
Reservoir Computing Using Nonuniform

Binary Cellular Automata

Stefano Nichele

Department of Computer Science
Oslo and Akershus University College of Applied Sciences
Oslo, Norway
stefano.nichele@hioa.no

Magnus S. Gundersen

Department of Computer and Information Science
Norwegian University of Science and Technology
Trondheim, Norway
magnugun@stud.ntnu.no

The reservoir computing (RC) paradigm utilizes a dynamical system (a
reservoir) and a linear classifier (a readout layer) to process data from
sequential classification tasks. In this paper, the usage of cellular
automata (CAs) as a reservoir is investigated. The use of CAs in RC has
been showing promising results. In this paper, it is shown that some cel-
lular automaton (CA) rules perform better than others and the reservoir
performance is improved by increasing the size of the CA reservoir
itself. In addition, the usage of parallel loosely coupled (nonuniform)
CA reservoirs, where each reservoir has a different CA rule, is investi-
gated. The experiments performed on nonuniform CA reservoirs pro-
vide valuable insights into CA reservoir design. The results herein show
that some rules do not work well together, while other combinations
work remarkably well. This suggests that nonuniform CAs could repre-
sent a powerful tool for novel CA reservoir implementations.

Introduction1.

Complex real-life problems often require processing of time series
data. Systems that process such data must remember inputs from pre-
vious time steps in order to make correct predictions in a future time
step; that is, they must have some sort of memory. Recurrent neural
networks (RNNs) have been shown to possess such memory [1].

Unfortunately, training RNNs using traditional methods like gradi-
ent descent is difficult [2]. A fairly novel approach called reservoir
computing (RC) has been proposed [3, 4] to mitigate this problem.
RC splits the RNN into two parts: the untrained recurrent part (a
reservoir) and the trainable feed-forward part (a readout layer).

In this paper, an RC system is investigated, where a cellular
automaton (CA) [5] computational substrate is used as the reservoir.

https://doi.org/10.25088/ComplexSystems.26.3.225

mailto:stefano.nichele@hioa.no
mailto:magnugun@stud.ntnu.no
https://doi.org/10.25088/ComplexSystems.26.3.225

This approach to RC was proposed in [6] and further studied in
[7–9]. The term ReCA is used as an abbreviation for “reservoir com-
puting using cellular automata,” and is adopted from the latter paper.

In the work herein, a fully functional ReCA system is implemented
and extended into a parallel nonuniform CA reservoir system (loosely
coupled). Various configurations of parallel reservoirs are tested and
compared to the results of a single-reservoir system. This approach is
discussed, and insights into different configurations of CA reservoirs
are given.

Background2.

Reservoir Computing2.1

Feedforward neural networks (NNs) are neural network models with-
out feedback connections; that is, they are not aware of their own
outputs [1]. They have gained popularity because of their ability to be
trained to solve classification tasks. Examples include image classifica-
tion [10] or playing the board game Go [11]. However, when trying
to solve problems that include sequential data, such as sentence analy-
sis, they often fall short [1]. For example, sentences may have dif-
ferent lengths, and the important parts may be spatially separated
even for sentences with equal semantics. Recurrent neural networks
(RNNs) can overcome this problem [1], being able to process sequen-
tial data through memory of previous inputs that are remembered by
the network. This is done by relieving the NN of the constraint of not
having feedback connections. However, networks with recurrent
connections are notoriously difficult to train by using traditional
methods [2].

Reservoir computing (RC) is a paradigm in machine learning that
combines the powerful dynamics of an RNN with the trainability of a
feedforward NN. The first part of an RC system consists of an
untrained RNN, called a reservoir. This reservoir is connected to a
trained feedforward neural network, called a readout layer. This
setup can be seen in Figure 1.

The field of RC has been proposed independently by two
approaches, namely echo state networks (ESN) [3] and liquid state
machines (LSM) [4]. By examining these approaches, important prop-
erties of reservoirs are outlined.

Perhaps the most important feature is the echo state property [3].
Previous inputs “echo” through the reservoir for a given number of
time steps after the input has occurred and thereby slowly disappear
without being amplified. This property is achieved in traditional RC
approaches by clever reservoir design. In the case of ESN, this is

226 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

achieved by scaling of the connection weights of the recurrent nodes
in the reservoir [12].

Figure 1. General RC framework. Input X is connected to some or all of the
reservoir nodes. Output Y is usually fully connected to the reservoir nodes.
Only the output weights Wout are trained.

As discussed in [13], the reservoir should preferably exhibit edge
of�chaos behaviors [14], in order to allow for high computational
power [15].

Various Reservoir Computing Approaches2.2

Different RC approaches use reservoir substrates that exhibit the
desired properties. In [16] an actual bucket of water is implemented
as a reservoir for speech recognition, and in [17] the E. coli bacteria is
used as a reservoir. In [18] the primary visual cortex of an anes-
thetized cat was used as a reservoir, and in [19–21] unconventional
carbon nanotube materials have been configured as a reservoir
through artificial evolution. In [22, 23] an optoelectronic reservoir
implementation is presented. In [24] and more recently in [25], the
usage of random Boolean networks (RBNs) as reservoirs is explored.
Random Boolean networks can be considered as an abstraction of
CAs [26], and their use is thereby a related approach to the one pre-
sented in this paper.

Cellular Automata2.3

A cellular automaton (CA) is a computational model, first proposed
by Ulam and von Neumann in the 1940s [5]. It is a complex, decen-
tralized and highly parallel system, in which computations may
emerge [27] through local interactions and without any form of cen-
tralized control. Some CAs have been proved to be Turing complete

Reservoir Computing Using Nonuniform Binary Cellular Automata 227

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

[28], that is, having all properties required for computation: transmis-
sion, storage and modification of information [14].

A CA usually consists of a grid of cells, each cell with a current
state. The state of a cell is determined by the update function f, which
is a function of the neighboring states n. This update function is
applied to the CA for a given number of iterations. These neighbors
are defined as a number of cells in the immediate vicinity of the cell
itself.

In this paper, only one-dimensional elementary CAs are used. This
means that the CA only consists of a one-dimensional vector of cells,

named A, each cell with state S ∈ 0, 1. In all the figures in this

paper, S  0 is shown as white, while S  1 is shown as black. The
cells have three neighbors: the cell to the left, itself and the cell to the
right. A cell is a neighbor of itself by convention. The boundary condi-
tions at each end of the one-dimensional vector are usually solved by
wraparound, where the leftmost cell becomes a neighbor of the right-
most, and vice versa.

The update function f, hereafter denoted rule Z, works accordingly
by taking three binary inputs and outputting one binary value. This

results in 28  256 different rules. An example of such a rule is
shown in Figure 2, where rule 110 is depicted. The numbering of
the�rules follows the naming convention described by Wolfram [29],
where the resulting binary string is converted to a base-10 number.
The CA is usually updated in synchronous steps, where all the cells
in�the one-dimensional vector are updated at the same time. One
update is called an iteration, and the total number of iterations is
denoted by I.

Figure 2. Elementary CA rule 110. The figure depicts all the possible combina-
tions that the neighbors of a cell can have. A cell is its own neighbor by
convention.

The rules may be divided into four qualitative classes [29] that
exhibit different properties when evolved: class I evolves to a static
state, class II evolves to a periodic structure, class III evolves to
chaotic patterns, and class IV evolves to complex patterns. Class I and
II rules will fall into an attractor after a short while [14] and behave
in an orderly way. Class III rules are chaotic, which means that the

228 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

organization quickly descends into randomness. Class IV rules are the
most interesting ones, as they reside at a phase transition between
the�chaotic and ordered phase, that is, at the edge of chaos [14]. In
uniform CAs, all cells share the same rule, while nonuniform CA cells
are governed by different rules. Quasiuniform CAs are nonuniform,
with a small number of diverse rules.

Cellular Automata in Reservoir Computing2.4

As proposed in [6], CAs may be used as a reservoir of dynamical sys-
tems. The conceptual overview is shown in Figure 3. Such a system is
referred to as ReCA in [9], and the same name is therefore adopted in
this paper. The projection of the input to the CA reservoir can be
done in two different ways [6]. If the input is binary, the projection is
straightforward, where each feature dimension of the input is mapped
to a cell. If the input is nonbinary, the projection can be done by a
weighted summation from the input to each cell. See [7] for more
details.

Figure 3. General ReCA framework. Input X is projected onto the cells of a
one-dimensional CA, and the CA rule is applied for a number I of iterations.
In the figure, each iteration is stored and denoted by Ai. The readout layer

weights Wout are trained according to the target function. Figure adapted

from [7].

The time evolution of the reservoir can be represented as follows:

A1  ZA0

A2  ZA1

⋮

AI  ZAI-1,

Reservoir Computing Using Nonuniform Binary Cellular Automata 229

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

where Am is the state of the one-dimensional CA at iteration m and Z

is the CA rule that was applied. A0 is the initial state of the CA, often

an external input, as discussed later.
As discussed in Section 2.1, a reservoir often operates at the edge

of chaos [15]. Selecting CA-based reservoirs that exhibit this property
is trivial, as rules that lie inside Wolfram class IV can provide this
property. Additionally, to fully exploit such a property, all I iterations
of the CA evolution are used for classification, and this can be stated
as follows:

A  A1; A2; …AI,

where A is used for classification.

The ReCA system must also exhibit the echo state property, as
described in Section 2.1. This is done by allowing the CA to take
external input, while still remembering the current state. As described
in more detail later, ReCA systems address this issue by using a time-
transition function, named F, which allows some previous inputs to
echo through the CA.

Cellular automata also provide additional advantages to RC. In [7]
a speedup of 1.5–3x in the number of operations compared to the
ESN [30] approach is reported. This is mainly due to a CA relying on
bitwise operations, while ESN uses floating-point operations. This
can be additionally exploited by utilizing custom-made hardware like
FPGAs. In addition, if edge-of-chaos rules are selected, Turing-
complete computational power is present in the reservoir. Cellular
automata theoretical analysis is easier than RNNs, and it allows
Boolean logic and Galois field algebra.

Reservoir Computing Using Cellular Automata System

Implementations
2.5

Reservoir computing using CA systems is a very novel concept, and
therefore there are only a few implemented examples at the current
stage of research. Yilmaz [6, 7] has implemented an ReCA system
with uniform elementary CAs and Game of Life [31]. Bye [8] also
demonstrated a functioning ReCA system. Kleyko et al. [32] used a
uniform CA reservoir for image classification, and McDonald [33]
proposed a CA reservoir as an extreme learning machine. Nichele and
Molund [34] demonstrated that a CA reservoir can be used for deep
learning. The approaches used are similar; however, there are some
key differences, discussed in the following subsubsections.

Encoding and Random Mappings2.5.1

In the encoding stage, [7] used random permutations over the same
input vector. This encoding scheme can be seen in Figure 4. The per-
mutation procedure is repeated R number of times, because it was

230 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

experimentally observed that multiple random mappings improve
performance.

Figure 4. The encoding used in [7]. For a total of R permutations, X is ran-
domly mapped to vectors of the same size as the input vector itself.

In [8] a similar approach was used. The main difference is that the
input is mapped to a vector that is larger than the input vector itself.
The size of this mapping vector is given by a parameter “automaton
size.” This approach can be seen in Figure 5. The input bits are ran-
domly mapped to one of the bits in the mapping vector. The ones that
do not have any mapping to them are left at zero.

Figure 5. The encoding used in [8]. The input X is randomly mapped to a vec-
tor with size larger than the input vector itself. This mapping is done R times.
The size of the vector that the input is mapped to can be determined in two
ways. Either by “automaton size,” which explicitly gives the size of the vector

(in this case 8), or by the C parameter, where the size is given by C * Xpn  (in
this case C  2).

In the work herein, the approach described in [8] is used, but with
a modification. Instead of using the automaton size parameter, the C
parameter is introduced. The total length of the permutation is given
by the number C multiplied by the length of the input vector. In the
case of Figure 5, the automaton size would be 8, and C would be 2.

Feedforward or Recurrent2.5.2

Both a feedforward and a recurrent design were proposed in [7]. The
difference was whether the whole input sequence is presented to the
system in one chunk or step by step. Only a recurrent design was
described in [8]. Only recurrent architectures will be investigated in
this paper. This is because they are more in line with traditional

Reservoir Computing Using Nonuniform Binary Cellular Automata 231

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

RNNs and RC systems and are conceptually more biologically
plausible.

Concatenation of the Encoded Inputs before Propagating into

the Reservoir
2.5.3

After random mappings have been created, there is another difference
in the proposed approaches. In the recurrent architecture, [7] concate-
nates the R number of permutations into one large vector of length
(R * input_length) before propagating it in a reservoir of the same
width as this vector. The one-dimensional input vector at time step t
can be expressed as follows:

Xt
P  Xt

P1 ; Xt
P2 ; Xt

P3 ; …Xt
PR.

Xt
P

 is inserted into the reservoir as described in Section 2.4 and

then iterated I times. The iterations are then concatenated into the vec-
tor At, which is used for classification at time step t:

At  A1; A2; …AI.

A different approach was adapted in [8], the same one that was
also used by the feedforward architecture in [7], where the R different
permutations are iterated in separate reservoirs, and the different
reservoirs are then concatenated before they are used by the classifier.
The vector used for classification at time step t is as follows:

At  AP1
t ; AP2

t ; …APR
t ,

where APn
t

 is the vector from the concatenated reservoir. In this paper,

the recurrent architecture approach is used.

Time Transition2.5.4

In order to allow the system to remember previous inputs, a time tran-
sition function is needed to translate between the current time step
and the next. One possibility is to use normalized addition as the time
transition function, as shown in Figure 6, with F as the normalized
addition. This function works as follows: the cell values are added,
and if the sum is 2 (1 + 1) the output value becomes 1; if the sum is 0,
the output value becomes 0; if the sum is 1, the cell value is decided
randomly (0 or 1). The initial one-dimensional CA vector of the reser-
voir at time step t is then expressed as:

A0  FXt, AI
t-1

, t > 0,

where F may be any bitwise operation, Xt is the input from the

sequential task at time step t, and AI
t-1

 is the last iteration of the previ-

ous time step. At the first time step (t  0), the transition function is
bypassed, and the input Xt is used directly in the reservoir.

232 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

Figure 6. Time transition used in [7]. The sequence input Xt is combined with

the state of the reservoir at the last iteration at the previous time step AI
t-1.

The function F may be any bitwise function. Only one permutation is shown
in the figure to increase readability.

Another possibility is to use “permutation transition” as the time
transition function, as seen in Figure 7. Here, all cells that have a map-
ping to them (from the encoder) are bitwise filled with the value of
input vector X. If the cells do not have any mapping to them, the val-

ues from AI
t-1

 are inserted. This allows the CA to have memory across

time steps in sequential tasks. By adjusting the automaton size, or C
parameter, the interaction between each time step can be regulated.

Figure 7. Time transition by permutation. The input is directly copied from

Xt, according to the mapping from the encoder, as shown in Figure 5. The

other cells have their values copied from the last iteration of the previous time
step AI

t-1. Only one permutation is shown to increase readability.

The described approaches have different effects on the parameters
R and I and also the resulting size of the reservoir. This is relevant
when discussing the computational complexity of ReCA systems.

In this paper, the “permutation transition” is used.

Reservoir Computing Using Nonuniform Binary Cellular Automata 233

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

Experimental Setup3.

The basic architecture implemented in this paper is shown in Figure 8.
The encoder is based on the architecture described in [8]. In this
paper, the parameter C is introduced as a metric on how large the
resulting mapping vector should be. The concatenation procedure is
adapted from [7]. The vectors, after the encoding (random mappings),
are concatenated into one large vector. This vector is then propagated
into the reservoir, as described in Section 2.5.3. The time transition
function is adapted from [8]. The mappings from the encoder are
saved and used as a basis to which new inputs are mapped, as
described in Section 2.5.4. The values from the last step in the previ-
ous time step are directly copied. The classifier used in this paper is a
support vector machine, as implemented in the Python machine learn-
ing framework scikit-learn [35]. The code base that was used in this
paper is available for download [36].

An example run with rule 90 is shown in Figure 9. This visualiza-
tion gives valuable insights into how the reservoir behaves when
parameters are changed and makes it easier to understand the reser-
voir dynamics. Most natural systems come in the form of a temporal
system (sequential), that is, an input to the system depends on previ-
ous inputs. Classical feedforward architectures are known to have
issues with temporal tasks [1]. In order to test the ReCA system at a
temporal task, the five-bit task [37] is chosen in this paper. Such a
task has become a popular and widely used benchmark for RC, in par-
ticular because it tests the long short-term memory of the system. An
example dataset from this task is presented in Figure 10. The length
of the sequence is given by T. a1, a2, a3 and a4 are the input signals,

and y1, y2 and y3 are the output signals. At each time step t only one

input signal and one output signal can have the value 1. The values of
a1 and a2 at the first five time steps give the pattern that the system

will learn. The next Td time steps represent the distractor period,

where the system is distracted from the previous inputs. This is done
by setting the value of a3 to 1. After the distractor period, the a4 sig-

nal is fired, which marks the cue signal. The system is then asked to
repeat the input pattern on the outputs y1 and y2. The output y3 is

awaiting a signal, which is supposed to be 1 right until the input pat-
tern is repeated. More details on the five-bit memory task can be
found in [30].

234 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

Figure 8. Architecture of the implemented system. The encoding is done
according to the encoding scheme as shown in Figure 5, but with the slight
modification of the C parameter. The encoding is exemplified with R  2 and
C  2, which yields a size of eight for each permutation. The two permuta-
tions are then concatenated. At time step 1, there are no previous inputs, and
the concatenated vector is simply used as the first iteration of the CA reser-
voir. The rule Z is then applied for I iterations. At time step 2, the encoding
and concatenation are repeated. The time transition scheme is then applied,
as described in Figure 7. The procedure as described in time step 2 is repeated
until the end of the sequence.

Reservoir Computing Using Nonuniform Binary Cellular Automata 235

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

Figure 9. Example run of the ReCA system with rule 90. The run is done with
the parameters R  8, I  4 and C  5. The horizontal gray lines represent a
time step, in which the time transition function is applied to every bit. Time
flows downward. The visualization is produced with the ReCA system
described in this paper.

Figure 10. Example data from the five-bit task. The length of the sequence is
T. The signals a1, a2, a3 and a4 are input signals, while y1, y2 and y3 are out-

put signals. In the first five time steps the system learns the pattern. The sys-
tem is then distracted for Td time steps. After the cue signal is set, the system

is expected to reproduce the pattern that was learned.

Use of Parallel Cellular Automaton Reservoirs3.1

In this paper the use of parallel reservoirs is proposed. The concept is
shown in Figure 11. At the boundary conditions, that is, the cell at
the very end of the reservoir, the rule will treat the cell that lies within
the other reservoir as a cell in its own reservoir. This causes informa-
tion/computation to flow between the reservoirs (loosely coupled).

236 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

Figure 11. Concept behind parallel CA reservoirs. Iterations flow downward.
The rules are interacting at the middle boundaries and at the side boundaries,
where the CA wraps around.

By having different rules in the reservoirs, it might be possible to
solve different aspects of the same problem, or even two problems at
the same time. In [8], both the temporal parity and the temporal den-
sity task [30] are investigated.

Which rule is most suited for a task is still an open research ques-
tion. The characteristics and classes described in Section 2.3 are useful
knowledge; however, they do not precisely describe why some rules
perform better than others on different tasks. In Figure 12, an exam-
ple run of the parallel system is shown, with rule 90 on the left and
rule 182 on the right. This visualization gives useful insights on how
the rules interact.

Figure 12. Example run of the ReCA system with rule 90 on the left and
rule�182 on the right. Information is allowed to flow between the reservoirs.
The run is done with the parameters R  8, I  4 and C  5. The horizontal
gray lines represent a time step, in which the time transition function is
applied to every bit. Time flows downward. The visualization is produced
with the implemented system.

Reservoir Computing Using Nonuniform Binary Cellular Automata 237

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

Measuring Computational Complexity of a Cellular Automaton

Reservoir
3.2

The size of the reservoir is crucial for the success of the system. In
this �paper, the reservoir size is measured by R * I *C. As seen in Sec-
tion 3.1, the size of the reservoirs will remain the same both for the
one-rule reservoirs and the two-rule reservoirs. This is crucial in order
to be able to directly compare their performances.

Results4.

The parameters for the five-bit memory task used can be seen in
Table 1. The same parameters as in the single-reservoir system are
used in the quasi-uniform CA reservoir system with a combination of
two rules. The tested combinations of rules are shown in Table 2.

Training set size 32

Testing set size 32

Distractor period 200

Number of runs 120

Table 1. Five-bit task parameters.

CA rules 60, 90, 102, 105, 150, 153, 165, 180, 195

I (iterations) 2, 4

R (random mappings) 4, 8

C (size multiple) 10

Table 2. CA reservoir parameter combinations.

Results from the Single-Reservoir Computing System4.1

The results from the single-reservoir ReCA system can be seen in
Table 3. The results in this paper are significantly better than what
was reported in [8]. We can, however, see a similar trend. Rules 102
and 105 were able to give promising results, while rule 180 was not
very well suited for this task. Exceptions are rules 90 and 165, where
the results in Table 3 show very high accuracy. In [7] very promising
results from rule 90 are also achieved.

Results from the Parallel (Nonuniform) Reservoir
Computing System

4.2

Results can be seen in Table 4. It can be observed that rules that were
performing well in Table 3 seem to give good results when combined.
However, some combinations of rules, for example, 60 and 102, 153
and 195, gave worse results than the rules by themselves. We can
observe the same tendencies as in the single runs: higher R and I gener-
ally yield better results.

238 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

Rule I  2, R  4 I  2, R  8 I  4, R  4 I  4, R  8
60 25.8% 53.3% 76.7% 95.0%

90 100.0% 100.0% 97.5% 100.0%
102 30.8% 63.3% 71.7% 96.7%

105 95.8% 99.2% 99.2% 100.0%
150 96.7% 100.0% 100.0% 100.0%
153 26.7% 55.0% 80.0% 95.0%

165 100.0% 100.0% 100.0% 100.0%
180 9.2% 38.3% 0.8% 1.7%

195 39.2% 61.7% 79.2% 95.8%

Table 3. Single-reservoir CA on the five-bit task. Successful runs with
T  200.

Rule I  2, R  4 I  2, R  8 I  4, R  4 I  4, R  8
60 and 90 87.5% 100.0% 96.9% 100.0%
60 and 102 0.0% 0.0% 0.0% 0.0%
60 and 105 81.2% 100.0% 96.9% 100.0%
60 and 150 71.9% 100.0% 96.9% 100.0%
60 and 153 0.0% 0.0% 0.0% 0.0%
60 and 165 87.5% 93.8% 96.9% 96.9%
60 and 180 43.8% 53.1% 90.6% 84.4%
60 and 195 0.0% 0.0% 0.0% 0.0%
90 and 102 90.6% 100.0% 100.0% 96.9%
90 and 105 100.0% 100.0% 100.0% 100.0%
90 and 150 100.0% 100.0% 100.0% 100.0%
90 and 153 93.8% 96.9% 96.9% 100.0%
90 and 165 90.6% 100.0% 100.0% 100.0%
90 and 180 90.6% 100.0% 100.0% 100.0%
90 and 195 87.5% 96.9% 100.0% 100.0%
102 and 105 78.1% 100.0% 96.9% 100.0%
102 and 150 81.2% 100.0% 96.9% 100.0%
102 and 153 0.0% 0.0% 0.0% 3.1%
102 and 165 93.8% 100.0% 100.0% 100.0%
102 and 180 0.0% 40.6% 3.1% 6.2%
102 and 195 0.0% 0.0% 0.0% 3.1%
105 and 150 93.8% 100.0% 100.0% 100.0%
105 and 153 75.0% 93.8% 93.8% 100.0%
105 and 165 96.9% 100.0% 100.0% 100.0%
105 and 180 93.8% 100.0% 100.0% 100.0%
105 and 195 65.6% 93.8% 96.9% 100.0%
150 and 153 87.5% 100.0% 96.9% 100.0%
150 and 165 100.0% 100.0% 100.0% 100.0%
150 and 180 81.2% 100.0% 100.0% 100.0%
150 and 195 78.1% 96.9% 100.0% 100.0%
153 and 165 81.2% 100.0% 100.0% 100.0%

Table 4. (continues)

Reservoir Computing Using Nonuniform Binary Cellular Automata 239

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

Rule I  2, R  4 I  2, R  8 I  4, R  4 I  4, R  8
153 and 180 3.1% 46.9% 0.0% 0.0%
153 and 195 0.0% 0.0% 0.0% 0.0%
165 and 180 96.9% 96.9% 100.0% 100.0%
165 and 195 87.5% 100.0% 100.0% 100.0%
180 and 195 40.6% 87.5% 93.8% 96.9%

Table 4. Parallel CAs on the five-bit task. Successful runs with T  200.

Analysis5.

Single-Reservoir Computing System5.1

The complexity of the reservoir is a useful metric when comparing dif-
ferent approaches. If we examine rule 90, we can observe that it
achieves a 100% success rate at I  4, R  8 and C  10. The size of
the reservoir is 4 * 8 * 10  320 at this configuration. Note that even
though lower values of R and I also give 100%, at R  4 and I  4
the success is 97.5%, and again 100% at I  4 and R  8. A 100%
success rate on the same task was reported in [7] with R  32 and
I  16. The C parameter was set to 1. As such, the size of the reser-
voir is 32 * 16 * 1  512 (feedforward architecture).

Results on the five-bit task using the recurrent architecture were
also presented in [7]. A 100% success rate was achieved with I  32
and R  45. This yields a reservoir size of 32 * 45  1440. Those
results were intended to study the relationship between the distractor
period of the five-bit task and the R number of random mappings.
The I was kept fixed at 32 during this experiment. Even if the motiva-
tions for the experiments were different, the comparison of results
gives insight that the reservoir size itself may not be the only factor
that determines the performance of the ReCA system.

Parallel (Nonuniform) Reservoir Computing System5.2

Why are some combinations better than others? As observed in Sec-
tion 4, rules that are paired with other rules that perform well on
their own also perform well together. The combination of rule 90 and
rule 165 is observed to be very successful. As described in [38], rule
165 is the complement of rule 90. If we observe the single-CA results
in Table 3, we can see that rules 90 and 165 perform very similarly.

Examining one of the worst-performing rule combinations of the
experiments, that is, rule 153 and rule 195, we get a useful insight, as
seen in Figure 13. Here it is possible to notice that the interaction of
rules creates a “black” region in the middle (between the rules),
thereby effectively reducing the size of the reservoir. As described in
[39], rules 153 and 192 are mirrored complements.

240 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

Rule 105 is an interesting rule to be combined with others. As
described in [29], the rule does not have any complements or any mir-
rored complements. Nevertheless, as seen in Table 2, it performs well
in combination with most other rules.

Figure 13. Example run of the ReCA system with rules 153 and 195. The run
is done with the parameters R  8, I  4 and C  5. The horizontal gray
lines represent a time step, in which the time transition function is applied
to every bit. Time flows downward. The visualization is produced with the
implemented system.

Conclusion6.

A framework for using cellular automata (CAs) in reservoir comput-
ing has been implemented, which makes use of uniform CAs and
quasi-uniform CAs. The relationship between reservoir size and per-
formance of the system are presented. The implemented configuration
using a parallel nonuniform cellular automaton (CA) reservoir is
tested in this paper for the first time (to the best of the authors’ knowl-
edge). Results have shown that some CA rules work better in combi-
nation than others. Good combinations tend to have some relation—
for example, being complementary. Rules that are mirrored
complements do not work well together, because they effectively
reduce the size of the reservoir. The concept is still very novel, and a
lot of research is left to be done, regarding both the use of a nonuni-
form CA reservoir and reservoir computing using cellular automata
(ReCA) systems in general.

As previously discussed, finding the best combination of rules
is not trivial. If we only consider the usage of two distinct rules,
the rule space grows from only 256 single-reservoir options to

Reservoir Computing Using Nonuniform Binary Cellular Automata 241

https://doi.org/10.25088/ComplexSystems.26.3.225

https://doi.org/10.25088/ComplexSystems.26.3.225

256 !  2 ! * 254 !  32640 different combinations. Matching two rules

that perform well together can be quite a challenge. By investigating
the characteristics of the rules, for example, with a lambda parameter
[14], Lyapunov exponent [40] or other metrics, it may be possible to
pinpoint promising rules. Ideally, the usage of more than two differ-
ent rules could prove a powerful tool. The rule space would then
grow even larger, and an exhaustive search would be infeasible. How-
ever, one possibility (that we are currently investigating) is to use evo-
lutionary algorithms to search for suitable rules. Adding more and
more rules would bring the reservoir closer to a true nonuniform CA.

In [30] a wide range of different tasks is presented. In this paper,
only one (five-bit task) is used as a benchmark. By combining differ-
ent rules’ computational power, a nonuniform CA reservoir could be
designed that performs well on a variety of tasks.

References

[1] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge,
MA: The MIT Press, 2016.

[2] Y. Bengio, P. Simard and P. Frasconi, “Learning Long-Term Dependen-
cies with Gradient Descent Is Difficult,” IEEE Transactions on Neural
Networks, 5(2), 1994 pp. 157–166. doi:10.1109/72.279181.

[3] H. Jaeger, The “Echo State” Approach to Analysing and Training Recur-
rent Neural Networks—with an Erratum Note, GMD Technical Report,
148:34, Bonn, Germany: German National Research Center for Informa-
tion Technology, 2001. (Jul 12, 2017)
minds.jacobs-university.de/sites/default/files/uploads/papers/
EchoStatesTechRep.pdf.

[4] T. Natschläger, W. Maass and H. Markram, “The ‘Liquid Computer’:
A Novel Strategy for Real-Time Computing on Time Series,” Special
Issue on Foundations of Information Processing of Telematik, 8(1),
2002 pp. 39–43.

[5] J. Von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966 pp. 3–14.

[6] O. Yilmaz, “Reservoir Computing Using Cellular Automata.”
arxiv.org/abs/1410.0162.

[7] O. Yilmaz, “Connectionist-Symbolic Machine Intelligence Using Cellu-
lar Automata Based Reservoir-Hyperdimensional Computing.”
arxiv.org/abs/1503.00851.

[8] E. T. Bye, “Investigation of Elementary Cellular Automata for Reservoir
Computing,” Master’s thesis, NTNU, Norway, 2016.
brage.bibsys.no/xmlui/handle/11250/2415318.

242 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

https://doi.org/10.1109/72.279181
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
https://arxiv.org/abs/1410.0162
https://arxiv.org/abs/1503.00851
https://brage.bibsys.no/xmlui/handle/11250/2415318

[9] M. Margem and O. Yilmaz, “An Experimental Study on Cellular
Automata Reservoir in Pathological Sequence Learning Tasks.” (Jul 12,
2017) ozguryilmazresearch.net/Publications/
MargemYilmaz_TechReport2016.pdf.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. �Erhan, V. Vanhoucke and A. Rabinovich, “Going Deeper with Con-
volutions,” in Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2015), Boston, MA, IEEE, 2015
pp. 1–9. ieeexplore.ieee.org/document/7298594.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, et�al., “Mastering the Game of Go with Deep Neural Networks and
Tree Search,” Nature, 529(7587), 2016 pp. 484–489.
doi:10.1038/nature16961.

[12] M. Lukoševic
ˇ
ius, H. Jaeger and B. Schrauwen, “Reservoir Computing

Trends,” KI-Künstliche Intelligenz, 26(4), 2012 pp. 365–371.
doi:10.1007/s13218-012-0204-5.

[13] N. Bertschinger and T. Natschläger, “Real-Time Computation at the
Edge of Chaos in Recurrent Neural Networks,” Neural Computation,
16(7), 2004 pp. 1413–1436. doi:10.1162/089976604323057443.

[14] C. G. Langton, “Computation at the Edge of Chaos: Phase Transitions
and Emergent Computation,” Physica D: Nonlinear Phenomena,
42(1–3), 1990 pp. 12–37. doi:10.1016/0167-2789(90)90064-V.

[15] T. E. Gibbons, “Unifying Quality Metrics for Reservoir Networks,” in
Proceedings of the 2010 International Joint Conference on Neural
Networks (IJCNN), Barcelona, Spain, IEEE, 2010 pp. 1–7.
doi:10.1109/IJCNN.2010.5596307.

[16] C. Fernando and S. Sojakka, “Pattern Recognition in a Bucket,” in Pro-
ceedings of Advances in Artificial Life (ECAL 2003), Dortmund, Ger-
many (W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich and J. T. Kim,
eds.), Berlin, Heidelberg: Springer, 2003 pp. 588–597.
doi:10.1007/978-3-540-39432-7_63.

[17] B. Jones, D. Stekel, J. Rowe and C. Fernando, “Is There a Liquid State
Machine in the Bacterium Escherichia coli?” in Proceedings of the IEEE
Symposium on Artificial Life 2007 (ALIFE’07), Honolulu, HI, IEEE,
2007 pp. 187–191. doi:10.1109/ALIFE.2007.367795.

[18] D. Nikolic

, S. Haeusler, W. Singer and W. Maass, “Temporal Dynamics

of Information Content Carried by Neurons in the Primary Visual Cor-
tex,” in Proceedings of the 19th International Conference on Neural
Information Processing Systems (NIPS’06), Cambridge, MA: MIT Press,
2006 pp. 1041–1048. dl.acm.org/citation.cfm?id=2976456.2976587.

Reservoir Computing Using Nonuniform Binary Cellular Automata 243

https://doi.org/10.25088/ComplexSystems.26.3.225

http://ozguryilmazresearch.net/Publications/MargemYilmaz_TechReport2016.pdf
http://ozguryilmazresearch.net/Publications/MargemYilmaz_TechReport2016.pdf
http://ieeexplore.ieee.org/document/7298594/
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1007/s13218-012-0204-5
https://dx.doi.org/10.1162/089976604323057443
https://doi.org/10.1016/0167-2789(90)90064-V
https://dx.doi.org/10.1109/IJCNN.2010.5596307
https://dx.doi.org/10.1007/978-3-540-39432-7_63
https://dx.doi.org/10.1109/ALIFE.2007.367795
http://dl.acm.org/citation.cfm?id=2976456.2976587
https://doi.org/10.25088/ComplexSystems.26.3.225

[19] M. Dale, J. F. Miller and S. Stepney, “Reservoir Computing as a Model
for in-Materio Computing,” Advances in Unconventional Computing:
Volume 1: Theory (A. Adamatzky, ed.), Cham, Switzerland: Springer
International Publishing, 2017 pp. 533–571.
doi:10.1007/978-3-319-33924-5_22.

[20] M. Dale, J. F. Miller, S. Stepney and M. A. Trefzer, “Evolving Carbon
Nanotube Reservoir Computers,” in Unconventional Computation and
Natural Computation (UCNC 2016), Manchester, UK, Cham, Switzer-
land: Springer International Publishing, 2016 pp. 49–61.
doi:10.1007/978-3-319-41312-9_5.

[21] M. Dale, S. Stepney, J. F. Miller and M. Trefzer, “Reservoir Computing
in Materio: An Evaluation of Configuration through Evolution,” in Pro-
ceedings of the 2016 IEEE Symposium Series on Computational Intelli-
gence (SSCI), Athens, Greece, IEEE, 2016.
doi:10.1109/SSCI.2016.7850170.

[22] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelter-
man and S. Massar, “Optoelectronic Reservoir Computing.”
arxiv.org/abs/1111.7219.

[23] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez,
L. Pesquera, C. R. Mirasso and I. Fischer, “Photonic Information Pro-
cessing beyond Turing: An Optoelectronic Implementation of Reservoir
Computing,” Optics Express, 20(3), 2012 pp. 3241–3249.
doi:10.1364/OE.20.003241.

[24] D. Snyder, A. Goudarzi and C. Teuscher, “Computational Capabilities
of Random Automata Networks for Reservoir Computing,” Physical
Review E, 87(4), 2013 042808. doi:10.1103/PhysRevE.87.042808.

[25] A. V. Burkow, “Exploring Physical Reservoir Computing Using Ran-
dom Boolean Networks,” Master’s thesis, NTNU, Norway, 2016.
brage.bibsys.no/xmlui/handle/11250/2417596.

[26] C. Gershenson, “Introduction to Random Boolean Networks.”
arxiv.org/abs/nlin/0408006.

[27] M. Sipper, “The Emergence of Cellular Computing,” Computer, 32(7),
1999 pp. 18–26. doi:10.1109/2.774914.

[28] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40.
www.complex-systems.com/pdf/15-1-1.pdf.

[29] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[30] H. Jaeger, Long Short-Term Memory in Echo State Networks: Details
of a Simulation Study, Technical report No. 27, Jacobs University Bre-
men, 2012.
minds.jacobs-university.de/sites/default/files/uploads/papers/
2478_Jaeger12.pdf.

244 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017

https://dx.doi.org/10.1007/978-3-319-33924-5_22
https://dx.doi.org/10.1007/978-3-319-41312-9_5
https://dx.doi.org/10.1109/SSCI.2016.7850170
https://arxiv.org/abs/1111.7219
https://dx.doi.org/10.1364/OE.20.003241
https://dx.doi.org/10.1103/PhysRevE.87.042808
https://brage.bibsys.no/xmlui/handle/11250/2417596
https://arxiv.org/abs/nlin/0408006
https://dx.doi.org/10.1109/2.774914
http://www.complex-systems.com/pdf/15-1-1.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/2478_Jaeger12.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/2478_Jaeger12.pdf

[31] M. Gardner, “The Fantastic Combinations of John Conway’s New Soli-
taire Game ‘Life’,” Scientific American, 223(4), 1970 pp. 120–123.

[32] D. Kleyko, S. Khan, E. Osipov and S.-P. Yong, “Modality Classification
of Medical Images with Distributed Representations Based on Cellular
Automata Reservoir Computing,” in Proceedings of the 2017 14th Inter-
national Symposium on Biomedical Imaging (ISBI 2017), Melbourne,
Australia, 2017, IEEE, 2017. doi:10.1109/ISBI.2017.7950697.

[33] N. McDonald, “Reservoir Computing and Extreme Learning Machines
Using Pairs of Cellular Automata Rules.” arxiv.org/abs/1703.05807.

[34] S. Nichele and A. Molund, “Deep Reservoir Computing Using Cellular
Automata.” arxiv.org/abs/1703.02806.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine Learning in Python,” Journal of Machine Learn-
ing Research, 12, 2011 pp. 2825–2830.
www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.

[36] M. S. Gundersen. “Specialization Project H2016.” (Jul 13, 2017)
github.com/magnusgundersen/spec.

[37] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, 9(8), 1997 pp. 1735–1780.
doi:10.1162/neco.1997.9.8.1735.

[38] E. W. Weisstein. “Rule 90” from Wolfram MathWorld—A Wolfram
Web Resource. mathworld.wolfram.com/Rule90.html.

[39] E. W. Weisstein. “Rule 60” from Wolfram MathWorld—A Wolfram
Web Resource. mathworld.wolfram.com/Rule60.html.

[40] R. Legenstein and W. Maass, “Edge of Chaos and Prediction of Compu-
tational Performance for Neural Circuit Models,” Neural Networks,
20(3), 2007 pp. 323–334. doi:10.1016/j.neunet.2007.04.017.

Reservoir Computing Using Nonuniform Binary Cellular Automata 245

https://doi.org/10.25088/ComplexSystems.26.3.225

https://dx.doi.org/10.1109/ISBI.2017.7950697
https://arxiv.org/abs/1703.05807
https://arxiv.org/abs/1703.02806
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://github.com/magnusgundersen/spec
https://dx.doi.org/10.1162/neco.1997.9.8.1735
http://mathworld.wolfram.com/Rule90.html
http://mathworld.wolfram.com/Rule60.html
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.25088/ComplexSystems.26.3.225

