
Carbon dioxide precedes temperature 1 

change during short-term pauses in multi-2 

millennial palaeoclimate records   3 

 4 

Knut L. Seip 1*, Øyvind Grøn 1, Hui Wang 3 5 

(1) OsloMet - Oslo Metropolitan University, Pilestredet 35 N-0130 Oslo, Norway, e-mail 6 

knut.lehre.seip@hioa.no 7 

(2) OsloMet - Oslo Metropolitan University, e-mail oyvind.gron@hioa.no 8 

(3) NOAA/NWS/NCEP/Climate Prediction Center, 5830 University Research Court, 9 

NCWCP, College Park, MD 20740, USA, e-mail hui.wang@noaa.gov 10 

 11 

Abstract 12 

In Antarctica, ice-core temperature has traditionally been regarded as a leading variable to carbon 13 

dioxide, CO2 during the last 400,000 years before present (B.P.). This finding is in contrast to most 14 

reports on global mean surface temperature and atmospheric CO2 for the last 150 years. However, 15 

previous techniques for establishing leading or lagging (LL) relations between paired global warming 16 

variables have required that the time series show constant frequency (stationarity). Herein, we show 17 

that on orbital and multi-millennial time scales, the Vostok Antarctic ice core displays 9 periods of 8.7 18 

kyr ± 5 kyr during which CO2 becomes a leading variable to temperature. Six of the 9 periods were 19 

associated with short-term pauses occurring during 4 major glaciation-deglaciation periods. We find 20 

that CO2 also leads temperature during short pauses in the major cyclic pattern of the Greenland 21 

time series. In the latter series, there are also two contrasting cycle developments. In the first 22 

contrasting cycle developments, lasting from 103.5 to 79 ka, there is an in-phase relation between 23 

CO2 and temperature, with a slope of 0.75. In the second contrasting cycle developments, lasting 24 

from 61.5 to 43.5 ka, there is an out-of-phase relation with a slope of -0.67. In addition, the latter 25 

shows a see-saw pattern between Arctic and Antarctic temperatures.   26 

1. Introduction 
The question of whether increasing CO2 

will lead or lag global warming is relevant for 

the interpretation of candidate factors that 

cause changes in the global mean 

temperature. It is relevant on the 

palaeontological 100,000 year scale, the 

millennial scale, and the present 100-year 

time scale (Cuffey and Vimeux 2001; Barker et 

al. 2011; Seip and Grøn 2017). Here, we 

examine leading and lagging (LL) relations on 

the orbital and multi-millennial time scales. 

Antarctic temperature appears to have 

been a leading or synchronous variable to CO2 

during the last 800 kyr (Cuffey and Vimeux 
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2001; Monnin et al. 2001; Stips et al. 2016). 

On a millennial, global scale, CO2 appears to 

be a leading variable to temperature on 

average during the last deglaciation period but 

not at its onset (Shakun et al. 2012). 

An important issue is whether it is 

possible to find the mechanisms that trigger 

deglacial warming (Imbrie et al. 1993; Shakun 

et al. 2012; He et al. 2013). These studies 

suggest that Milankovitch cycles may induce 

global warming (≈ 3 °C), which initiates ice 

melting and subsequent increases in CO2 

concentrations that further provide means for 

global deglaciation. The present study gives a 

more detailed picture of LL relations between 

temperatures, CO2, and CH4 during the four 

recent glaciation-deglaciation cycles.   

We apply a local method for identifying LL 

relations. The method distinguishes itself from 

alternative methods in that it can be used to 

calculate LL relations for three consecutive 

observations in paired time series and makes 

it possible to find significant LL relations at the 

95% level for 9 consecutive observations. The 

method does not require observations to be 

equally spaced or that the series show 

constant frequency (showing stationarity), but 

the observations in the paired series have to 

be sampled at the same time steps (being 

synoptic). 

Since both CO2 and global mean 

temperature time series appear to result from 

several cyclic phenomena, it may be that there 

are cycles that result from interactions 

between global surface temperature (GST) 

and a series of dynamical systems: i) the Solar 

system (He et al. 2013; Ma et al. 2017), ii) the 

atmosphere (Knutson et al. 2015), iii) the 

oceans, including ice–sheets (Barker et al. 

2011; He et al. 2013; DeVries et al. 2017) and 

biogenic carbonate and ocean fertilization 

(Tang et al. 2016), iv) the Earth’s core, e.g., 

directly through magma migration (Stevens et 

al. 2016) or through volcanic activities 

(Huybers and Langmuir 2009; Huybers and 

Langmuir 2017) that affect the CO2 emissions, 

and v) anthropogenic substances that are 

brought into the atmosphere. Since CO2 and 

temperature are either synchronous or show 

LL relations between them, identifying 

common patterns may also help in identifying 

common governing mechanisms. 

In the present study, we examine and 

compare LL relations between CO2 and global 

temperature anomalies (TEMP) for three 

datasets: i) a 400 kyr dataset from the Vostok 

ice core in Antarctica, ii) a 120 kyr dataset 

from the NGRIP ice core in Greenland, and iii) 

a composite 20-kyr dataset, which represents 

a global mean for the last deglaciation period 

constructed by Shakun et al. (2012). There are 

several recent potential improvements to the 

records, e.g., those reported by “Buizert et al. 

(2015)” and “Parrenin et al. (2013)”. To test 

the robustness of our results, we repeat 

selected calculations with the dataset of 

Parrenin. 

Our first hypothesis to be tested is 

that CO2 changes may sometimes lead and at 

other times lag temperature changes in the 

time series. The rationale is that we believe 

cycles in the series are caused by interactions 

within the oceans or between the oceans and 

the atmosphere so that there will be net 

sequestering of CO2 during some periods and 

net emissions of CO2 during other periods, 

e.g., “Tang et al. (2016)”. Sequestering and 

emissions of CO2 may not be a direct function 

of ocean temperature but may be indirect 

effects of winds set up by regional 

temperature differences. Other mechanisms 

may also be important, e.g., those discussed in 

Patra et al. (2005) and Johnston and Alley 

(2006) Furthermore, we hypothesize that the 

time windows when CO2 leads temperature 

can be associated with characteristic events in 

the temperature series. 



Our second hypothesis to be 

investigated is that the relation between the 

LL patterns that we find for the four-glaciation 

periods in Antarctica will also be found for the 

glaciation - deglaciation period in the Arctic 

and in the global deglaciation pattern 

identified by Shakun et al. (2012).  

Third, we examine if there are anti-

phase or see-saw patterns on the multi-

millennial scales. The rationale is that such 

patterns have been found on millennial 

(Stocker 1998) and decadal (Chylek et al. 

2010) scales. 

The rest of the paper is organized as 

follows. In section 2 we present the material, 

and in section 3 we provide an outline of the 

method used to identify leading, lagging and 

synchronous relations between paired cyclic 

time series. In section 4 we show results for 

the sets of time series for Antarctica, the 

Arctic, and the globe. In section 5 we discuss 

the results, and our results are summarized in 

section 6.  

2. Materials 
Herein, we examine time series for 

Antarctica, the Arctic represented by 

Greenland and a synthetic series set for the 

globe. The first series describes four glaciation 

periods in Antarctica. The data were retrieved 

from "https://www.ncdc.noaa.gov/paleo-

search/study/15076", and we used the 

"http://www1.ncdc.noaa.gov/pub/data/paleo

/icecore/antarctica/aicc2012icecore-data.xls" 

data file with D(‰) based on Petit et al. 

(1999). The temperature data span the period 

400 ka – 3 ka and were based on analyses of 

the Vostok ice core. The median value for the 

time steps was 85 years. The CO2 data were 

retrieved from 

https://www.ncdc.noaa.gov/paleo-

search/study/15076 as well and are due to 

Luthi et al. (2008), transferred on AICC2012. 

The period for the CO2 values was from 350 

years (B.P. 1950) to 798.6 ka. The data were 

unequally spaced, with time steps ranging 

from 0 to 6.01 kyr and median value of 590 

years. The time intervals are shown as 

histograms in Supplementary material 1. The 

data were linearly interpolated to a 500-yr 

resolution. Carbon dioxide and temperature 

data for Antarctica from Parrenin et al. (2013) 

were retrieved from the article’s 

supplementary material. We did not use the 

time series from 800 ka to 400 ka because the 

time resolution is much coarser for those 

data. The methane data were retrieved from 

“Petit et al. (1999)”. These data correspond 

well with data retrieved from the EDC record 

for the last 420 kyr (Loulergue et al. 2008). 

The period for the CH4 values was from 6.6 ka 

to 403.7 ka. The data for CH4 were also 

unequally spaced, with a median time step of 

404 yrs. The data were linearly interpolated to 

the 500-yr resolution.  

The second series describes a glaciation - 

deglaciation period in Greenland. The data 

were retrieved from 

https://www.ncdc.noaa.gov/paleo-

search/study/15076. The temperature data 

span the period 120 ka to -30 yr (B.P.). The 

time steps were unequally spaced, with time 

steps ranging from 14 to 25 years and median 

time step of 20 years. The 18O ice (‰) values 

ranged from 46.5 yr to 32.1 yr, with a median 

value of 40 yr. There are no CO2 records for 

Greenland because CO2 cannot be measured 

with accuracy in ice-cores from Greenland 

(Barnola et al. 1995). In addition to the 

temperature records, there is also a record for 

methane from Petit et al. (1999) that starts at 

119.673 years (B.P.) and ends at 89.453 years 

(B.P.). However, there is a vacancy in the 

series from 100.201 years (B.P.) to 62.960 

years (B.P.). The data were transformed to 

synoptic series using linear interpolation with 

a 500-yr resolution.  

https://www.ncdc.noaa.gov/paleo-search/study/15076
https://www.ncdc.noaa.gov/paleo-search/study/15076


The third series describes the last global 

deglaciation period. The data were supplied 

by Shakun (personal communication) but can 

be found in 

http://www.nature.com/nature/journal/v484/

n7392/full/nature10915.html. The data span 

the period 22 ka – 6.5 ka and were calculated 

as the area-weighted mean of 80 globally 

distributed temperature records with median 

resolution of 200 yr. The resulting series was 

linearly interpolated to a 100-yr resolution to 

agree with Shakun et al. (2012) and to the 

500-yr resolution to be consistent with the 

other series. The sets we used for Antarctica 

and the Arctic are shown as raw series in 

Figure 1A and as smoothed series in Figure 1B. 

Figures 1C and D will be discussed later.
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Figure 1. Time series characteristics. A. Time series from the Antarctic and Greenland 

normalized to unit standard deviation. B. Time series for Greenland and the Antarctic 

smoothed. C. Power spectral density for Antarctic time series. For the Antarctic, CO2 has 

peaks at 3-4 kyr, 8.5 kyr, and 11.5 kyr, TEMP has peaks at 4 kyr, 8.5 kyr and 13 kyr, and CH4 

has peaks at 4 kyr, 7 kyr and 11.5 kyr. D. For Greenland, TEMP has peaks at 3 kyr, 5 kyr, and 

12-13 kyr, and CH4 has peaks at 3 kyr, 5.5 kyr, 6.5 kyr, 8.5 kyr and 11 kyr.  

 

The temperature data were obtained 

from the stable isotope compositions of water 

in the ice cores (D or  18O) used as a proxy. 

Because we only examined LL relations 

between the temperature, CO2 and CH4, we 

normalized all the time series to unit standard 
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Time series(smoothed) from Antarctic (A) and Greenland (G)
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deviation and thus did not convert the proxies 

to temperatures. However, we use the terms 

temperature, or TEMP, CO2 and CH4 to ease 

reading. We adopt the term “short-term 

pauses” when the time series on orbital or 

multi-millennial scale appear to show a pause, 

although there may still be small amplitude 

oscillations. We use the Greek letter β for the 

slopes between x- and y-variables. 

3. Methods 
Several methods are available to establish 

cause and effect relations (Granger 1969; 

Sugihara et al. 2012; Stips et al. 2016). 

However, causality requires that the cause 

comes before the effect, and several studies 

restrict the topic to potential causality and 

require physical, chemical and biological 

plausibility for support. (Kestin et al. (1998)) 

provide an overview of methods, and Huang 

et al. (1998) describe the identification of 

moving frequencies. (Alley et al. (2002)) 

discuss advantages of identifying maxima or 

minima in contrast to midpoints in global 

warming time series. We adopt a method 

developed by Seip and Grøn (2017), which 

determines LL relations for paired synoptic 

series of three consecutive observations.  

3.1 The leading-lagging (LL) method 

The method consists of 5 steps that 

are explained below with reference to Figure 

2. This explanation follows closely the 

description given in Seip and Grøn (2016). The 

first part of the method, step 2 below, has a 

counterpart in electrical engineering in 

Lissajous curves, see, e.g., 

https://en.wikipedia.org/wiki/Lissajous_curve. 

The second part, step 3 and Eq. 1, has a 

counterpart in the calculation of magnetic 

fields around a wire, e.g., 

https://en.wikipedia.org/wiki/Biot%E2%80%9

3Savart_law.   

  1 

https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Biot%E2%80%93Savart_law
https://en.wikipedia.org/wiki/Biot%E2%80%93Savart_law


Figure 2 Method 2 
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Figure 2 Example. Calculating leading- lagging (LL) relations and LL strength A. Two sine 11 

functions; the full line function is a candidate cause, and the dashed line function is the 12 

target. The candidate cause generally peaks before the target. B. In a phase plot with the 13 

candidate cause on the x-axis and candidate target on the y-axis, the time series rotates 14 

counterclockwise (negative by definition), and θ is the angle between two consecutive 15 

trajectories. Note that for paired perfect sine functions, the phase plot will be elliptical with 16 

a center in the origin and the long axis with the direction 1:1 or 1: ‒1. See the text for 17 

details. C. Angles between successive trajectories (black bars) and LL strength (gray bars). 18 

The dashed lines suggest confidence limits for persistent rotation in the phase plot and 19 

persistent leading or lagging relations in the time series plot.  20 

 21 

In step 1, we centralize and then 

normalize the data to unit standard deviation. 

In this step, we also smooth the series to 

avoid singularities in the subsequent 

calculations. With smoothing, we also see 

trends in the data more clearly (see the 

smoothing section below). 

In step 2, we illustrate the method 

with sampled sine functions, x = sin(0.5 t), 

leading the candidate target sine function, y = 

sin(0.5t- φ RAND()), where φ = /4, and 

RAND() is a random component. The random 

component makes the example slightly more 

realistic (Figure 2A). With the candidate 

leading sine function, x = sin(0.5 t), on the x-

axis, and the candidate target sine function, y 

= sin(0.5t- φ RAND()), where φ = /4, on the y-

axis, the rotation in a phase plot will largely be 

counterclockwise, as shown in Figure 2B. 

The          between two successive 

trajectories are shown as black bars in Figure 

2C. In the example, the candidate leading 

series on the x- axis is almost consistently 

leading the target series on the y-axis with a 

phase shift of π/4. The light gray bars denote 

LL strength averaged over n= 5 observations 

(because the sample is short), and the dashed 

lines suggest confidence limits for n = 9. 

In step 3, we calculate LL relations. We 

give the LL relationship a numerical 
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representation. To see which variable peaks 

first, we quantify rotational directions,  , with 

the formula (c.f., Supplementary material 2) 

                     
       

        
 .

     

 (1)  

Here, v1 and v2 are two consecutive 

trajectory vectors in the phase diagram, and x 

denotes the vector product. In step 4, we 

calculate the LL strength of the mechanisms 

that cause two variables to rotate either 

clockwise or counterclockwise in a phase 

portrait. It is measured by the number of 

positive rotations (counterclockwise rotations 

by convention) minus the number of negative 

rotations, relative to the total number of 

rotations over a certain period, 9 time steps in 

this study:  

LL = (Npos -Nneg )/(Npos+Nneg).  

     (2) 

We use the nomenclature LL(x, y) = [-

1, 1] for LL strength; LL (x, y) < 0 implies that y 

leads x, y→x, and LL(x, y) > 0 implies that x 

leads y, x→y. The LL strength for the series in 

Fig. 2A is equal to 0.49 on a scale from -1 to 

+1. Thus, we can use the rotational directions 

in phase plots for two cyclic series to infer 

which series precedes the other in the sense 

that its peak (trough) is less than ½ of a cycle 

length before the peak (trough) of the other. 

However, the LL relations apply to all sections 

of the time series of 3 consecutive steps or 

longer. In the calculations, we measure time 

before present (B.P., 1950) as negative. The 

rule will therefore be that the x-axis variable 

leads the y-axis variable when there is a 

clockwise rotation. The LL strength passes 

through non-significant LL portions of the time 

series when LL relations change sign. Since the 

palaeoclimate see-saw relation between the 

Northern and Southern Hemisphere 

temperature series focuses on phase 

relationships or phase shifts (PS; e.g., Stocker 

and Johnsen (2003)), we here apply the 

nomenclature that paired series are in 

antiphase, or counter cyclic, if ¼ λ < PS < ¾ λ, 

that is, the slope is negative when the two 

series are plotted in a phase plot.  

The measured LL strength captures 

two aspects of the LL relationship between 

paired variables. It obtains a high / low value 

when one series is consistently leading or 

lagging the other. However, to obtain a high / 

low value, the two series have to change cycle 

lengths in concert.  

The cycle length (CL) of two paired 

series can be approximated with two 

methods. With the partial ellipse method, CL 

can be approximated as (Seip and McNown 

2007) 

                     
   
  . 

     (3) 

Here,            are angles between 

successive trajectories, and n is the number of 

points sampled. The cycle lengths should 

ideally be based on full rotations in the phase 

plots for the paired time series, but noise or 

other superimposed signals may not allow full 

rotations to be completed as a significant 

series. With two perfect sines (no random 

component added in Figure 2), CL = λ = 6.30, 

which is close to the design cycle length of λ = 

2π ≈ 6.28. The angles with a phase shift of λ/2 

give an average angle of -1.00 ± 0.00 radians. 

With a phase shift of λ/4, the average angle is 

-1.07 ± 0.48; that is, the rotational pattern is 

an ellipse. We then get the same average 

angle, but with greater standard deviation.  

The cumulative angle method 

provides estimates of cycle lengths by a 

calculation of the cumulative angles in phase 

space and then terminates the calculations 

when the sum reaches 2π. The cycle length is 

equal to the number of angles and time steps 



at this cut off value. For time series where one 

series is a superposition of two sine functions 

with different cycle lengths and the other 

series represents one of the sine functions in 

the superposition, the method extracts the 

common cycles for the two series. 

For cyclic series, the regression slopes, 

s, or the β – coefficients provide information 

on the shift or time lag between the series. 

For a linear regression applied to paired time 

series that are normalized to unit standard 

deviation, the regression coefficient, r, and 

the β – coefficient will be identical. If the two 

series co-vary exactly, their regression 

coefficient will be 1, and the time lag zero. If 

they are displaced half a cycle length, λ/2, the 

series are counter-cyclic, and the regression 

coefficient is r = - 1. Lead or lag times, or 

phase shift (PS), are estimated from the 

regression coefficient, r, for sequences of 5 

observations, PS (5). With λ as cycle length, 

the phase shift between two cyclic series can 

be approximated by the expression 

PS ≈ λ/2π × (π/2- Arcsine (r)).  

     (4) 

For r = 1, Arcsine(r) = π/2, the right hand 

parenthesis is zero, giving PS = 0. For r = -1, 

arcsine(r) = -π/2, the right hand parenthesis is 

2 × π/2 = π, and PS = λ /2.   

In step 5, we design a graphical 

presentation of the results in terms of 

rotational angles between trajectories in the 

phase plot.  

3.2 Significance  
The number of angles that has to 

rotate in the same direction for the LL relation 

to be significant was found by applying Eq. (3) 

to two series of 9 observations generated by 

Monte Carlo simulations. The number 9 is a 

tradeoff between the possibility of finding 

local LL relations and determining confidence 

levels. The LL strength of a time series is 

significant at the 95% level if the LL strength < 

-0.32 or the LL strength > + 0.32. 

3.3 Detrending and smoothing  

When detrending a time series, it is 

usual to apply linear detrending to minimize 

shifting the series along the time-axis. 

However, a second order polynomial 

detrending may show satisfactory results for 

series with progressively increasing trends. 

There is no canonical way to smooth data to 

identify with certainty movements that are 

the result of a given cause and its effect. In 

particular, if the series contains dynamic 

chaos, identifying component series that 

represent causes and effects may be difficult 

(Ellner and Turchin 2005). However, several 

methods have been used to identify 

embedded series that correspond to real 

processes (Huang et al. 1998; Alley et al. 2002; 

Wu et al. 2011; Kawamura et al. 2017). Here, 

we apply the LL method to the smoothed 

data. The smoothed sets represent 

movements that to our best knowledge 

minimize noise. Additionally, we examined if 

the smoothed series exhibited patterns that 

are reported for the series elsewhere in the 

literature, (e.g., Barker et al. (2011); Alley et 

al. (2002)). Lastly, the LL method identifies 

common cycles between paired series, and 

when those cycles are longer than 7 time 

steps, the probability that they occur by 

chance is less than p = 0.05 (Seip and Grøn 

(2016)), supporting the hypothesis that the 

smoothed series represent real processes. We 

smoothed the series with the LOESS algorithm 

in SigmaPlot©, using fractions f = 0.07 to 0.2 

of the series and a 2nd order polynomial 

function for interpolation.  

3.4 Power spectral density (PSD)  

PSD methods will show cycle lengths for 

single series, and those cycles can be 

compared to the cycles obtained with the LL 

method. Power spectral analysis is undertaken 

using the standard method found in 



SigmaPlot©. We stack PSD curves from 

several series and use the peaks found in the 

stacks for comparison with cycle lengths found 

with the LL method. We do not perform a 

formal uncertainty analysis, but the peaks 

found in the stacked PSD are higher than 

peaks that would result from PSD analysis of a 

comparable set of random series. 

4. Results 
We first present the results for the 400 kyr 

long dataset from the Vostok ice core in 

Antarctica, then the 120 kyr record from the 

NGRIP ice core in Greenland, and third, a 

short, 20 kyr long global deglaciation dataset 

supplied by Shakun et al. (2012). Lastly, we 

compare the results for the three datasets.   

4.1 Antarctica, period 400 ka to present 

For Antarctica, temperature and CO2 

follow each other closely. The LOESS 

smoothed values are closely correlated: T = ‒ 

558 + 0.416 × CO2, R
2 = 0.85, p < 0.001, and n = 

802 (Figure 3A).  Temperature is mainly a 

leading variable to CO2, but there are 

exceptions shown as negative bars in Figure 

3C. During the period 396 ka to 358 ka, CO2 

was mainly leading temperature. This was also 

the case during short-term periods with small 

amplitude temperature changes: 214-209 ka, 

268-259 ka, 202-199 ka, 172-157 ka, 101- 92 

ka, and 54-43 ka. The periods are marked in 

red in Figure 3A. Significant short-term pauses 

lasted 8.7 ± 4.3 kyr (Figure 3C). During 5 of 

those 6 hiatus periods, CO2 levels off before 

temperatures decrease. It is only possible to 

define common cycles and phase shifts for CO2 

and temperature during 17% of the time. 

During the periods where cycles can be 

defined, there are periods where there are 

distinct cycles between CO2 and temperature, 

that is, the cycles are long (> 7 - 11 time steps) 

and therefore probably not due to stochastic 

movements in the two series. These cycles are 

84 ± 82 kyr long, probably corresponding to 

the glacial-interglacial cycles. The phase shift 

between CO2 and temperature is 6.1 ± 14.1 

kyr.  

The results for methane, CH4, are not 

as distinct as for CO2. However, also for 

methane, it appears that temperature lags CH4 

during ice-age periods and during the short-

term pauses.  Supplementary material 3 

shows results for methane. The periods where 

common cycle lengths for CH4 and 

temperature can be defined corresponding to 

the periods where there are common cycle 

lengths for CO2 and temperature. We also 

examined the relation between CO2 and CH4. 

For 61% of the time, CO2 significantly lagged 

CH4 (Supplementary material 4).  

To investigate whether our results are 

robust, we also applied the LL method to the 

dataset by Parrenin et al. (2013). The data 

were pretreated like the Vostok ice-core data. 

The results largely confirm the Vostok core 

data results, in particular the results for the 

short-term pauses. The results are shown in 

Supplementary material 5. 

  



Figure 3 Antarctica and Greenland 
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Figure 3. Leading and lagging relations for smoothed CO2 and smoothed temperature, 

(TEMP) for time series from the Antarctic (left column) and from Greenland (right column). 

A. Antarctic: CO2 and temperature series normalized to unit standard deviation. B. 

Greenland: CO2 and temperature series. The circle shows a section where raw data has been 

included. C. Antarctic: Leading-lagging LL-relations as angles (black bars). The gray bars show 

LL strength relative to confidence limits (‒CI, + CI). D. Greenland: The gray bars show LL 

relations relative to confidence limits ( ‒ CI, + CI), and the black bars show angles. E. 

Antarctic: Cycle length and phase shift. Cycle lengths, black dots > 500 kyr have been 

removed, the average cycle length is 89-± ± 100 kyr (178 time steps) and the average phase 

shift is 17 ± 17 kyr. F. Greenland: Cycle length and phase shift. Cycle lengths, black dots > 250 

kyr have been removed. The average cycle length is 37.2-± 34.0 kyr, and the average phase 

shift is 7.6 ± 6.5 kyr. 

 

4.2 Greenland, period 120 ka to present 

The period with data from the 

Greenland ice core starts at 120 ka and thus 

includes a cooling and a deglaciation sequence 

(Figure 3B). The Greenland ice core is too acid 

to allow identification of CO2 (Delmas 1993). 

We therefore assume that the CO2 values 

obtained from the Antarctica core are global 

and compare temperatures from Greenland 

with global CO2 values. CO2-A and TEMP-G are 

closely correlated: CO2-A = 0.925 * TEMP - G, 

R2 = 0.86, p < 0.001, and n = 240. In the 

beginning of the cooling period, the 

temperature leads CO2. However, during the 

first short-term pauses, there is a short period 

when CO2 leads temperature. During the cold 

period, CO2 becomes a consistent leading 

variable to the temperature for 27 kyr (68 ka 

to 41 ka). Thereafter, CO2 mainly lags 

temperature (Figure 3D). The average cycle 

lengths are 37.2± 34.0 kyr, and the phase shift 

is 4.2 ± 7.7 kyr. Note that CO2 and 

temperature are in-phase during the time 

window 103.5 ka to 79 ka (β = 0.75) but are 

anti-phase during the time window 61 ka to 41 

ka (β = – 0.67). 

4.3 The global deglaciation period 22 ka 

– 6 ka 

The normalized and LOESS smoothed 

data for the second order polynomial 

detrended global deglaciation period are 

shown in Figure 4A. We have chosen to apply 

a degree of smoothing that preserved the two 

characteristic peaks at the end of the period. 

The two raw series were significantly 

correlated (CO2 = 0.911 × T, R2 = 0.968, p < 

0.001, and n = 153) as were the detrended 

series (CO2 = 0.506 × T, R2 = 0.506, p < 0.001, 

and n = 153). The red dots in this figure will be 

discussed below. The global temperature as 

well as CO2 shows a two-step rise that 

translates into a two-peak pattern in the 

detrended series. The first peak is at 14 ka, 

that is during the Bølling - Allerød phase, and 

the second peak occurs at 10 ka during the 

Holocene, cf. graphs in Shakun et al. (2012). 

Carbon dioxide, CO2, appears to be 

consistently leading temperature from 

approximately 20.1 ka to 6 ka, with the 

exception of a short period from 15.1 ka to 

15.4 ka. Thus, CO2 is leading during both peaks 

periods (Figure 4C). During the full period, CO2 



leads temperature significantly 92% of the time.  

 

Figure 4. Global deglaciation: CO2 versus TEMP- deglaciation- smoothed series  
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Figure 4. Leading and lagging relations. A. Time series from global composite smoothed CO2 

and smoothed temperature (TEMP) normalized to unit standard deviation. The red dots 

show the start and end of the cumulative counting of angles until the sum is 2π. B. Northern 

and Southern Hemispheres: temperature series. The circle indicates the section where raw 

series were included to see details. C. Global composite: Leading – lagging LL relations as 

angles. The gray bars show LL strength relative to confidence limits (‒CI, + CI), and the black 

bars show angles. D. Northern and Southern Hemispheres: The gray bars show LL strength 

relative to confidence limits (‒CI, + CI), and the black bars show angles. E. Global composite: 

Cycle length and phase shift. Cycle lengths, black dots > 10 kyr have been removed. The cycle 

lengths are 3.3 kyr ± 3.4 (time steps 33 ± 34), and the phase shifts are 0.8 ± 0.6 kyr. F. 

Northern and Southern Hemispheres: Cycle length and phase shift. Cycle lengths, black dots 

> 200 kyr have been removed. The cycle lengths are 30.5 ± 20.5 kyr (61 and 41 time steps), 

and the phase shifts are 5.8 ± 3.3 kyr. 

 

 

The significant cycle lengths we find 

with the LL method are in the range 20 to 40 

time steps. One time step corresponds to 100 

years, and thus cycle lengths are 2 to 4 kyr 

(3.3 ±. 3.4 kyr). This compares well with the 

distance between the peaks in Figure 4A 

shown by the red dots. This range of cycle 

length can be compared to cycle lengths for 

the series found in the PSD of Antarctica and 

Greenland series (time steps here are 500 

years, Figures 1C and D). There are several 

shorter cycles of 6 to 8 time steps (3 to 4 kyr) 

found in the PSD graphs corresponding to the 

common cycle lengths found with the LL 

method. There are also cycles of 17 and 26 

time steps for CO2 and temperature in 

Antarctica corresponding to 8.5 kyr and 13 

kyr. The phase shift is 0.9 ± 0.6 kyr. There are 

cycles of 17 and 23 steps for temperature and 

CH4 corresponding to 8.5 kyr and 11.5 kyr. For 

cycles defined by the cumulative angle 

method (the saw-toothed patterns in Figure 

4E), the cycle lengths are approximately 3-4 

kyr. 

4.4 Temperatures in Antarctica and 

Greenland 

Antarctic temperature generally leads 

Greenland temperature. However, there are a 

few exceptions, as shown in Figures 4B and D. 

In particular, Antarctic temperature leads 

Greenland temperature just preceding the 

Bølling - Allerød period from 14.7 ka to 12.7 

ka. (Since our smoothing algorithm removed 

the B-A pattern, we included the raw series of 

the B-A pattern in Figure 3B and Figure 4B.) 

Note that TEMP-A and TEMP-G are in phase 

from 103.5 ka to 79 ka but are anti-phase 

from 61 ka to 41 ka. 

The partial ellipse method identifies cycle 

lengths of 31 ± 21 kyr, whereas the cumulative 

angle method identifies common cycles of 35 

kyr to 44 kyr. The PSD graphs for Antarctic and 

Greenland identify a common cycle at ≈ 12 - 

13 kyr. Thus, the short cycles found in the PSD 

graphs are also identified as common cycles 

for CO2 and temperature. The cycle lengths 

correspond fairly well with the distance 

between peaks in the series (Figure 4B). Phase 

shifts were on average 2.4 kyr (4.6 ± 6.2 time 

steps).   



5. Discussion 
We first discuss the results for the Vostok 

core data from Antarctica and for the NGRIP 

data from Greenland. Thereafter, we discuss 

the last global deglaciation period based on 

the data compiled by Shakun et al. (2012). 

Lastly, we compare results based on the three 

datasets. 

For both the Antarctica series and 

Greenland series, CO2 tends to be a leading 

variable to temperature during the coldest 

part of the ice ages and in short-term pauses 

during cooling. The Bølling-Allerød 

interstadial, 14.7 ka to 12.7 ka, is included in 

an apparent short-term pause. CO2 appears as 

a lagging variable during warm periods. 

Generally, the Antarctic temperatures lead the 

Greenland temperatures.  

5.1 Antarctica, period 400 ka to present 

We find that different LL relations 

between temperature, carbon dioxide, CO2, 

and methane, CH4, govern the cool glacial 

periods and the subsequent warm periods 

during the last 400 kyr. The glacial periods 

contain slowly cooling sequences typically 

lasting 60 kyr that are sometimes interrupted 

by short-term pauses lasting on average 8.7 ± 

4.3 kyr and thereafter followed by rapid 

deglaciation periods typically lasting 20 kyr. 

During the cool part of the ice ages, or 

during periods where freezing is halted, i.e., 

during the short-term pauses, CO2 comes 

before temperature. The pattern repeats itself 

during the four ice ages included in the 

Antarctica 400 kyr series (Figures 3A and C). 

Both the Vostok core series and the Parrenin 

et al. (2013) series (Supplementary material 5) 

show the characteristic patterns for CO2 and 

temperature, but in the Parrenin series, there 

are also short-time windows during glaciation 

(≈ 200 ka) and deglaciation (≈ 130 ka) when 

CO2 appears to lead temperature. We believe 

that the results for the hiatus-like time 

windows are more robust than the results for 

the rapid glaciation and deglaciation periods 

because the phase shift is more easily 

detected during slow temperature and CO2 

changes.  

The short-term pauses can be 

compared to the return time for the last 

glacial Antarctic warming events (Antarctic 

isotope maximum, AIM) of 6 to 10 kyr 

identified by Kawamura et al. (2017). These 

events also occurred during the seven 

interglacial stages from 700 ka to present.   

The cycle lengths for the four ice ages 

were approximately 90 kyr, corresponding to 

the cycle lengths that can be identified visually 

in Figure 3A and to the cycle lengths of 100 kyr 

identified in several studies (e.g., Imbrie et al. 

(1992); Loulergue et al. (2008) for CH4). Phase 

shifts between CO2 and temperature were 

approximately 6.2 ± 14.1 kyr over the whole 

period. The shifts are smaller than the time 

constant of approximately 15 kyr required for 

climate inertia to produce 100 kyr cycles 

suggested by Imbrie et al. (1993). 

Furthermore, the shift can be compared to the 

smaller uncertainties in the gas-age 

differences of 0.4 to 0.6 kyr (Parrenin et al. 

2013), supporting the LL relations as real.  

Our results for the four ice ages 

contrast with earlier results. For example, 

Stips et al. (2016) found that on palaeoclimate 

time scales of ≈ 800 ka, temperature changes 

cause subsequent CO2 / CH4 changes. Over 

more recent time windows, both Cuffey and 

Vimeux (2001) and Parrenin et al. (2013) 

found that CO2 and temperature change 

synchronously. It is interesting that methane 

leads CO2 61% of the time because the causes 

for CH4 variation are quite probably different 

from the causes for CO2 variations. For 

example, Monnin et al. (2001) and Alley et al. 

(2002) suggest that CH4 is probably related to 

wetland expansion. Loulergue et al. (2008) 



add volatile organic compound emissions from 

tropical forests. However, CO2 is related to 

deep-water ocean circulations. In addition to 

giving a description of the CO2 - temperature 

relations during the last 400 kyr, the results 

also support the dating of the time series.  

One method to validate the 

chronology in ice-core time series is to tie 

events in the series to endogenous events 

(e.g., geomagnetic events and volcanic dust 

records (Kawamura et al. 2017)). Here, we 

identify a pattern of events related to the 

interaction between CO2 and temperature, 

which repeats itself during four successive 

glaciation periods. If the time series for 

temperature and CO2 (data are observed at 

two different time scales) had been in error, 

the LL relations for CO2 / temperature would 

probably not repeat for each ice age. 

5.2 Greenland, period 120 ka to present 

For the Greenland series, we do not 

have CO2 observations because the ice cores 

are acidic and have large impurity contents 

(Barnola et al. 1995). We therefore used the 

CO2 values found in the Antarctica core as 

representative for CO2 in the global 

atmosphere. The LL relations between CO2 

and temperature seem to show similar 

patterns in Antarctica as in Greenland, 

supporting the finding that the CO2 values 

found in the Vostok ice core are 

representative for CO2 in the global 

atmosphere. The Greenland time series tell 

the same story as Antarctica time series for 

the last cooling period and the subsequent 

warming period. During the cool period and 

short-term pauses, CO2 and CH4 lead the 

temperature. Our estimates based on the 

common cycle lengths for CO2 and TEMP show 

that the cycle length of 37.7 ± 34 kyr is a little 

less than the orbital frequencies of 41 kyr 

reported by Loulergue et al. (2008): 100, 41, 

23 and 19 kyr for methane.  

There are three time windows that 

show different and contrasting patterns in the 

Greenland series: the first period is from 103.5 

ka to 79 ka, the second period is from 61.5 ka 

to 43.5 ka, and the third period is from 18 ka 

to 8.5 ka. During the first of these periods, 

103.5 ka to 79 ka, both CO2 and TEMP- A are 

in phase with TEMP- G (β = 1.1 and β = 0.75). 

During the second period, 61.5 ka to 43.5 ka, 

CO2 and TEMP-G are in antiphase (β = –0.86), 

and TEMP-A and TEMP-G are in antiphase (β 

=– 0.65). The data do not allow for a physical 

explanation of this difference, but the second 

period is closer to the turning point for 

deglaciation.  

The third time window starts during 

the last deglaciation period at approximately 

18 ka and ends at approximately 8.5 ka. 

During this period, which includes the Bølling - 

Allerød, B-A, warming period from 14.7 ka to 

12.7 ka, CO2 leads temperature. At the start of 

this period, at 14 ka, Lora et al. (2016) found 

that there was a rapid loss of ice that caused 

an abrupt reorganization of North Pacific and 

Western North American ocean circulations. 

Su et al. (2016) have shown that upwelling of 

warm salty water to the surface in the North 

Atlantic may have contributed to the 

warming. During a period that just precedes 

the period where CO2 leads temperature, 25.5 

ka to 17 ka, there is also a shift such that the 

Southern Hemisphere temperature lags the 

Northern Hemisphere temperature, i.e., TEMP 

– A lags TEMP – G.  

5.3 The global deglaciation period, 22 

ka – 6 ka. 

Our results for the deglaciation period 

are based on the time series for global 

deglaciation supplied by Shakun et al. (2012) 

and correspond well with the results found by 

Shakun et al. (2012). We use data for CO2 

transferred to AICC2012. They show that 

increasing CO2 concentrations are either 

synchronous or preceding global warming 



during the last deglaciation, that is, 22 ka to 

approximately 6 ka. They found that the 

period when CO2 consistently leads 

temperature starts at 17.5 ka, and they 

conclude that CO2 was therefore not the cause 

of initial warming. We found that CO2 mostly 

leads temperature by 22 ka but that there is a 

short period of 15.4 ka to 15.1 ka, during 

which TEMP leads CO2 by 0.9± 0.6 kyr. 

These results support our first 

hypothesis that CO2 and temperature shift 

between being leading and lagging variables in 

Antarctica and in Greenland. Both in 

Antarctica and Greenland, a leading role for 

CO2 appears to be almost but not exclusively 

related to a decrease in CO2 and a short-term 

pause in temperature change. The 

temperatures in Antarctica are leading the 

temperatures in the Northern Hemisphere. 

The mechanisms causing this pattern have 

been discussed (e.g., He et al. (2013); Alley et 

al. (2002)). However, there are short periods 

during which the LL relation is reversed, in 

particular from 26 ka to 17 ka, that is, at the 

turning point for the last deglaciation period.   

Our second hypothesis was only 

partially supported. The patterns we found for 

the short-term pauses in the Antarctica series 

were also found in the Greenland series. 

However, there also seem to be short-term 

pauses associated with deglaciation (the B-A 

period and its extension). As with the other 

short-term pauses, there is a change in the LL 

roles of CO2 and temperature. The reason that 

short term pauses were not shown during the 

Antarctic deglaciation may be that the 

resolution is too small (500 years). Neither did 

we see pronounced changes in LL roles for CO2 

and temperature in the global dataset. 

However, such changes may still be present 

because the series do not include much of the 

preceding glaciation.  

There is one caveat to the 

interpretation of the LL relations. Since both 

heat transfer in the ocean and warming 

caused by CO2 in the atmosphere impact 

surface temperatures, temperature changes 

related to ocean heat transfer may cause the 

global (and hemisphere) temperature 

anomalies to peak before CO2 peaks. Further 

disentangling the effects of ocean heat 

warming and warming caused by CO2 should 

therefore be an important issue. 

5.4 Antarctica and Greenland compared 

There are close connections between 

temperature variations in Antarctica and the 

Arctic, and the term ‘see-saw’ has been used 

to describe an apparent inverse relation 

between peaks and troughs in temperature 

variations between the two hemispheres 

(Broecker 1998; Stocker 1998; Chylek et al. 

2010). The term ‘see-saw’ is used for two 

distinct antiphase events. Here, we add a third 

phenomenon that shows a see-saw-like 

pattern and that also shows a particular LL 

relation with CO2. 

5.4.1 The bipolar see-saw 

First, a twentieth century antiphase 

pattern in the multidecadal temperature 

anomalies in the Arctic and Antarctic regions 

was identified by Chylek et al. (2010) as a 

bipolar see-saw. The cycle length was 

estimated to be 70 years. Second, a 

multimillennial antiphase pattern was 

identified and given a physical rationale by 

Stocker and Johnsen (2003) and Siddall et al. 

(2006). The antiphase pattern lasted from 

between 60 ka and 25 ka and showed cycle 

lengths of approximately 1.5 – 2 kyr. Third, in 

the present study, we find a see-saw-like 

pattern in the smoothed time series between 

approximately 60 ka and 40 ka. The cycle 

length is approximately 20 kyr. Furthermore, 

there is a see-saw pattern, i.e., an anti-phase 

between CO2 and Greenland temperature; 

that is, when the Greenland temperature 



shows a peak, CO2 shows a trough, similar to 

in the Antarctic region. 

There are several explanations for the 

see-saw phenomenon. The Atlantic meridional 

overturning has a role in most explanations 

(e.g., Wang et al. (2015)), but Yao et al. (2017) 

assign a role for multiple ocean surface 

temperatures. The effect of ocean warming in 

addition to the role of greenhouse gases 

(GHG) may explain some of the changes 

between leading and lagging roles for CO2 and 

temperature. For example, the increase in 

Northern Hemisphere warming during the 

period 1980 to 2009 (Wang et al. 2015; Yao et 

al. 2017) may contribute to a global 

temperature anomaly (GTA), being a leading 

variable to CO2 during the period 1980 to 

2010. (Kuo et al. 1990; Seip and Grøn 2017). 

For the two time windows 103.5 to 79 

ka and 60 to 41 ka that both include 

approximately one cycle in temperature and 

CO2, there are differences in their leading – 

lagging patterns. We suggest that in the see-

saw context for Northern and Southern 

Hemisphere temperatures, the most likely 

explanation is that TEMP-A leads TEMP-G (as 

seen visually and numerically in Figure 4B, the 

time window 103 ka to 79 ka) but that the lag 

time for TEMP-G is larger during the time 

window from 61 ka to 41 ka, producing a see-

saw-like pattern. LL relations just express the 

time it takes a process to impact a second 

process relative to their (common) cycle 

lengths, but normally the term “leading” is 

restricted to series that peak less than ¼ λ 

before the response series peak. The term 

‘see-saw’ suggests that the process can go 

both ways. It would be interesting to examine 

if the see-saw signature in general also implies 

an antiphase between CO2 and Greenland 

temperature. 

Based on the descriptions of causes 

for the glaciation- deglaciation processes as 

interactions between large global regions 

(land and oceans), it would be tempting to 

invoke both a control knob (e.g., orbital 

frequencies) and a cellular automata 

mechanism (Fleming 2017). With the latter 

mechanism, fractal like patterns may occur 

and indicate short-term pauses and see-saw 

effects.  

5.5 The method 
There is no canonical rule for 

identifying time series that represent 

candidate causes and effects within series that 

consist of superimposed signals. For example, 

some interactions may result in time series 

that express dynamic chaos and thus be 

impossible to extract uniquely, (e.g., Sugihara 

and May (1990); Tømte et al. (1998)). To our 

knowledge, most previous decomposition 

methods examine one series at a time. With 

the present method, we identify LL relations 

between paired series. If the two series show 

consistent LL relations for more than 7 time 

steps, the assumption that the two series 

represent real processes that are causally 

related is strengthened. LL relations for longer 

than 7 time steps have a probability of being 

caused by chance of p < 0.05 (Seip and Grøn 

2017). 

A possibility remains that our findings are 

artifacts of the dating uncertainties and of the 

method. However, the LL pattern we found for 

CO2 and temperature is robust with respect to 

single core (the Vostok ice core) and multiple 

core time series (Parrenin et al. (2013)). The 

method is conceptually simple, and the 

numerical values for LL relations can often be 

seen to correspond with the LL relations 

shown in the time series. Furthermore, in the 

Antarctica time series, we see similar patterns 

repeat with each glaciation period. This 

indicates that the method provides correct 

results.  



6. Conclusions 
The leading-lagging method presented 

here allows for detailed examinations of LL 

relations between paired time series for global 

warming variables. Applying the method to 

palaeontological time series from Antarctica 

and Greenland shows that there are several 

periods where carbon dioxide, CO2, leads 

temperature even if the main pattern is that 

temperature is a leading variable to CO2. The 

CO2 leading periods can be associated with 

events in the Southern and Northern 

Hemisphere temperature anomalies. In 

particular, we find that CO2 leads temperature 

during short-term pauses in the glaciation-

deglaciation sequence. During the recent 

deglaciation period, CO2 leads temperature 

during the Bølling-Allerød warming, which, 

together with the following Younger Dryas 

period, appears as a short-term pause in 

temperature change during the last 

deglaciation. We find that there is also a see-

saw pattern on a multi-millennial time scale 

and that this see-saw pattern is accompanied 

by an antiphase pattern for CO2 relative to the 

Greenland temperature.      

 

  



Supplementary material 
S1. Histogram over time step lengths in the long time series.  

S2. Equation 1 in the manuscript presented in Excel format 

S3. Antarctica CH4 versus TEMP  

S4. Antarctica CO2 versus CH4 

S5. Leading and lagging relations based on the data set of Parrenin et al. (2013) 

S6. Global deglaciation. Old data for CO2 supplied by Shakun et al. (2012) 

Supplementary material for the referee. 
S7. Method description. Old version 

S8. Fractal time series based on a cellular automata simulation. After Fleming (2017). 

S9. Leading indicators in economics 

Data availability 

All the data and calculations are available and are included in an Excel file.   

  



References 

 

Alley, R. B., E. J. Brook and S. Anandakrishnan (2002). "A northern lead in the orbital band: north-
south phasing of Ice-Age events." Quaternary Science Reviews 21(1-3): 431-441. 

Barker, S., G. Knorr, R. L. Edwards, F. Parrenin, A. E. Putnam, L. C. Skinner, E. Wolff and M. Ziegler 
(2011). "800,000 Years of Abrupt Climate Variability." Science 334(6054): 347-351. 

Barnola, J. M., M. Anklin, J. Porcheron, D. Raynaud, J. Schwander and B. Stauffer (1995). "Co2 
Evolution during the Last Millennium as Recorded by Antarctic and Greenland Ice." Tellus 
Series B-Chemical and Physical Meteorology 47(1-2): 264-272. 

Broecker, W. S. (1998). "Paleocean circulation during the last deglaciation: A bipolar seesaw?" 
Paleoceanography 13(2): 119-121. 

Buizert, C., B. Adrian, J. Ahn, M. Albert, R. B. Alley, D. Baggenstos, T. K. Bauska, R. C. Bay, B. B. 
Bencivengo, C. R. Bentley, E. J. Brook, N. J. Chellman, G. D. Clow, J. Cole-Dai, H. Conway, E. 
Cravens, K. M. Cuffey, N. W. Dunbar, J. S. Edwards, J. M. Fegyveresi, D. G. Ferris, J. J. 
Fitzpatrick, T. J. Fudge, C. J. Gibson, V. Gkinis, J. J. Goetz, S. Gregory, G. M. Hargreaves, N. 
Iverson, J. A. Johnson, T. R. Jones, M. L. Kalk, M. J. Kippenhan, B. G. Koffman, K. Kreutz, T. W. 
Kuhl, D. A. Lebar, J. E. Lee, S. A. Marcott, B. R. Markle, O. J. Maselli, J. R. McConnell, K. C. 
McGwire, L. E. Mitchell, N. B. Mortensen, P. D. Neff, K. Nishiizumi, R. M. Nunn, A. J. Orsi, D. R. 
Pasteris, J. B. Pedro, E. C. Pettit, P. B. Price, J. C. Priscu, R. H. Rhodes, J. L. Rosen, A. J. Schauer, 
S. W. Schoenemann, P. J. Sendelbach, J. P. Severinghaus, A. J. Shturmakov, M. Sigl, K. R. 
Slawny, J. M. Souney, T. A. Sowers, M. K. Spencer, E. J. Steig, K. C. Taylor, M. S. Twickler, B. H. 
Vaughn, D. E. Voigt, E. D. Waddington, K. C. Welten, A. W. Wendricks, J. W. C. White, M. 
Winstrup, G. J. Wong, T. E. Woodruff and W. D. P. Members (2015). "Precise interpolar 
phasing of abrupt climate change during the last ice age." Nature 520(7549): 661-U169. 

Chylek, P., C. K. Folland, G. Lesins and M. K. Dubey (2010). "Twentieth century bipolar seesaw of the 
Arctic and Antarctic surface air temperatures." Geophysical Research Letters 37. 

Cuffey, K. M. and F. Vimeux (2001). "Covariation of carbon dioxide and temperature from the Vostok 
ice core after deuterium-excess correction." Nature 412(6846): 523-527. 

Delmas, R. J. (1993). "A Natural Artifact in Greenland Ice-Core Co2 Measurements." Tellus Series B-
Chemical and Physical Meteorology 45(4): 391-396. 

DeVries, T., M. Holzer and F. Primeau (2017). "Recent increase in carbon uptake driven by weaker 
upper -ocean overturning." Nature 542: 315- 220. 

Ellner, S. P. and P. Turchin (2005). "When can noise induce chaos and why does it matter: a critique." 
OIKOS 111(3): 620-631. 

Fleming, S. W. (2017). Where the river flows : scientific reflections on Earth's waterways. Princeton, 
New Jersey, Princeton University Press. 

Granger, C. W. J. (1969). "Investigating causal relations by econometric models and cross - spectral 
methods." Econometrica 37(3): 424-438. 

He, F., J. D. Shakun, P. U. Clark, A. E. Carlson, Z. Y. Liu, B. L. Otto-Bliesner and J. E. Kutzbach (2013). 
"Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation." 
Nature 494(7435): 81-85. 

Huang, N. E., Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung and H. H. 
Liu (1998). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and 
non-stationary time series analysis." Proceedings of the Royal Society a-Mathematical 
Physical and Engineering Sciences 454(1971): 903-995. 

Huybers, P. and C. Langmuir (2009). "Feedback between deglaciation, volcanism, and atmospheric 
CO2." Earth and Planetary Science Letters 286(3-4): 479-491. 

Huybers, P. and C. H. Langmuir (2017). "Delayed CO2 emissions from mid-ocean ridge volcanism as a 
possible cause of late-Pleistocene glacial cycles." Earth and Planetary Science Letters 457: 
238-249. 



Imbrie, J., A. Berger, E. A. Boyle, S. C. Clemens, A. Duffy, W. R. Howard, G. Kukla, J. Kutzbach, D. G. 
Martinson, A. Mcintyre, A. C. Mix, B. Molfino, J. J. Morley, L. C. Peterson, N. G. Pisias, W. L. 
Prell, M. E. Raymo, N. J. Shackleton and J. R. Toggweiler (1993). "On the Structure and Origin 
of Major Glaciation Cycles .2. The 100,000-Year Cycle." Paleoceanography 8(6): 699-735. 

Imbrie, J., E. A. Boyle, S. C. Clemens, A. Duffy, W. R. Howard, G. Kukla, J. Kutzbach, D. G. Martinson, A. 
McIntyre, A. C. Mix, B. Molfino, J. J. Morley, L. C. Peterson, N. G. Pisias, W. L. Prell, M. E. 
Raymo, N. J. Shackleton and J. R. Toggweiler (1992). "On the Structure and Origin of Major 
Glaciation Cycles 1. Linear Responses to Milankovitch Forcing." Paleoceanography 7(6): 701-
738. 

Johnston, T. C. and R. B. Alley (2006). "Possible role for dust or other northern forcing of ice-age 
carbon dioxide changes." Quaternary Science Reviews 25(23-24): 3198-3206. 

Kawamura, K., A. Abe-Ouchi, H. Motoyama, Y. Ageta, S. Aoki, N. Azuma, Y. Fujii, K. Fujita, S. Fujita, K. 
Fukui, T. Furukawa, A. Furusaki, K. Goto-Azuma, R. Greve, M. Hirabayashi, T. Hondoh, A. Hori, 
S. Horikawa, K. Horiuchi, M. Igarashi, Y. Iizuka, T. Kameda, H. Kanda, M. Kohno, T. Kuramoto, 
Y. Matsushi, M. Miyahara, T. Miyake, A. Miyamoto, Y. Nagashima, Y. Nakayama, T. 
Nakazawa, F. Nakazawa, F. Nishio, I. Obinata, R. Ohgaito, A. Oka, J. Okuno, J. Okuyama, I. 
Oyabu, F. Parrenin, F. Pattyn, F. Saito, T. Saito, T. Saito, T. Sakurai, K. Sasa, H. Seddik, Y. 
Shibata, K. Shinbori, K. Suzuki, T. Suzuki, A. Takahashi, K. Takahashi, S. Takahashi, M. Takata, 
Y. Tanaka, R. Uemura, G. Watanabe, O. Watanabe, T. Yamasaki, K. Yokoyama, M. Yoshimori, 
T. Yoshimoto and D. F. I. C. Project (2017). "State dependence of climatic instability over the 
past 720,000 years from Antarctic ice cores and climate modeling." Science Advances 3(2). 

Kestin, T. S., D. J. Karoly, J. I. Yang and N. A. Rayner (1998). "Time-frequency variability of ENSO and 
stochastic simulations." Journal of Climate 11(9): 2258-2272. 

Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini and D. Chavas 
(2015). "Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First 
Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios." Journal of Climate 28(18): 
7203-7224. 

Kuo, C., C. Lindberg and D. J. Thomson (1990). "Coherence Established between Atmospheric Carbon-
Dioxide and Global Temperature." Nature 343(6260): 709-714. 

Lora, J. M., J. L. Mitchell and A. E. Tripati (2016). "Abrupt reorganization of North Pacific and western 
North American climate during the last deglaciation." Geophysical Research Letters 43(22): 
11796-11804. 

Loulergue, L., A. Schilt, R. Spahni, V. Masson-Delmotte, T. Blunier, B. Lemieux, J. M. Barnola, D. 
Raynaud, T. F. Stocker and J. Chappellaz (2008). "Orbital and millennial-scale features of 
atmospheric CH4 over the past 800,000 years." Nature 453(7193): 383-386. 

Luthi, D., M. Le Floch, B. Bereiter, T. Blunier, J. M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. 
Fischer, K. Kawamura and T. F. Stocker (2008). "High-resolution carbon dioxide concentration 
record 650,000-800,000 years before present." Nature 453(7193): 379-382. 

Ma, C., S. R. Meyers and B. B. Sageman (2017). "Theory of chaotic orbital variations confirmed by 
Cretaceous geological evidence." Nature 542: 408-470. 

Monnin, E., A. Indermuhle, A. Dallenbach, J. Fluckiger, B. Stauffer, T. F. Stocker, D. Raynaud and J. M. 
Barnola (2001). "Atmospheric CO2 concentrations over the last glacial termination." Science 
291(5501): 112-114. 

Parrenin, F., V. Masson-Delmotte, P. Kohler, D. Raynaud, D. Paillard, J. Schwander, C. Barbante, A. 
Landais, A. Wegner and J. Jouzel (2013). "Synchronous Change of Atmospheric CO2 and 
Antarctic Temperature During the Last Deglacial Warming." Science 339(6123): 1060-1063. 

Patra, P. K., S. Maksyutov, M. Ishizawa, T. Nakazawa, T. Takahashi and J. Ukita (2005). "Interannual 
and decadal changes in the sea-air CO2 flux from atmospheric CO2 inverse modeling." Global 
Biogeochemical Cycles 19(4). 

Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. 
Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. 



Pepin, C. Ritz, E. Saltzman and M. Stievenard (1999). "Climate and atmospheric history of the 
past 420,000 years from the Vostok ice core, Antarctica." Nature 399(6735): 429-436. 

Seip, K. L. and O. Grøn (2016). "Leading the Game, Losing the Competition: Identifying Leaders and 
Followers in a Repeated Game." Plos One 11(3). 

Seip, K. L. and Ø. Grøn (2017). "A new method for identifying possible causal relationships between 
CO2, total solar irradiance and global temperature change." Theoretical and Applied 
Climatology 127: 923-938. 

Seip, K. L. and Ø. Grøn (2017). "On the statistical nature of distinct cycles in global warming 
variables." Climate dynamics. 

Seip, K. L. and R. McNown (2007). "The timing and accuracy of leading and lagging business cycle 
indicators: a new approach." International journal of forecasting 22: 277-287. 

Shakun, J. D., P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Y. Liu, B. Otto-Bliesner, A. Schmittner and 
E. Bard (2012). "Global warming preceded by increasing carbon dioxide concentrations 
during the last deglaciation." Nature 484(7392): 49-54. 

Siddall, M., T. F. Stocker, T. Blunier, R. Spahni, J. F. McManus and E. Bard (2006). "Using a maximum 
simplicity paleoclimate model to simulate millennial variability during the last four glacial 
periods." Quaternary Science Reviews 25(23-24): 3185-3197. 

Stevens, N. T., B. R. Parizek and R. B. Alley (2016). "Enhancement of volcanism and geothermal heat 
flux by ice-age cycling: A stress modeling study of Greenland." Journal of Geophysical 
Research-Earth Surface 121(8): 1456-1471. 

Stips, A., D. Macias, C. Coughlan, E. Garcia-Gorriz and X. San Liang (2016). "On the causal structure 
between CO2 and global temperature." Scientific Reports 6. 

Stocker, T. F. (1998). "Climate change - The seesaw effect." Science 282(5386): 61-62. 
Stocker, T. F. and S. J. Johnsen (2003). "A minimum thermodynamic model for the bipolar seesaw." 

Paleoceanography 18(4). 
Su, Z., A. P. Ingersoll and F. He (2016). "On the Abruptness of Bolling-Allerod Warming." Journal of 

Climate 29(13): 4965-4975. 
Sugihara, G., R. May, H. Ye, C. H. Hsieh, E. Deyle, M. Fogarty and S. Munch (2012). "Detecting 

Causality in Complex Ecosystems." Science 338(6106): 496-500. 
Sugihara, G. and R. M. May (1990). "Nonlinear forecasting as a way of distinguishing chaos from 

measurement errors in time series." Nature 344: 731-741. 
Tang, Z., X. F. Shi, X. Zhang, Z. H. Chen, M. T. Chen, X. Q. Wang, H. Z. Wang, H. L. Liu, G. Lohmann, P. 

Y. Li, S. L. Ge and Y. H. Huang (2016). "Deglacial biogenic opal peaks revealing enhanced 
Southern Ocean upwelling during the last 513 ka." Quaternary International 425: 445-452. 

Tømte, O., K. L. Seip and N. Christophersen (1998). "Evidence that loss in predictability (and possibly 
dynamic chaos) increase with increasing trophic level in aquatic ecosystems." Oikos 82: 325-
332. 

Wang, Z. M., X. D. Zhang, Z. Y. Guan, B. Sun, X. Yang and C. Y. Liu (2015). "An atmospheric origin of 
the multi-decadal bipolar seesaw." Scientific Reports 5. 

Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak and X. Y. Chen (2011). "On the time-varying trend 
in global-mean surface temperature." Climate Dynamics 37(3-4): 759-773. 

Yao, S. L., J. J. Luo, G. Huang and P. F. Wang (2017). "Distinct global warming rates tied to multiple 
ocean surface temperature changes." Nature Climate Change 7(7): 486-+. 



 


