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Abstract

Many real-life dynamical systems experience abrupt changes followed by almost station-
ary periods. In this paper, we consider streams of data exhibiting such abrupt behavior and
investigate the problem of tracking their statistical properties in an online manner.

We devise a tracking procedure where an estimator that is suitable for a stationary
environment is combined together with an estimator suitable for a dynamic environment.
The current estimate is based on the stationary estimator unless a statistically significant
difference is observed between both estimators. The stationary estimate is deemed off track
and a large update (jump) is given to get the stationary estimate back on track.

We use the Stochastic Learning Weak Estimator (SLWE) as the dynamic estimator.
The SLWE is known to be the state-of-the art solution to tracking the properties of non-
stationary environments, due to its multiplicative update form. Therefore, the SLWE is a
better choice to accompany a stationary estimator than the far more common sliding window
based approach.

A theoretically well founded statistical testing procedure is developed to detect a signif-
icant difference between the stationary and dynamical estimators. Although our procedure
bears similarities to the event detection procedure suggested by Ross et al. (2012) [38], it is
rather well founded theoretically. First, Ross et al. ignore the uncertainty in the stationary
estimator in the detection procedure. Second, the detection threshold is determined based
on heuristics and therefore lacks a solid statistical foundation.

Extensive simulation results, based on both synthetic and real-life data related to news
topic classification, demonstrate that our estimation procedure is easy to tune and outper-
forms legacy works.

1 Introduction

The Maximum Likelihood Estimates (MLE) as well as the Bayesian estimation families operate
with the premise that the distribution of the data being estimated is stationary over time.
Under such settings, the convergence to the true value of the parameter being estimated takes
place with probability 1 when the number of samples tends to infinity. However, in many
real-life applications, the assumption on the stationarity of the data does not hold and the
true underlying parameter being estimated changes over time. The Stochastic Learning Weak
Estimators (SLWE) are known to be the state-of-the-art approach for such an estimation problem
[32, 50]. The SLWE enjoys a multiplicative update form that makes it superior to the state-of-
the-art estimation approaches which are mainly of additive flavor. However, the right choice of
the intrinsic parameter of the SLWE, λ, is still an open issue. The latter parameter controls
the forgetting of old data and controls the ability of the scheme to adapt to changes in the
environments. If the system changes rapidly the parameter should be chosen to rapidly forget
the old stale data. On the other hand, if the environment is stabilizing, the rate of forgetting
should decrease.

The SLWE has found numerous successful applications in the literature. Applications of the
SLWE include adaptive classifiers for spam filtering [50], adaptive file encoding with nonstation-
ary distributions [40], intrusion detection in computer networks [44], tracking shifts of languages
in online discussions [43], learning user preferences under concept-shift [31, 47], fault-tolerant
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routing in Ad-hoc networks [30], digital content forensics for detecting illicit images [14], detec-
tion and tracking of malicious nodes in both Ad-hoc networks [34], vehicular mobile WiMAX
networks [27], and optimizing firewall matching time via dynamic rule ordering [28]– to mention
a few.

In many of such practical problems the dynamical system changes abruptly followed by
periods where the system is almost stationary. Unfortunately, moving average estimators and
SLWE are not well suited for such cases. By choosing a small moving average window or a
high value of λ, the estimators will rapidly adjust after an abrupt change, but on the other
hand, it will result in a higher estimation uncertainty when the system stabilizes. By choosing a
large moving average window or a low value of λ, the estimation uncertainty will be low in the
stationary parts, but on the other hand, the estimation procedures will suffer from adjusting
too slowly after an abrupt change.

In this paper, we suggest a computationally efficient procedure to track statistical properties
of environments that contain both abrupt changes and stationary parts. The procedure is based
on running an estimator that is suitable for the stationary parts and an SLWE estimator that
efficiently tracks changes in the data stream. In each iteration a novel and lightweight hypoth-
esis testing mechanisms is performed to look for significant differences between the stationary
and dynamic estimators. The current estimate is based on the stationary estimate except if a
significant difference is detected, in which case the current estimate jumps to a new and more
suitable value based on the current dynamic estimate. The suggested approach has similarities
to the Exponentially Weighted Moving Average Control Scheme (EWMACS) [25] and Ross et
al. [38] suggest to use the EWMACS for event detection. However, compared to our suggested
approach, the approach by Ross et al. [38] has some clear weaknesses. First, the detection
procedure is unreliable since its does not accommodate the uncertainty in the estimate of the
mean value by the sample mean. As the uncertainty of the sample mean decreases with time,
the detection threshold should be reduced with time. Thus the procedure will detect events too
often (rare) for small (large) sample sizes. Second, the detection threshold is computed based
on some heuristics that can not be related to a statistical significance quantity. Therefore, it is
difficult to determine a suitable value for the detection threshold. Finally please note that the
focus in [38] is different from ours. [38] focuses on detecting concept drift in a supervised learn-
ing setting (change in the relations between features and response) while our focus is tracking
statistical properties of data streams. We present the estimation procedure for the binomial and
multinomial distributions, but can be applied to other distributions as well.

The article is organized as follows. In Section 2 we review the related research. In order to
make the article self-contained, a brief description of the SLWE estimator is given in Section
3. Section 4 gives the details of our approach. In Section 5 we extend the scheme to the
multinomial case. In Section 6 we perform thorough evaluation of the algorithms and draw
some final conclusions in Section 7.

2 Related Work and State-of-the-Art

In this Section we review the related work. First, in Section 2.1 we will review legacy scheme for
estimation under non-stationary environment. Then, in Section 2.2 we will review the different
approaches for controlling the parameters of estimators operating in non-stationary environ-
ments. Finally, in Section 2.3 we review tracking algorithms suitable for environments that
contain both abrupt changes and stationary parts.

2.1 Estimation in Non-Stationary Environments

Probably, the most classical and utilized method for dealing with non-stationary estimation
problems is the sliding window approach which can be seen as a short memory version of the
MLE. According to the sliding window approach, the last samples that fit in the window are
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used to compute the estimates online. Nevertheless, the sliding window method suffers from a
tuning problem. In fact, if the size of the window is chosen too large, then the quality of the
estimates will be deteriorated by stale data values, while choosing a too small window size would
rather lead to poor estimates with low confidence.

A myriad of works have been proposed to address detecting change points. Those methods
fall under two main families: Page’s cumulative sum (CUSUM) [2] detection procedure, and
the Shiryaev-Roberts-Pollak detection procedure. In [42], Shiryayev resorted to a Bayesian
formulation in which the change point is assumed to have a geometric prior distribution. CUSUM
uses the idea of maximum likelihood ratio test hypothesis to discern change points. However, a
downside of these two approaches is their computational complexity which renders the SLWE
as well as the estimator in this paper lightweight alternatives.

When it comes to extensions of the sliding window, Koychev et al. proposed a new paradigm
called Gradual Forgetting (GF) [19, 21, 22]. According to the principles of GF, observations in
the same window are treated unequally when computing the estimates based on weight assign-
ment. Recent observations receive more weights than distant ones. Different forgetting functions
were proposed ranging from linear [20] to exponential [18].

In [32], Oommen and Rueda presented the SLWE to estimate the underlying parameters
of time varying binomial/multinomial distribution. The update form of the SLWE is inspired
from the theory of variable structure Learning Automata [29], and more particularly, its reward-
inaction flavor. The most appealing properties of the SLWE which makes it the state-of-the-art
is its multiplicative form of updates. Two different counter-parts of SLWE [32] for discretized
spaces was recently proposed in [49] and [48]. In a similar manner to the SLWE, the latter
solution also suffers from the problem of tuning the resolution parameter.

2.2 Estimation using Adjustable parameters

In this Section, we survey some of the most pertinent techniques for estimation in dynamic
environments that are orthogonal to the SLWE. For a thorough survey we refer the reader
to the surveys [10, 23] which provide a comprehensive taxonomy of estimation methods in
non-stationary environments, namely, adaptive windowing, aging factors, instance selection and
instance weighting.

Gama et al. [10] presents a clear distinction between memory management and forgetting
mechanisms. Adaptive windowing [46] works with the premise of growing the size the sliding
window indefinitely until a change is detected via a change detection technique. In this situation,
the size of the window is reset whenever a changed is detected.

Another interesting family of approaches assume that the true value of the parameter being
estimated is revealed after some delay, which enables quantifying the error of the estimator.
In such settings, some research [45] have used ensemble methods where the output of different
estimators is combined using weighted majority voting. The weights of each estimator is adjusted
based on its error. In this sense, estimation methods that produce high error see their weight
decrease.

In the same perspective, the estimated error can be used for re-initializing the estimation
as performed in [38]. In all brevity, changes are detected based on comparing sections of data,
using statistical analysis to detect distributional changes, i.e., abrupt or gradual changes in the
mean of the data points when compared with a baseline mean with a random noise component.
One option is also to keep a reference window and compare recent windows with the reference
window to detect changes [8]. This can, for example, be done based on comparing the probability
distributions of the reference window and the recent window using Kullback-Leibler divergence
[6, 41].
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2.3 Estimation in Environments With Both Stationary Parts and Abrupt
Changes

As described above there are several algorithms to track statistical properties of dynamically
varying environments and to detect changes. However, procedures specifically constructed to
track statistical properties of environments with both stationary parts and abrupt changes are
very sparse. A prominent exception is the ADWIN2 procedure [5]. ADWIN2 keeps a variable-
length window of recently seen items, with the property that the window has the maximal length
statistically consistent with the hypothesis there has been no change in the average value inside
the window. More precisely, an older fragment of the window is dropped if and only if there is
enough evidence that its average value differs from that of the rest of the window. This makes
the procedure suitable for tracking statistical properties of environments with both stationary
parts and abrupt changes.

Another common approach is to combine a tracking procedures, as described in Sections
2.1 and 2.2 with a change detection procedure. When a change is detected, the memory is
flashed and the tracking restarts [17]. A representative set of approaches that fall under the
latter category include [39, 37, 36, 11, 12, 13]. For instance, in [39], Ross et al. addressed the
problem of change detection of Bernoulli random variables using the Fishers Exact Test (FET).
The assumption is that the pre-change value of the Bernoulli parameter is unknown in advance.
Hawkins and his collaborators used the Student-t, Bartlett and Generalized Likelihood Ratio
(GLR) methods for detecting changes in mean and variance in a sequence of Gaussian random
variables in a series of works [11, 12, 13]. The Mann-Whitney and Lepage test statistics are used
in [37] with no assumptions made about the distribution of the observations.

3 Stochastic Learning Weak Estimator

Let X1, X2, X3, . . . represent a stream of independent and identically distributed Bernoulli
stochastic variables with parameter p. That is

P (Xn = 0) = 1− p
P (Xn = 1) = p

(1)

for n = 1, 2, 3, . . ..
We now want to estimate the parameter p from the stream of Bernoulli variables. Using the

weak estimator, the estimate of p is updated by the following recursion

p̂1 = X1

p̂n = λnp̂n−1 if Xn = 0

p̂n = 1− λn(1− p̂n−1) if Xn = 1

(2)

where p̂n represents the estimate of p after the arrival of Xn and λn, n = 1, 2, . . . are constants
between zero and one. The intuition is that if Xn = 0 we should reduce our current estimate of
p (the probability of one) which is achieved by multiplying the current estimate of p by λn. On
the other hand, if Xn = 1 we should reduce the estimate of 1− p (the probability of zero) which
gives

1− p̂n = λn(1− p̂n−1)
p̂n = 1− λn(1− p̂n−1)

which is equal to the last equation in (2).
The recursions in (2) can be written as follows

p̂n = Xn(1− λn(1− p̂n−1)) + (1−Xn)λnp̂n−1, n = 1, 2, . . .
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with λ1 = 0. Using straight forward calculations this simplifies to

p̂n = λnp̂n−1 + (1− λn)Xn (3)

which can be recognized as the exponentially weighted moving average.
We can prove by induction that p̂n is an unbiased estimator for p for every n as follows

E(p̂1) = E(X1) = p (recall λ1 is set to 0)

E(p̂n) = E(λnp̂n−1 + (1− λn)Xn)

= λnp+ (1− λn)p

= p

The variance depends on the choice of the λ’s. We look at two special cases.
λ constant : It can be proved that if we set all λn = λ, the limiting variance is given by [50]

lim
n→∞

Var (p̂n) =
1− λ
1 + λ

p(1− p)

An advantage of the constant λ approach is that if the value of p is changing with time in the
underlying Bernoulli data stream, the estimator will rapidly adjust to these changes [50]. A
disadvantage is that if p is not changing, the variance of the estimator will have a lower limit
and never reaches zero.

Sample mean: The sample mean is the maximum likelihood estimator of p and is the natural
estimator to use if p is not changing with time. Let p̄n−1 denote the sample mean of the first
n− 1 Bernoulli variables from the stream

p̄n−1 =
1

n− 1

n−1∑
i=1

Xi

When Xn arrives, the sample mean can be updated as follows

p̄n =
n− 1

n
p̄n−1 +

1

n
Xn (4)

which is equivalent to (3) with λn = (n − 1)/n. This means that the sample mean is a special
case of the general recursion in (3). It is well known that limn→∞Var (p̄n) = 0. A disadvantage
of the sample mean is that if p is changing with time, the sample mean will become very slow
at adjusting to these changes. On the other hand if p is not changing, the sample mean is the
optimal estimator in the sense that no other unbiased estimators can achieve less variance.

4 Estimation in a shifting environment

Suppose a situation where p is switching between different values with time. An example could
be a news stream where the topic of the news stream suddenly changes due to different real life
events. Another example could be a machine operated by different employees at different time
periods each with its own error rate characterized by p. We assume that the instants in which
p switches values are unknown.

For such systems a possible strategy would be to use the sample mean whenever the p is not
changing, and a mechanism to “jump” fast towards a new estimate if the value of p has changed.
In this paper we suggest a method that combines the sample mean and a weak estimator with
constant λ. Let p̂λn and p̄n denote the weak estimator with constant λ and the sample mean,
respectively, after the arrival of Xn. If p switches value, p̂λn will rapidly adjust to the new value
of p, while minor changes will appear to p̄n. This can be used to build an efficient method to
detect changes in p and “jump” to the new value of p.
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Ross et al. [38] suggest a detection procedure based on the EWMACS [25]. However, the
procedure has some clear weaknesses compared to the approach suggested in this paper. First,
[38] focuses only on the uncertainty in p̂λn and thus completely ignores the uncertainty in p̄n
making the procedure unreliable. For example, since the uncertainty of p̄n decreases with n, the
threshold should be reduced with time and is not taken into account in [38]. Thus the procedure
will detect events too often for small values of n compared to for larger values of n. Secondly, the
detection procedure is not within a statistical framework, making it difficult to find a suitable
detection threshold value since it cannot be connected to a statistical significance value. Finally
please note that the focus in [38] is different from ours. [38] focuses on detecting concept drift
in a supervised learning setting (change in the relations between features and response) while
our focus is on tracking statistical properties of the data stream.

In this paper we will build a novel detection procedure based on analyzing the distribution
of the difference between the estimators, namely p̂λn − p̄n. Developing a statistical test based
on the difference p̂λn − p̄n is an example of the pivotal quantity method and probably is the
most common method to develop statistical tests [4]. The method gives good control over the
uncertainty in the testing procedure. If p switches value we expect that p̂λn − p̄n will be large in
absolute value and larger then what we would expect if p remains constant. This can be used
to build a statistical test if p has changed value or not. Bifet et al. [5] build tests in a similar
manner in ADWIN2 based on comparing windows of observations, but the mathematics and
statistical analyzes will be slightly more involved for the SLWE case as considered in this paper.

We start by presenting the expectation and variance of the difference p̂λn − p̄n.

Theorem 1. Let X1, X2, X3, . . . represent a stream of independent and identically distributed
Bernoulli stochastic variables with parameter p. Further let p̂λn and p̄n denote the weak estimator
with constant λ and the sample mean, respectively, after the arrival of Xn. Then

E
(
p̂λn − p̄n

)
= 0 (5)

Var
(
p̂λn − p̄n

)
= p(1− p)

((
1

n
− λn−1

)2

+
n∑
i=2

(
1

n
− (1− λ)λn−i

)2
)

(6)

Proof. We start by computing through the recursions in (3)

p̂1 = X1

p̂2 = λ2p̂1 + (1− λ2)X2

= λ2X1 + (1− λ2)X2

p̂3 = λ3p̂2 + (1− λ3)X3

= λ3[λ2X1 + (1− λ2)X2] + (1− λ3)X3

= λ3λ2X1 + λ3(1− λ2)X2 + (1− λ3)X3

...
...

p̂n =
n∑
i=1

Xi(1− λi)
n∏

j=i+1

λj , with λ1 = 0

Setting λn = λ (and still λ1 = 0) we get

p̂n = X1λ
n−1 +

n∑
i=2

Xi(1− λ)λn−i

and setting λn = (n− 1)/n we get the sample mean p̂n = 1
n

∑n
i=1Xi.

6



Now we are ready to compute the expectation and variance

E(p̂λn − p̄n) = E

(
1

n

n∑
i=1

Xi −X1λ
n−1 −

n∑
i=2

Xi(1− λ)λn−i

)

=
1

n

n∑
i=1

p− pλn−1 − p
n∑
i=2

(1− λ)λn−i =

= p− pλn−1 − p(1− λ)
n−2∑
i=0

λi

= p− pλn−1 − p(1− λ)
1− λn−1

1− λ
= 0

Var(p̂λn − p̄n) = Var

(
1

n

n∑
i=1

Xi −X1λ
n−1 −

n∑
i=2

Xi(1− λ)λn−i

)
=

= Var

((
1

n
− λn−1

)
X1 +

n∑
i=2

(
1

n
− (1− λ)λn−i

)
Xi

)

= p(1− p)

((
1

n
− λn−1

)2

+

n∑
i=2

(
1

n
− (1− λ)λn−i

)2
)

Please note that Var(p̂λn − p̄n) can be computed recursively such that all variances up to n
can be computed in O(n) time. The actual recursions are not shown, but are straightforward
to compute from (6). Another appealing property is that the variance does not depend on the
stream of observations and can be computed before the data streaming starts. This lays the
foundations for building very efficient algorithms.

Theorem 1 stated the expectation and variance of the distribution of p̂λn − p̄n. Next we
investigate other properties the distribution. From the proof we saw that p̂λn − p̄n could be
written as follows

p̂λn − p̄n =

(
1

n
− λn−1

)
X1 +

n∑
i=2

(
1

n
− (1− λ)λn−i

)
Xi

which is a weighted sum of the independent Bernoulli variables. If the sum satisfies the Lindeberg
criterion (and thus the Lyapunov criterion), the sum will, according to the central limit Theorem,
converge to a normal distribution [16]. Unfortunately the sum does not satisfy this criterion
(proofs omitted). A second option is to study the distribution of p̂λn−p̄n by stochastic simulation.
We perform the following experiment. We generated n = 50 independent outcomes from the
Bernoulli distribution and computed p̂λ50−p̄50 using λ = 0.95. Further we repeated this procedure
N = 10 000 times. The upper left panel in Figure 1 shows the histogram of these values when
p = 0.1. The black curve is the normal distribution with expectation and variance as given by
Theorem 1. The upper right panel shows the same, but with n = 1000. The second and the
third row shows the same but with p = 0.3 and p = 0.5. Overall we see that the distribution of
p̂λn − p̄n is almost identical to a normal distribution. We only observe that when p is small (or
high) the distribution is a little asymmetric compared to a normal distribution. Based on these
observations it is a reliable choice to build a test assuming that p̂λn− p̄n is normally distributed.
We then get the following test.

Theorem 2. Let X1, X2, X3, . . . represent a stream of independent and identically distributed
Bernoulli stochastic variables with parameter p. Further let zα denote the α quantile of the
standard normal distribution. Define the hypotheses
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Figure 1: The distribution of p̂λn − p̄n and the normal distribution with the same expectation
and variance (black curve).
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H0: The underlying p has not changed value

H1: The underlying p has changed value

Suppose that we decide to reject H0 if

|p̂λn − p̄n|√
Var(p̂λn − p̄n)

> zα/2 (7)

Then the probability of rejecting H0 if H0 is true is approximately α and the rejection rule (7)
controls the type I error.

Proof. Let N(µ, σ) denote a normal distribution with expectation µ and standard deviation σ.
From the discussion above and Figure 1 we know that

p̂λn − p̄n√
Var(p̂λn − p̄n)

≈ N(0, 1)

which means that

P (Type I error) = P (reject H0 |H0 true) =

= P

(
|p̂λn − p̄n|√

Var(p̂λn − p̄n)
> zα/2

)
≈ α

From Theorem 1 we see that Var(p̂λn − p̄n) depends on p which of course is unknown. To
perform the test above, a natural choice is to substitute p with the sample mean p̄n since this is
our best estimate of p under the hypothesis that p is constant.

The basic idea of our method is to estimate p using the sample mean, but perform occasional
jumps if the test in Theorem 2 brings evidence that p has switched value. In the next section
we discuss different alternatives to perform the jumps.

4.1 Performing a jump

Let p̃n denote the estimate using the sample mean with jumps method after the arrival of Xn.
Further let λ̃n denote the value used for λn in the recursions in (3) to compute p̃n. Assume
now that the test in Theorem 2 brings evidence that p has switched value which means that the
current estimate p̃n is not reliable (since it is based on the sample mean). Therefore we need to
adjust the estimate p̃n (jump). Two options seem natural to perform the jump.

• Forget the whole estimation history and set p̃n = Xn

• Assume that the current estimate based on the weak estimator with constant λ, p̂λn, is
reliable since it adjusts fast and set p̃n = p̂λn.

A third option could be to set p̃n equal to some weighting between these two alternatives.
To continue the update of the estimator p̃n after the jump, we need to decide a new value

for λ̃n as well. There are at least two natural alternatives

• Recall that with λn = (n− 1)/n in (3), we get the sample mean. If we decide to follow the
first option above and set p̃n = Xn, p̃n is just the sample mean of one observation which
means that it is natural to set λ̃n = (1− 1)/1 = 0.
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• If we decide to follow the second option above and set p̃n = p̂λn, it seems natural to do the
next update of p̃n similar to the update p̂λn, which means to relate λ̃n to λ. Since we will
continue to update p̃n according to the sample mean, we must relate such a choice to the
number of terms in a sample mean. We do this as follows. Define ñ as the solution of the
equation

ñ− 1

ñ
= λ

Solving with respect to ñ and rounding off to the nearest integer we get

ñ =

[
1

1− λ

]
where [a] denotes the value of a a rounded of to the nearest integer. The interpretation
of ñ is the number of terms in a sample mean in which an update of the estimate will be
similar to the weak estimator p̂λn.

Note that the choice of λ̃n in the first alternative above is equivalent to setting ñ = 1. It may
be that when the test in Theorem 2 detects a change in p, the value of p̂λn has not converged
completely around the new value of p. Therefore a value of ñ somewhere between 1 and [1/(1−λ)]
may be an even better alternative. By relating the variance of p̃n to a sample mean with ñ terms,
the variance Var(p̂λn− p̃n), which we need in the test in Theorem 2, can be computed recursively.
In addition, all the variances can recursively be computed in advance before the data stream
starts.

Before the algorithm can be run, we need to decide a value for α in the test proposed in
Theorem 2 as well. When we run the test, the probability of wrongly detecting a change in
p, is approximately α. In practice we may run the test many times, for example every tenth
iteration. If we run the test many times, the chance of wrongly detecting a change in p in some
of these tests naturally will be larger then α. This refers to the multiple testing problem in the
statistical literature, see e.g. [3]. A simple and much used approach is the Bonferroni correction
where a significance level of α/M is used instead of α, where M is the number of tests. There
are two challenges with applying this approach (and other standard corrections). First, we do
not know the number of tests we need to run. Second, the Bonferroni correction assumes that
all the tests are independent. In our case this is far from true, since two subsequent tests are
based on almost the same data stream (only a few extra observation have been added since the
last test) and the outcomes are highly correlated. Using the Bonferroni correction will result
in a too low significance level, and the tests may never detect that p has changed. In practice,
setting α to about 10−3 overall performs well and is, as expected, somewhere between standard
significance levels (0.05) and Bonferroni corrected levels.

The algorithm using the second option above is shown in Algorithm 1.

5 Extension to the multinomial case

We now show how the jump algorithm above can be extended to the multinomial case. As
described above, a Bernoulli variable takes the values 0 or 1 with probabilities 1 − p and p,
respectively. For the multinomial case this is extended such that X takes one of the values
{1, 2, . . . , r} with probabilities {p1, p2, . . . , pr}, such that

∑r
i=1 pi = 1. For ease of presentation

below, define a stochastic vector Y which is a map from X as follows

Y = [I(X = 1), I(X = 2), . . . , I(X = r)] (8)

where I(A) denote the indicator function returning one if A is true and zero if A is false. We
see that Y is a vector with value one in position X and zero in all the other positions.
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Algorithm 1 The sample mean with jumps algorithm.

Input:
X1, X2, X3, . . . //Stream of Bernoulli variables
λ
α
D //How often to perform the test in Theorem 2
N //Max number of iterations
Method:

1: ñ← 0
2: p̂λ1 ← X1

3: p̃1 ← X1

4: for n ∈ 1, 2, . . . , N do
5: p̂λn ← λp̂λn−1 + (1− λ)Xn

6: ñ← ñ+ 1
7: p̃n ← ñ−1

ñ p̃n−1 + 1
ñXn

8: if n mod D == 0 then
9: if |p̂λn−p̃n|√

Var(p̂λn−p̃n)
> zα/2 then

10: p̃n ← p̂λn
11: ñ← [1/(1− λ)]
12: end if
13: end if
14: end for

Let Y1, Y2, Y3, . . . denote a stream of independent stochastic variables identical to Y . We
now want to maintain running estimates of the probabilities {p1, p2, . . . , pr}. The SLWE in (3)
can easily be extend to the multinomial case as follows

[p̂n,1, . . . , p̂n,r] = λn[p̂n−1,1, . . . , p̂n−1,r] + (1− λn)Yn (9)

where p̂i,n denote the estimate of pi after receiving the variable Yn from the data stream.
Now let [p̂λn,1, . . . , p̂

λ
n,r] denote estimates based on (9) using a constant value of λ and let

[pn,1, . . . , pn,r] denote the sample mean, i.e. using λn = (n−1)/n. Following the same argumen-
tation as in Section 4 we know that

p̂λn,i − p̄n,i√
Var(p̂λn,i − p̄n,i)

≈ N(0, 1), i = 1, 2, . . . , r (10)

As an extension to Section 4, we now want to construct a statistical test to check wether the
unknown probability vector [p1, p2, . . . , pr] has changed value. A common statistical test on the
probability vector of the multinomial distribution is the Pearson’s χ2 test [1]. Adapting the χ2

test to the application in this paper, we get the following theorem.

Theorem 3. Let Y1, Y2, Y3, . . . represent a stream of independent and identically distributed
multinomial stochastic vectors with probability vector [p1, p2, . . . , pr]. Further let χ2

n,α denote the
α quantile of the χ2 distribution with n degrees of freedom. Define the hypotheses

H0: The underlying probability vector [p1, p2, . . . , pr] has not changed value

H1: The underlying probability vector [p1, p2, . . . , pr] has changed value

Suppose that we decide to reject H0 if

r∑
i=1

(
p̂λn,i − p̄n,i

)2
Var(p̂λn,i − p̄n,i)

> χ2
r−1,α (11)
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Then the probability of rejecting H0 if H0 is true is approximately α and the rejection rule (11)
controls the type I error.

Proof. It is well known that the sum of n independent squared standard normally distributed
stochastic variables is χ2

n distributed, denoting a χ2 distribution with n degrees of freedom.
From (10) we see that the sum in (11) is a sum of approximately squared standard normally
distributed stochastic variables and therefore is approximately χ2 distributed. Knowing r − 1
terms in the sum, the last term can be computed since the probability estimates sum to one.
The sum in (11) thus is approximately χ2

r−1 distributed

r∑
i=1

(
p̂λn,i − p̄n,i

)2
Var(p̂λn,i − p̄n,i)

≈ χ2
r−1 (12)

Theorem 3 follows directly from (12).

Algorithm 2 shows the resulting jump algorithm for the multinomial case.

Algorithm 2 The sample mean with jumps algorithm for the multinomial case.

Input:
Y1, Y2, Y3, . . . //Stream of multinomial variables on vector form (recall Eq. (8))
λ
α
D //How often to perform the test in Theorem 2
N //Max number of iterations
Method:

1: ñ← 0
2: [p̂λ1,1, . . . , p̂

λ
1,r]← Y1

3: [p̃1,1, . . . , p̃1,r]← Y1
4: for n ∈ 1, 2, . . . , N do
5: [p̂λn,1, . . . , p̂

λ
n,r]← λ[p̂λn,1, . . . , p̂

λ
n,r] + (1− λ)Yn

6: ñ← ñ+ 1
7: [p̃n,1, . . . , p̃n,r]← ñ−1

ñ [p̃n−1,1, . . . , p̃n−1,r] + 1
ñYn

8: if n mod D == 0 then

9: if
∑r

i=1
(p̂λn,i−p̃n,i)

2

Var(p̂λn,i−p̃n,i)
> χ2

r−1,α then

10: [p̃n,1, . . . , p̃n,r]← [p̂λn,1, . . . , p̂
λ
n,r]

11: ñ← [1/(1− λ)]
12: end if
13: end if
14: end for

6 Experiments

In this Section we evaluate the methodology above for both synthetic and real-life data. In
all the experiments reported below, we set p̃n = p̂λn after a jump, i.e. the second alternative
discussed in Section 4.1 and as given in Algorithms 1 and 2.

6.1 Synthetic data example

We will evaluate the binomial case (Algorithm 1) and the multinomial case for r = 4 classes
(Algorithm 2). Figure 2 visualizes some tracking procedures for a binomial case with large
changes in p. The gray, green and blue curves show the Algorithm 1 (p̃n), the SLWE with
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Figure 2: Evaluation of the estimators in an environment with large jumps in p. The black
curve shows the true p in each iteration. The gray, green and blue curves show the estimators
p̃n, p̂λn and the sample mean, respectively.

constant λ (p̂λn) and the sample mean, respectively. For simplicity, below simply call the SLWE
with constant λ for SLWE. The black curve shows the true value of p in each iteration. We see
that the test in Theorem 2 detects the changes in p very efficiently such that on average will
Algorithm 1 (gray) perform better than SLWE. As expected, the sample mean is not very useful
in a dynamic environment.

Figure 3 visualizes a case with smaller changes in p. We see that the changes in p also
here will be efficiently detected and that Algorithm 1 perform better than the SLWE. In both
experiments above we chose α = 10−3, λ = 0.96 and ñ = [1/(1− λ)] = 25.

In Figure 4 we visualize the estimators for an environment where p is changing smoothly.
More specifically the true p changes following a cosine function. For such an environment, it
seems like p̃n and p̂λn perform almost equally well. Note that even though the Algorithm 1 is
not constructed for such environments, we see that it still performs well. In this experiment we
chose α = 10−2, ñ = 1 and still λ = 0.96

In Algorithms 1 and 2 there are three tuning parameters, namely α, ñ and λ. We now want
evaluate how the choices of these parameters affect the tracking performance. For the binomial
case we considered the following two different cases:

• Large changes: p changed with time as shown in Figures 2.

• Small changes: p changed with time as shown in Figures 3.

For the multinomial case we considered the two cases:

1. Every D = 600 iterations, we changed the probability vector as follows

– Draw a random number ρ uniformly from 1, 2, . . . , r

– Set pρ = 0.8

– Set pi = 0.2/(r − 1) for i 6= ρ

Below we refer to this alternative as ’spike probability’.

13



Figure 3: Evaluation of the estimators in an environment with small jumps in p. The black
curve shows the true p in each iteration. The gray, green and blue curves show the estimators
p̃n, p̂λn and the sample mean, respectively.

Figure 4: Evaluation of the estimators in an environment where p dynamically is changing.
The black curve shows the true p in each iteration. The gray, green and blue curves show the
estimators p̃n, p̂λn and the sample mean, respectively.
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Figure 5: The left and and right panels show estimation error as a function of zα (binomal
case) and χ2

r−1.α (multinomial case), respectively. For the left panel, the black, blue and red
curves refer to experiments where the changes in p are large, small and dynamic. For the right
panel, the blue and red curves refer to experiments where the changes in p are based on spike
probability and flat Dirichlet alternatives, respectively.

2 Every D = 600 iterations, we updated the probability vector as an outcome from the
Dirichlet distribution with parameter values α1 = 1, . . . , αr = 1. This is referred to as the
flat Dirichlet distribution and the probability distribution is uniformly distributed over the
simplex of possible probability vectors, i.e. the vectors satisfying p1, p2, . . . , pr > 0 and∑r

i=1 pi = 1. Below we refer to this alternative as ’flat Dirichlet’.

We measure the estimation error as the difference in absolute value between the true p and the
estimate averaged over all the iterations.

We start by investigating reasonable values for the significance value α. For the binomial
and multinomial algorithms we computed the estimation error for different choices of zα and
χ2
r−1,α, respectively. To reduce the Monte Carlo error we ran the Bernoulli and multinomial data

streams for 5 · 106 iterations. In the experiments we used λ = 0.95 and ñ = [1/(1 − λ)] = 20.
We assumed that the system shifted state every D = 600 iteration similar to the examples in
Figures 2 and 3.

The results are shown in Figure 5. We start discussing the binomial case (left panel). For
the blue curve in the left panel of Figure 5 we see that an optimal value of zα is about 3 which
is equivalent to α ≈ 10−3. By choosing smaller values of zα, the test will too often wrongly
detect changes. Choosing a too high value of zα, the test will detect changes in p too late or
never. With zα above 5, the test will never detect the changes in p and we reach a limit in
the estimation error which is equal to the estimation error using the sample mean. When the
changes in p are large (black curve), we can allow using higher values of zα since we still are
able to detect the large changes in p. An optimal value for zα is around 4. Choosing an even
higher value of zα slightly reduces the performance because the method uses a few iterations
more before detecting that p has changed value.

For the multinomial case (right panel), we see that for the flat Dirichlet alternative, an opti-
mal value is χ2

r−1,α ≈ 25 which is equivalent to α ≈ 10−5. For the spike probability alternative

any value of χ2
r−1,α between 25 and 100 perform well. We see that a lower value of α performs

the best in the multinomial cases compared to the binomial cases. The reason is that it is easier
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Figure 6: Estimation error as a function of ñ. For the left panel, the black, blue and red
curves refer to experiments where the changes in p are large, small and dynamic. For the right
panel, the blue and red curves refer to experiments where the changes in p are based on spike
probability and flat Dirichlet alternatives, respectively.

to detect a change in the probability vector in the multinomial case compared to the binomial
case.

We turn our attention now to evaluating the optimal values for ñ. The results are shown
in Figure 6. Also in this experiment we set λ = 0.95. Further we sat zα = 3 and χ2

r−1,α = 25.
Overall we see that the estimation error does not depend strongly on the choice of ñ. Please
note that the increase in estimation error for ñ ≈ 15 for the spike probability alternative is an
actual effect and not Monte Carlo error.

Finally we investigate how the estimation error depends on the choice of λ. We compare the
performance of Algorithm 1, the SLWE and the exponentially weighted moving average control
scheme in [38], denoted ECDD (EWMA for Concept Drift Detection). ECDD is the algorithm
in the literature that is most closely related to our estimator. However, as pointed out in Section
4, the ECDD algorithm has some substantial weaknesses compared to Algorithm 1. To be able
to make a proper comparison, we adopt the detection part of the ECDD algorithm into our
Algorithm 1, i.e. we change line 9 in Algorithm 1, with the event detection procedure in Table
2 in [38]. Please note that within concept drift as considered in [38], it is natural to only look
for increases in p, while in a tracking setting one must look for both increases and decreases.
Thus we change the last line in Table 2 in [38] with the absolute value in differences between
the estimators as in line 9 in Algorithm 1. The ECDD detection procedure, requires a value for
the average run length (ARL0) and we consider ARL0 = 100, 400 and 1000 as in [38].

The results are shown in Figure 7. We start by discussing the large changes in p case (left
panel). We see that Algorithm 1 outperforms SLWE with a large margin. We also observe that
an optimal value for λ in Algorithm 1 and the SLWE is about 0.9 and 0.96, respectively. This
difference may come as a surprise, but remember that the purpose of the weak estimator with
constant λ is different for these two cases. For SLWE we chose λ to minimize the estimation
error while for the Algorithm 1, we chose λ to detect changes in p as fast as possible to rapidly
perform a jump. Further we see that Algorithm 1 outperforms the ECDD algorithm with a
clear margin. In the right panel we observe that also for the small changes in p case Algorithm
1 outperforms both the SLWE and the ECDD algorithms.

Figure 8 shows results for the multinomial case. We are not aware of an extension of the
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Figure 7: Binomial case: Estimation error as a function of λ for Algorithm 1, the SLWE and
ECDD algorithm in [38].

ECDD algorithm to the multinomial case, and we compare Algorithm 2 with the SLWE. We
see that Algorithm 2 outperforms the multinomial SLWE with a large margin for both the spike
probability and the flat Dirichlet alternatives.

From both Figures 7 and 8, we see that the performance of Algorithms 1 and 2 are less
sensitive to the choice of λ compared to the SLWE and the ECDD. In other words, Algorithms
1 and 2 perform well for a large range of different choices of λ while the SLWE and the ECDD
are able to perform well only for a small interval of values for λ. This is a very useful property
since in real-life settings the optimal value of λ is rarely known in advance.

We now conduct a comparison against several other recently developed algorithms in the
literature. We are not aware of many tracking algorithms designed to handle data streams with
abrupt changes, but the ADWIN2 approach in [5] and the Fishers Exact Test (FET) approach
in [39] are two prominent exceptions. For binomial data streams, the FET approach is appealing
from a theoretical point of view since it is based in the exact Fisher test. However, in practice
it was very computationally demanding compared to our method. Another and much used
approach in abruptly changing data streams, is to combine a tracking procedure with a change
detection procedure. When a change is detected, the tracking restarts [17]. We compare against
several change detection procedures: the Student t-test statistic in [11], the Mann-Whitney and
Lepage test statistics in [37] and the Kolmogorov-Smirnov and Cramer-von-Mises test statistics
in [36]. Let m, n and s denote the time of the most recent change detection, the current time
point and some time point between m and s. The approaches above run comparisons between
the observations in the intervals [m, s] and [s + 1, n] for every m < s < n. If any of these
tests detects a significant difference, a change is reported. Thus these approaches run several
tests in each iteration n, while our approach is far less computationally complex since only one
computationally lightweight test needs to be ran in each iteration.

The estimation results are shown in Table 1. For each method, tuning parameters are
adjusted to optimize performance. We see that our suggested approach outperforms all the
alternative algorithms in the literature. Among the alternative algorithms, the Mann-Whitney
and Student t-tests detection procedures performed the best.

We observed that the student t-test performed well in the binomial cases and its natural
extension for multivariate data, is the Hotellings T 2 test [15]. A comparison of our multivariate
approach in Algorithm 2 against the multinomial SLWE and the Hotellings T 2 change detection
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Figure 8: Multinomial case: Estimation error as a function of λ for Algorithm 2 and the multi-
variate SLWE.

Method Large changes Small changes

Algorithm 1 0.033 0.044
SLWE 0.062 0.050
ADWIN2 0.143 0.093
FET 0.076 0.080
ECDD 0.061 0.049
Student 0.037 0.054
Mann-Whitney 0.035 0.053
Lepage 0.133 0.160
Kolmogorov-Smirnov 0.166 0.140
Cramer-von-Mises 0.181 0.117

Table 1: Binomial case: Mean estimation error in absolute value when tracking p for the sug-
gested algorithm and several other algorithms in the literature.
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Method Spike Flat Dirichlet

Algorithm 2 0.023 0.031
SLWE 0.040 0.041
Hotelling’s T 2 0.039 0.038

Table 2: Multinomial case: Mean estimation error in absolute value when tracking p for the
suggested algorithm, SLWE and the Hotellings T 2 algorithms in the literature.

approach is shown in Table 2. Similar to the change detection methods above, the Hotelling’s T 2

method run a test for each s between m and n and thus is far more computationally expensive
than Algorithm 2. We see that Algorithm 2 outperforms both the SLWE and the Hotellings T 2.

6.2 Real-life data example

In this section, we investigate the problem of tracking topics or sentiment in online streams
of text. Examples of such text streams could be online discussion threads and news/social
media feeds like Twitter. In this specific example we consider the problem of online tracking
of the current topic in a news feed. We assumed four topics, namely news about the European
Union (EU), economy, sports and entertainment. We collected a large set of news articles about
the four topics from the popular Norwegian online news paper site vg.no. We assumed that
the instants when the text stream changed between the different topics were unknown to our
algorithm. The problem was to track the probabilities that the current topic of the stream was
EU, economy, sports or entertainment. The problem has been considered in several papers, see
e.g. [7, 32] and references therein.

We consider two different approaches:

• Keyword lists: A keyword list is a set of words for each topic or sentiment type (for
example: happy, sad, angry, etc). We divided the material in two parts, where the first
part were used to generate a keyword list for each topic or sentiment. The keyword list
for a given topic/sentiment were generated by choosing words that had a high Pointwise
mutual information to the given topic/sentiment [26].

The second part of the material where used for tracking. We assumed that we received one
word at the time from the news feed and every time we received a new word, we updated our
probability estimates that the current topic were EU, economy, sports or entertainment.
If the current word received from the news feed was part of the EU keyword list, we can
think of this as an outcome ’1’ from a multinomial distribution. If the word was part
of the economy keyword list, we can think of this as an outcome ’2’ from a multinomial
distribution and so on. Using the weak estimator in equation (9), we can now update our
estimate of the probability vector, namely the probabilities that the current topic is EU,
economy, sports or entertainment. Similarly we can update the estimate of the probability
vector using the jump algorithm in Algorithm 2. If a word where not part of any of the
keyword lists, any of the probabilities were changes.

A natural offline way to estimate of the probability that the current topic was EU (economy,
sports, entertainment) based on the keyword lists was to compute the portion of all the
keywords in an article that were EU (economy, sports, entertainment) keywords. We
denote this the offline approach and can be seen as the optimal estimates for the probability
of the different topics based on the keyword lists. In an online setting it is not possible
to compute the offline estimates, but ideally we want the online estimators in (9) and
in Algorithm 2 to be as close as possible to the optimal offline estimates. We compare
the performance of the online estimators in this paper by measuring how close they were
to the optimal offline approach. When performing the experiments we ran a two fold
cross validation where we used half of the articles to compute the keyword lists and the
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Method Logistic regression Keyword lists

Algorithm 1 0.035 0.064
SLWE 0.071 0.077
ADWIN2 0.322 0.238
FET 0.109 0.068
ECDD 0.070 0.068
Student 0.043 0.076
Mann-Whitney 0.036 0.062
Lepage 0.119 0.162
Kolmogorov-Smirnov 0.133 0.177
Cramer-von-Mises 0.137 0.181

Table 3: News example, two topics case: Mean estimation error in absolute value compared to
offline estimator for the suggested algorithm and several other algorithms in the literature.

Method Multinomial regression Keyword lists

Algorithm 2 0.036 0.039
SLWE 0.057 0.056
Hotelling’s T 2 0.041 0.065

Table 4: News example, four topics case: Mean estimation error in absolute value compared to
offline estimator for the suggested algorithm, SLWE and the Hotellings T 2 algorithms in the
literature.

other half to track the probabilities that the current topic was EU, economy, sports or
entertainment. Next, we switched and trained and tested in the opposite direction.

• Machine learning: We started by dividing the training text stream in batches of 20 words
where each batch were within one of the topics EU, economy, sports or entertainment.
The batches were used to train a machine learning model and in this example we used
multinomial ridge regression [9]. The model were trained using the glmnet package in R
[33].

In the testing part, the individual words of the text stream were collected into batches
of 20 words. Each new batch were classified into one of the four topics using the trained
multinomial regression model. The probabilities of the current topic where updated in the
same manner as for the keyword list approach.

Figure 9 shows the tracking of the probabilities for the different topics for the keyword list
approach. We see that Algorithm 2 adapts faster when the text stream changes topic and also
tracks the offline estimates more efficiently in the stationary parts than the SLWE.

We now perform a more systematic analysis of the performance of Algorithms 1 and 2. We
start with a binomial case by merging the topics EU and economy to one class and sport and
entertainment to a second class. The approach will be identical to what is described above,
except that we only trained two keyword lists and used logistic ridge regression in the machine
learning approach. Table 3 shows the tracking performance for the same methods considered in
the synthetic experiments. Algorithm 1 documents competitive results to the Mann-Whitney
approach and outperforms all the other approaches. Recall that the Mann-Whitney approach
is far more computationally intensive than Algorithm 1 to achieve these results.

Next we analyze the performance of different algorithms for the multinomial case with all
the four topics. The results are summarized in Table 4. We see that Algorithm 2 outperforms
both the SLWE and the Hotelling’s T 2 algorithms.
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Figure 9: The panels from upper left to bottom right show the tracking of the probabilities that
the current topic is EU, economy, sports or entertainment, respectively. The black curves shows
the offline estimate every time a new word is received. The gray, green and blue curves show
the Algorithm 1, the SLWE estimator and the sample mean, respectively.
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7 Closing remarks

In this paper we have constructed an estimation procedure that combines the strengths of a weak
estimator with constant λ and and decreasing λ (sample mean). We have developed a hypothesis
test procedure to rapidly detect a change in the underlying p. Further we have proposed an
efficient procedure to jump to a new estimate when a change is detected. The experiments show
that the procedure efficiently detects changes in the underlying distribution and outperforms
the original SLWE and several other algorithms from the literature.

The experiments also showed that the performance of the Algorithm 1 p̃n is less sensitive
to the choice of λ compared to the SLWE with constant λ and the ECDD algorithm. Said
in another way, the Algorithm 1 performs well for a large range of different choices of λ while
the SLWE and ECDD performed well only for a small range of choices for λ. This is a very
attractive property of the Algorithm 1 since in practical situations we do not know what is an
optimal value for λ.

In the χ2 testing procedure in Theorem 3, the dependency between dimensions is ignored.
A potential direction for future research is to develop and analyze a test where the dependency
is taken into account. The covariances computed for the multivariate exponentially weighted
control scheme may be a good starting point [24].

A potential direction for future research is to develop a procedure to automatically adjust
the value of the tuning parameter λ depending on the properties of the data stream. A starting
point in this direction could be to follow the ideas on how the ADWIN2 algorithm adjusts the
window size [5].
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