The lowest under reject rate of 0.37% was 

achieved with 90% of the 94 defective pads in the training set. 

The over reject rate was low when the non-defective training 

set size was large. The precision and accuracy were low when 

the under reject rate was less than 1% as show in Fig 14. The 

precision and accuracy were greater than 80% when the over 

reject rate was about 4% and the under reject rate was about 

16%. Consequently, a training set with 85 burnt pads and 800 

non-defective pads were chosen for the training set in this 

experiment since these parameters provide the highest 

accuracy.  

 

 
Fig 13. The over reject rates and under reject rates for 

different defective pad training set sizes. 

. 

 
Fig 14. The over reject rate, under reject rate, precision, and 

accuracy for non-defective pad training set sizes. 

 

C. Vertical edge detection based method 

Burnt pads are characterized by uneven pad edges, or black 

limbs around the border, whereas non-defective pads have 

smooth borders. The difference between a non-defective pad 

and a defective pad is clearly visible from the vertical edge. 

Hence, the proposed method uses vertical edge detection. The 

overall algorithm is shown in Fig. 4. 

 
Input: Original HGA Image 

1. Pre-Processing 

 Segment ROI from Original HGA Image using cross correlation 
 Make binary sub-image using Otsu’s method. 
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2. Detect reflection 

    Use circular Hough transform to detect reflection area. 

3. Vertical edge analyze 

    Apply the VEDA to detect vertical edge. 

    Remove vertical edge due to reflection. 

4. Calculate pad area  

    Calculate area of each pad in the binary sub-image 

5.  Make decision 

 If  (summation of edge pixels > decision value 
           pad area > area threshold) 

       Result = defect found. 

 Else 

  Result = non-defective. 

 End If 

Fig. 4. The proposed method 

 

The algorithm begins with ROI segmentation; the solder 

joint region of interest is extracted by cross correlation [6], 

[7]. The 2400×2000 pixel HGA images are correlated with the 

45×420 pixel template image. A reference point is thus found 

where the correspondence between the input image and the 

template image is the highest. Using the reference point, the 

region of interest is extracted as a sub image of size 45 × 420 

pixels. Next, the solder sub image is binarized using Otsu’s 

method [5]. The threshold is selected such that the reparability 

of the gray level classes is maximized. The procedure utilizes 

only the zeroth and the first order cumulative moments of the 

gray level histogram. Otsu’s method exhaustively searches for 

the threshold that minimizes the within-class variance, defined 

as a weighted sum of variances, 

 

 (2) 

 

Here, i  are the probabilities of the two classes separated 

by a threshold t and variances 2
i  of the classes.  

The pads contain white circles caused by light reflections. 

These reflections cause unwanted vertical edges on the pads in 

the subsequent edge detection step, and should be removed to 

increase solder defect detection accuracy. The reflections are 

detected using the circular Hough transform [8] where a cricle 

is represented using: 

 (3) 

 

Here a and b is the circle center coordinate and r is the 

circle radius. The parametric representation of this circle is:  

 

 (4) 

 (5) 

 

If the angle θ is swept through a full 360 degree rotation, 

the points (x, y) trace the circle perimeter. If an image contains 

points that fall on circle perimeters, the task is to find 

parameter triplets (a, b, R) to describe each circle. The locus 

of (a, b) points in the parameter space fall on a circle of radius 

R centered at (x, y). The true center point will be common to 

all parameter circles, and is found using a Hough 

accumulation array [8]-[11]. 

Al-Ghaili et al. [13]-[14] proposed a vertical edge detection 

algorithm (VEDA) for license plate detection. Their results 

showed that VEDA has very high accuracy and is about nine 

times faster than the Sobel operator. It was therefore used in 

this study to detect vertical edges of burnt pad defects. VEDA 

concentrates on intersections of black–white and white–black 

pixels, by moving a 2x4 mask from left to right and from right 

to left, as described in Fig. 5.  

 
Input: Binary Image 

Create a white blank image as Image(i,j); 

For  every pixel in Binary Image 

    center=True; left=True; right=True; 

 If  (all center mask values are black) 

     center=False; 

 End If 
 If  (all right mask values are black) 

     right=False; 

 End If 

 If  (all left mask values are black) 

     left=False; 

 End If 
 If  (!center AND !right AND !left) 

 Image(i,j)=white; 

 Image(i,j+1)=black;  

End If 

End For  

 Fig. 5. VEDA 
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Fig. 6.  A 2x4 window mask. 

 

This process locates the black–white and white-black 

regions, and the 2x4 mask ensures that one- and two-pixel 

thick edges of each pad are detected. VEDA is about nine 

times faster than Sobel [15]-[16]. An example of applying 

VEDA is shown in Fig 7. The image is rotated for presentation 

purposes. 

 

 
                                                 (a) 

 
                                                  (b) 

 
                                                  (c) 

 
Fig 7. VEDA example: (a) RGB sub-image with red circle of reflection 
detected, (b) binary sub-image, (c) vertical edge of burnt pad 

 

In order to reduce errors, the vertical edge caused by 

reflections within the pad is removed by checking for white 

pixels. If white pixels occur in the area of reflection, the pixels 
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are set to black. 

 

 (6) 

 

 

Yammen and Muneesawang used an area-based feature to 

identify corrosion on the pole tip on the HGA actuator 

component [6]. In this work, a similar area-based feature was 

applied to detect burnt pads whose burn area covers the entire 

pad from bottom to top, but has no vertical burnt pad edges. If 

the pad area is greater than a threshold T a defect is found. The 

pad area threshold is obtained from: 

 

 (7) 

 

 

The 80/100 ratio is the percent of solder area covered on a 

pad. An experiment was conducted to obtain the optimal ratio 

that minimizes the sum of error percentages as shown in Fig. 

8. 

 

 
Fig 8. Finding the optimal ratio for the threshold T. 

 

Finally, the algorithm decides whether a defect has been 

found or not. To make a decision, a vertical edge value (VE) is 

found by counting the black pixels in the pad image resulting 

from the previous steps. If VE is greater than a vertical edge 

threshold (VT) or the pad area is greater than the pad’s 

threshold, a defect is found; otherwise no defect is detected.  

The edge threshold (VT) was obtained experimentally. A 

threshold of 4 minimized the sum of error percentages as 

shown in Fig. 9. 

 

 
Fig 9. Edge threshold selection. 

 

The output image of the vertical edge detection based 

method are shown in Fig 10, where indices Fig 10 a) – e) 

represent non-defective test images and indices Fig 10 f) – j)  

represent defective test images. The image are rotated for 

presentation purposes. 

 

 

(a) 

 

Non-defect 

(b) 

 

Non-defect 

(c) 

 

Non-defect 

(d) 

 

Non-defect 

(e) 

 

Non-defect 

(f) 

 

Defect 

(g) 

 

Defect 

(h) 

 

Defect 

(i) 

 

Defect 

(j) 

 

Defect 

Fig 10. Output image for the proposed method (a) – (e) non-

defective test image, (f) – (j) Defective test image 

IV. EXPERIMENTAL RESULTS  

The Bayesian-based method, the SVM-based method and 
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the vertical edge-based method were compared in the 

experiments. The test comprised 5,000 non-defective HGA 

images and 530 defective HGA images. The 2400 2000 pixel 

RGB images, with a resolution of 96 dpi were acquired using 

a mechanical camera positioning tool. A HGA was classified 

as defective if at least one of its eight pad edges was not 

smooth or its border had a black limb. 

False detection is a key issue in the HDD industry and the 

methods were compared using the over reject rate and under 

reject rate. The over reject rate is the proportion of false 

detection of non-defective samples. The under reject rate is the 

portion of defective samples that goes undetected. In addition, 

the performance evaluation measurements, sensitivity, 

specification, precision, and accuracy were measured.  

The training set that achieved the highest accuracy was 

chosen for Bayesian and SVM-based methods, namely 70% of 

the 94 burnt pads and 800 non-defective pads for Bayesian-

based method, and 90% of the 94 burnt pads and 800 non-

defective pads for SVM-based method.  

The three methods were tested using the 5,000 non-

defective and 530 defective HGA images in terms of over 

reject rates and under reject rates. The proposed vertical edge-

based method yielded both the lowest over reject rate and the 

lowest under reject rate of 1.88% and 0.75%, respectively. The 

performance of the three method were compared using 

sensitivity (true positive rate), specificity (true negative rate), 

precision, and accuracy [18]. The proposed method achieved 

an accuracy of 98.2% while the Bayesian and SVM-based 

methods achieved accuracies of just 89.9% and 84.6%, 

respectively. The proposed vertical edge method also achieved 

high sensitivity, specificity and precision with 98.1%, 99.3%, 

and 99.9%, respectively, while, the Bayesian-based method 

achieved a sensitivity of 89.9%, specificity of 90.0%, and 

precision of 90.4 %. The SVM-based achieved an accuracy of 

83.4%, a specification of 96.0%, and a 89.1% precision. 

 
TABLE II 

OVER REJECT RATES, UNDER REJECT RATES AND PERFORMANCE 

MEASUREMENTS 

 

  Bayesian SVM Our method 

Over Reject              

non-defective:  

5,000 images 
505 10.10% 830 16.6% 94 1.88% 

Under Reject              

defective : 530 

images 
53 10.00% 21 3.96% 4 0.75% 

Performance 

Evaluation 
            

Sensitivity (true 

positive rate) 
89.9 % 83.4 % 98.1 % 

Specificity (true 
negative rate) 

90.0 % 96.0 % 99.3 % 

Precision 90.4 % 89.1 % 99.9 % 

Accuracy 89.9 % 84.6 % 98.2 % 

V. LIMITATIONS OF THIS STUDY 

The experiments are based on test images stored in the jpeg 

format that relies on lossy compression and some vital image 

details might therefore have been lost. Some false detections 

were caused by the quality of the test image. The Bayesian-

based method and the SVM-based method were particularly 

vulnerable since they use the shape feature to classify non-

defective pads and burnt pads. Some non-defective pads were 

mistaken as small burnt pad shapes as their feature parameters 

are almost the same. However, the inspection system in 

production uses raw image and the real-world performance is 

therefore likely to be better than what was achieved in this 

study. 

 

VI. CONCLUSION 

A vertical edge detection method and a support vector 

machine-based method were proposed for the detection of 

HGA solder joints with ball or pad burns. Experimental results 

confirm the effectiveness of the vertical edge detection 

method, which outperforms both the Bayesian-based method 

and the SVM-based method.  

The under reject rate is a key concern in HGA production 

lines and must according to the manufacturers be below 1%. 

The proposed method achieves a reject rate of 0.75%. Under 

reject rates of less than 1% were also achieved with the 

Bayesian and SVM based methods where the precision and 

accuracy decreased as a function of increasing over reject 

rates. Clearly, the performance of the Bayesian and SVM-

based methods are sensitive to the training set.  
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