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The  reservoir  computing  (RC)  paradigm  utilizes  a  dynamical  system  (a
reservoir)  and  a  linear  classifier  (a  readout  layer)  to  process  data  from
sequential  classification  tasks.  In  this  paper,  the  usage  of  cellular
automata (CAs) as a reservoir is investigated. The use of CAs in RC has
been showing promising results. In this paper, it is shown that some cel-
lular automaton (CA) rules perform better than others and the reservoir
performance  is  improved  by  increasing  the  size  of  the  CA  reservoir
itself.  In  addition,  the  usage  of  parallel  loosely  coupled  (nonuniform)
CA  reservoirs,  where  each  reservoir  has  a  different  CA  rule,  is  investi-
gated.  The  experiments  performed  on  nonuniform  CA  reservoirs  pro-
vide valuable insights into CA reservoir design. The results herein show
that  some  rules  do  not  work  well  together,  while  other  combinations
work remarkably well. This suggests that nonuniform CAs could repre-
sent a powerful tool for novel CA reservoir implementations. 

Introduction1.

Complex  real-life  problems  often  require  processing  of  time  series
data. Systems that process such data must remember inputs from pre-
vious time steps in order to make correct predictions in a future time
step;  that  is,  they  must  have  some  sort  of  memory.  Recurrent  neural
networks (RNNs) have been shown to possess such memory [1].

Unfortunately, training RNNs using traditional methods like gradi-
ent  descent  is  difficult  [2].  A  fairly  novel  approach  called  reservoir
computing  (RC)  has  been  proposed  [3,  4]  to  mitigate  this  problem.
RC  splits  the  RNN  into  two  parts:  the  untrained  recurrent  part  (a
reservoir) and the trainable feed-forward part (a readout layer). 

In  this  paper,  an  RC  system  is  investigated,  where  a  cellular
automaton  (CA)  [5]  computational  substrate  is  used  as  the  reservoir.
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This  approach  to  RC  was  proposed  in  [6]  and  further  studied  in
[7–9].  The  term  ReCA  is  used  as  an  abbreviation  for  “reservoir  com-
puting using cellular automata,” and is adopted from the latter paper. 

In the work herein, a fully functional ReCA system is implemented
and extended into a parallel nonuniform CA reservoir system (loosely
coupled).  Various  configurations  of  parallel  reservoirs  are  tested  and
compared to the results of a single-reservoir system. This approach is
discussed,  and  insights  into  different  configurations  of  CA  reservoirs
are given. 

Background2.

Reservoir Computing2.1

Feedforward neural networks (NNs) are neural network models with-
out  feedback  connections;  that  is,  they  are  not  aware  of  their  own
outputs [1]. They have gained popularity because of their ability to be
trained to solve classification tasks. Examples include image classifica-
tion  [10]  or  playing  the  board  game  Go  [11].  However,  when  trying
to solve problems that include sequential data, such as sentence analy-
sis,  they  often  fall  short  [1].  For  example,  sentences  may  have  dif-
ferent  lengths,  and  the  important  parts  may  be  spatially  separated
even  for  sentences  with  equal  semantics.  Recurrent  neural  networks
(RNNs) can overcome this problem [1], being able to process sequen-
tial  data  through  memory  of  previous  inputs  that  are  remembered  by
the network. This is done by relieving the NN of the constraint of not
having  feedback  connections.  However,  networks  with  recurrent
connections  are  notoriously  difficult  to  train  by  using  traditional
methods [2].

Reservoir  computing  (RC)  is  a  paradigm  in  machine  learning  that
combines the powerful dynamics of an RNN with the trainability of a
feedforward  NN.  The  first  part  of  an  RC  system  consists  of  an
untrained  RNN,  called  a  reservoir.  This  reservoir  is  connected  to  a
trained  feedforward  neural  network,  called  a  readout  layer.  This
setup can be seen in Figure 1.

The  field  of  RC  has  been  proposed  independently  by  two
approaches,  namely  echo  state  networks  (ESN)  [3]  and  liquid  state
machines (LSM) [4]. By examining these approaches, important prop-
erties of reservoirs are outlined. 

Perhaps  the  most  important  feature  is  the  echo  state  property  [3].
Previous  inputs  “echo”  through  the  reservoir  for  a  given  number  of
time  steps  after  the  input  has  occurred  and  thereby  slowly  disappear
without  being  amplified.  This  property  is  achieved  in  traditional  RC
approaches  by  clever  reservoir  design.  In  the  case  of  ESN,  this  is
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achieved  by  scaling  of  the  connection  weights  of  the  recurrent  nodes
in the reservoir [12]. 

Figure 1. General  RC  framework.  Input  X  is  connected  to  some  or  all  of  the
reservoir  nodes.  Output  Y  is  usually  fully  connected  to  the  reservoir  nodes.
Only the output weights Wout are trained.

As  discussed  in  [13],  the  reservoir  should  preferably  exhibit  edge
of�chaos  behaviors  [14],  in  order  to  allow  for  high  computational
power [15]. 

Various Reservoir Computing Approaches2.2

Different  RC  approaches  use  reservoir  substrates  that  exhibit  the
desired  properties.  In  [16]  an  actual  bucket  of  water  is  implemented
as a reservoir for speech recognition, and in [17] the E. coli bacteria is
used  as  a  reservoir.  In  [18]  the  primary  visual  cortex  of  an  anes-
thetized  cat  was  used  as  a  reservoir,  and  in  [19–21]  unconventional
carbon  nanotube  materials  have  been  configured  as  a  reservoir
through  artificial  evolution.  In  [22,  23]  an  optoelectronic  reservoir
implementation  is  presented.  In  [24]  and  more  recently  in  [25],  the
usage  of  random  Boolean  networks  (RBNs)  as  reservoirs  is  explored.
Random  Boolean  networks  can  be  considered  as  an  abstraction  of
CAs  [26],  and  their  use  is  thereby  a  related  approach  to  the  one  pre-
sented in this paper.

Cellular Automata2.3

A  cellular  automaton  (CA)  is  a  computational  model,  first  proposed
by  Ulam  and  von  Neumann  in  the  1940s  [5].  It  is  a  complex,  decen-
tralized  and  highly  parallel  system,  in  which  computations  may
emerge  [27]  through  local  interactions  and  without  any  form  of  cen-
tralized  control.  Some  CAs  have  been  proved  to  be  Turing  complete
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[28], that is, having all properties required for computation: transmis-
sion, storage and modification of information [14].

A  CA  usually  consists  of  a  grid  of  cells,  each  cell  with  a  current
state. The state of a cell is determined by the update function f, which
is  a  function  of  the  neighboring  states  n.  This  update  function  is
applied  to  the  CA  for  a  given  number  of  iterations.  These  neighbors
are  defined  as  a  number  of  cells  in  the  immediate  vicinity  of  the  cell
itself. 

In this paper, only one-dimensional elementary CAs are used. This
means  that  the  CA  only  consists  of  a  one-dimensional  vector  of  cells,

named  A,  each  cell  with  state  S ∈ 0, 1.  In  all  the  figures  in  this

paper,  S  0  is  shown  as  white,  while  S  1  is  shown  as  black.  The
cells have three neighbors: the cell to the left, itself and the cell to the
right. A cell is a neighbor of itself by convention. The boundary condi-
tions  at  each  end  of  the  one-dimensional  vector  are  usually  solved  by
wraparound, where the leftmost cell becomes a neighbor of the right-
most, and vice versa.

The update function f, hereafter denoted rule Z, works accordingly
by  taking  three  binary  inputs  and  outputting  one  binary  value.  This

results  in  28  256  different  rules.  An  example  of  such  a  rule  is
shown  in  Figure  2,  where  rule  110  is  depicted.  The  numbering  of
the�rules  follows  the  naming  convention  described  by  Wolfram  [29],
where  the  resulting  binary  string  is  converted  to  a  base-10  number.
The  CA  is  usually  updated  in  synchronous  steps,  where  all  the  cells
in�the  one-dimensional  vector  are  updated  at  the  same  time.  One
update  is  called  an  iteration,  and  the  total  number  of  iterations  is
denoted by I. 

Figure 2. Elementary CA rule 110. The figure depicts all the possible combina-
tions  that  the  neighbors  of  a  cell  can  have.  A  cell  is  its  own  neighbor  by
convention.

The  rules  may  be  divided  into  four  qualitative  classes  [29]  that
exhibit  different  properties  when  evolved:  class  I  evolves  to  a  static
state,  class  II  evolves  to  a  periodic  structure,  class  III  evolves  to
chaotic patterns, and class IV evolves to complex patterns. Class I and
II  rules  will  fall  into  an  attractor  after  a  short  while  [14]  and  behave
in  an  orderly  way.  Class  III  rules  are  chaotic,  which  means  that  the

228 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017



organization quickly descends into randomness. Class IV rules are the
most  interesting  ones,  as  they  reside  at  a  phase  transition  between
the�chaotic  and  ordered  phase,  that  is,  at  the  edge  of  chaos  [14].  In
uniform CAs, all cells share the same rule, while nonuniform CA cells
are  governed  by  different  rules.  Quasiuniform  CAs  are  nonuniform,
with a small number of diverse rules. 

Cellular Automata in Reservoir Computing2.4

As proposed in [6], CAs may be used as a reservoir of dynamical sys-
tems. The conceptual overview is shown in Figure 3. Such a system is
referred to as ReCA in [9], and the same name is therefore adopted in
this  paper.  The  projection  of  the  input  to  the  CA  reservoir  can  be
done in two different ways [6]. If the input is binary, the projection is
straightforward, where each feature dimension of the input is mapped
to  a  cell.  If  the  input  is  nonbinary,  the  projection  can  be  done  by  a
weighted  summation  from  the  input  to  each  cell.  See  [7]  for  more
details.

Figure 3. General  ReCA  framework.  Input  X  is  projected  onto  the  cells  of  a
one-dimensional CA, and the CA rule is applied for a number I of iterations.
In  the  figure,  each  iteration  is  stored  and  denoted  by  Ai.  The  readout  layer

weights  Wout  are  trained  according  to  the  target  function.  Figure  adapted

from [7].

The time evolution of the reservoir can be represented as follows: 

A1  ZA0

A2  ZA1

⋮

AI  ZAI-1,
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where Am  is the state of the one-dimensional CA at iteration m and Z

is the CA rule that was applied. A0  is the initial state of the CA, often

an external input, as discussed later. 
As  discussed  in  Section  2.1,  a  reservoir  often  operates  at  the  edge

of chaos [15]. Selecting CA-based reservoirs that exhibit this property
is  trivial,  as  rules  that  lie  inside  Wolfram  class  IV  can  provide  this
property. Additionally, to fully exploit such a property, all I iterations
of the CA evolution are used for classification, and this can be stated
as follows: 

A  A1; A2; …AI,

where A is used for classification.

The  ReCA  system  must  also  exhibit  the  echo  state  property,  as
described  in  Section  2.1.  This  is  done  by  allowing  the  CA  to  take
external input, while still remembering the current state. As described
in more detail later, ReCA systems address this issue by using a time-
transition  function,  named  F,  which  allows  some  previous  inputs  to
echo through the CA. 

Cellular automata also provide additional advantages to RC. In [7]
a  speedup  of  1.5–3x  in  the  number  of  operations  compared  to  the
ESN [30] approach is reported. This is mainly due to a CA relying on
bitwise  operations,  while  ESN  uses  floating-point  operations.  This
can  be  additionally  exploited  by  utilizing  custom-made  hardware  like
FPGAs.  In  addition,  if  edge-of-chaos  rules  are  selected,  Turing-
complete  computational  power  is  present  in  the  reservoir.  Cellular
automata  theoretical  analysis  is  easier  than  RNNs,  and  it  allows
Boolean logic and Galois field algebra. 

Reservoir Computing Using Cellular Automata System 

Implementations
2.5

Reservoir  computing  using  CA  systems  is  a  very  novel  concept,  and
therefore  there  are  only  a  few  implemented  examples  at  the  current
stage  of  research.  Yilmaz  [6,  7]  has  implemented  an  ReCA  system
with  uniform  elementary  CAs  and  Game  of  Life  [31].  Bye  [8]  also
demonstrated  a  functioning  ReCA  system.  Kleyko  et  al.  [32]  used  a
uniform  CA  reservoir  for  image  classification,  and  McDonald  [33]
proposed a CA reservoir as an extreme learning machine. Nichele and
Molund  [34]  demonstrated  that  a  CA  reservoir  can  be  used  for  deep
learning.  The  approaches  used  are  similar;  however,  there  are  some
key differences, discussed in the following subsubsections.

Encoding and Random Mappings2.5.1

In  the  encoding  stage,  [7]  used  random  permutations  over  the  same
input  vector.  This  encoding  scheme  can  be  seen  in  Figure  4.  The  per-
mutation  procedure  is  repeated  R  number  of  times,  because  it  was
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experimentally  observed  that  multiple  random  mappings  improve
performance.

Figure 4. The  encoding  used  in  [7].  For  a  total  of  R  permutations,  X  is  ran-
domly mapped to vectors of the same size as the input vector itself.

In [8] a similar approach was used. The main difference is that the
input  is  mapped  to  a  vector  that  is  larger  than  the  input  vector  itself.
The  size  of  this  mapping  vector  is  given  by  a  parameter  “automaton
size.”  This  approach  can  be  seen  in  Figure  5.  The  input  bits  are  ran-
domly mapped to one of the bits in the mapping vector. The ones that
do not have any mapping to them are left at zero. 

Figure 5. The encoding used in [8]. The input X is randomly mapped to a vec-
tor with size larger than the input vector itself. This mapping is done R times.
The  size  of  the  vector  that  the  input  is  mapped  to  can  be  determined  in  two
ways. Either by “automaton size,” which explicitly gives the size of the vector

(in this case 8), or by the C parameter, where the size is given by C * Xpn  (in
this case C  2).

In the work herein, the approach described in [8] is used, but with
a  modification.  Instead  of  using  the  automaton  size  parameter,  the C
parameter  is  introduced.  The  total  length  of  the  permutation  is  given
by  the  number  C  multiplied  by  the  length  of  the  input  vector.  In  the
case of Figure 5, the automaton size would be 8, and C would be 2. 

Feedforward or Recurrent2.5.2

Both a feedforward and a recurrent design were proposed in [7]. The
difference  was  whether  the  whole  input  sequence  is  presented  to  the
system  in  one  chunk  or  step  by  step.  Only  a  recurrent  design  was
described  in  [8].  Only  recurrent  architectures  will  be  investigated  in
this  paper.  This  is  because  they  are  more  in  line  with  traditional
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RNNs  and  RC  systems  and  are  conceptually  more  biologically
plausible.

Concatenation of the Encoded Inputs before Propagating into 

the Reservoir
2.5.3

After random mappings have been created, there is another difference
in the proposed approaches. In the recurrent architecture, [7] concate-
nates  the  R  number  of  permutations  into  one  large  vector  of  length
(R * input_length)  before  propagating  it  in  a  reservoir  of  the  same
width  as  this  vector.  The  one-dimensional  input  vector  at  time  step  t
can be expressed as follows:

Xt
P  Xt

P1 ; Xt
P2 ; Xt

P3 ; …Xt
PR.

Xt
P

 is  inserted  into  the  reservoir  as  described  in  Section  2.4  and

then iterated I times. The iterations are then concatenated into the vec-
tor At, which is used for classification at time step t: 

At  A1; A2; …AI.

A  different  approach  was  adapted  in  [8],  the  same  one  that  was
also used by the feedforward architecture in [7], where the R different
permutations  are  iterated  in  separate  reservoirs,  and  the  different
reservoirs are then concatenated before they are used by the classifier.
The vector used for classification at time step t is as follows: 

At  AP1
t ; AP2

t ; …APR
t ,

where APn
t

 is the vector from the concatenated reservoir. In this paper,

the recurrent architecture approach is used.

Time Transition2.5.4

In order to allow the system to remember previous inputs, a time tran-
sition  function  is  needed  to  translate  between  the  current  time  step
and the next. One possibility is to use normalized addition as the time
transition  function,  as  shown  in  Figure  6,  with  F  as  the  normalized
addition.  This  function  works  as  follows:  the  cell  values  are  added,
and if the sum is 2 (1 + 1) the output value becomes 1; if the sum is 0,
the  output  value  becomes  0;  if  the  sum  is  1,  the  cell  value  is  decided
randomly (0 or 1). The initial one-dimensional CA vector of the reser-
voir at time step t is then expressed as:

A0  FXt, AI
t-1

, t > 0,

where  F  may  be  any  bitwise  operation,  Xt  is  the  input  from  the

sequential task at time step t, and AI
t-1

 is the last iteration of the previ-

ous  time  step.  At  the  first  time  step  (t  0),  the  transition  function  is
bypassed, and the input Xt is used directly in the reservoir. 
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Figure 6. Time transition used in [7]. The sequence input Xt  is combined with

the  state  of  the  reservoir  at  the  last  iteration  at  the  previous  time  step  AI
t-1.

The function F may be any bitwise function. Only one permutation is shown
in the figure to increase readability.

Another  possibility  is  to  use  “permutation  transition”  as  the  time
transition function, as seen in Figure 7. Here, all cells that have a map-
ping  to  them  (from  the  encoder)  are  bitwise  filled  with  the  value  of
input vector X. If the cells do not have any mapping to them, the val-

ues from AI
t-1

 are inserted. This allows the CA to have memory across

time  steps  in  sequential  tasks.  By  adjusting  the  automaton  size,  or C
parameter, the interaction between each time step can be regulated. 

Figure 7. Time  transition  by  permutation.  The  input  is  directly  copied  from

Xt,  according  to  the  mapping  from  the  encoder,  as  shown  in  Figure  5.  The

other cells have their values copied from the last iteration of the previous time
step AI

t-1. Only one permutation is shown to increase readability.

The  described  approaches  have  different  effects  on  the  parameters
R  and  I  and  also  the  resulting  size  of  the  reservoir.  This  is  relevant
when discussing the computational complexity of ReCA systems. 

In this paper, the “permutation transition” is used. 
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Experimental Setup3.

The basic architecture implemented in this paper is shown in Figure 8.
The  encoder  is  based  on  the  architecture  described  in  [8].  In  this
paper,  the  parameter  C  is  introduced  as  a  metric  on  how  large  the
resulting  mapping  vector  should  be.  The  concatenation  procedure  is
adapted from [7]. The vectors, after the encoding (random mappings),
are concatenated into one large vector. This vector is then propagated
into  the  reservoir,  as  described  in  Section  2.5.3.  The  time  transition
function  is  adapted  from  [8].  The  mappings  from  the  encoder  are
saved  and  used  as  a  basis  to  which  new  inputs  are  mapped,  as
described  in  Section  2.5.4.  The  values  from  the  last  step  in  the  previ-
ous time step are directly copied. The classifier used in this paper is a
support vector machine, as implemented in the Python machine learn-
ing  framework  scikit-learn  [35].  The  code  base  that  was  used  in  this
paper is available for download [36].

An  example  run  with  rule  90  is  shown  in  Figure  9.  This  visualiza-
tion  gives  valuable  insights  into  how  the  reservoir  behaves  when
parameters  are  changed  and  makes  it  easier  to  understand  the  reser-
voir  dynamics.  Most  natural  systems  come  in  the  form  of  a  temporal
system  (sequential),  that  is,  an  input  to  the  system  depends  on  previ-
ous  inputs.  Classical  feedforward  architectures  are  known  to  have
issues  with  temporal  tasks  [1].  In  order  to  test  the  ReCA  system  at  a
temporal  task,  the  five-bit  task  [37]  is  chosen  in  this  paper.  Such  a
task has become a popular and widely used benchmark for RC, in par-
ticular  because  it  tests  the  long  short-term  memory  of  the  system.  An
example  dataset  from  this  task  is  presented  in  Figure  10.  The  length
of the sequence is  given by T. a1, a2, a3  and a4  are the input signals,

and y1, y2  and y3  are the output signals. At each time step t only one

input signal and one output signal can have the value 1. The values of
a1  and  a2  at  the  first  five  time  steps  give  the  pattern  that  the  system

will  learn.  The  next  Td  time  steps  represent  the  distractor  period,

where  the  system  is  distracted  from  the  previous  inputs.  This  is  done
by setting the value of a3  to 1. After the distractor period, the a4  sig-

nal  is  fired,  which  marks  the  cue  signal.  The  system  is  then  asked  to
repeat  the  input  pattern  on  the  outputs  y1  and  y2.  The  output  y3  is

awaiting a signal, which is supposed to be 1 right until the input pat-
tern  is  repeated.  More  details  on  the  five-bit  memory  task  can  be
found in [30]. 

234 S. Nichele and M. S. Gundersen

Complex Systems, 26 © 2017



Figure 8. Architecture  of  the  implemented  system.  The  encoding  is  done
according  to  the  encoding  scheme  as  shown  in  Figure  5,  but  with  the  slight
modification of the C parameter. The encoding is exemplified with R  2 and
C  2,  which  yields  a  size  of  eight  for  each  permutation.  The  two  permuta-
tions are then concatenated. At time step 1, there are no previous inputs, and
the  concatenated  vector  is  simply  used  as  the  first  iteration  of  the  CA  reser-
voir.  The  rule  Z  is  then  applied  for  I  iterations.  At  time  step  2,  the  encoding
and  concatenation  are  repeated.  The  time  transition  scheme  is  then  applied,
as described in Figure 7. The procedure as described in time step 2 is repeated
until the end of the sequence.
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Figure 9. Example run of the ReCA system with rule 90. The run is done with
the parameters R  8, I  4 and C  5. The horizontal gray lines represent a
time  step,  in  which  the  time  transition  function  is  applied  to  every  bit.  Time
flows  downward.  The  visualization  is  produced  with  the  ReCA  system
described in this paper.

Figure 10. Example  data  from  the  five-bit  task.  The  length  of  the  sequence  is
T. The signals a1, a2, a3  and a4  are input signals, while y1, y2  and y3  are out-

put  signals.  In  the  first  five  time  steps  the  system  learns  the  pattern.  The  sys-
tem is then distracted for Td  time steps. After the cue signal is set, the system

is expected to reproduce the pattern that was learned.

Use of Parallel Cellular Automaton Reservoirs3.1

In this paper the use of parallel reservoirs is proposed. The concept is
shown  in  Figure  11.  At  the  boundary  conditions,  that  is,  the  cell  at
the very end of the reservoir, the rule will treat the cell that lies within
the other reservoir as a cell in its own reservoir. This causes informa-
tion/computation to flow between the reservoirs (loosely coupled).
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Figure 11. Concept  behind  parallel  CA  reservoirs.  Iterations  flow  downward.
The rules are interacting at the middle boundaries and at the side boundaries,
where the CA wraps around.

By  having  different  rules  in  the  reservoirs,  it  might  be  possible  to
solve  different  aspects  of  the  same  problem,  or  even  two  problems  at
the same time. In [8], both the temporal parity and the temporal den-
sity task [30] are investigated. 

Which  rule  is  most  suited  for  a  task  is  still  an  open  research  ques-
tion. The characteristics and classes described in Section 2.3 are useful
knowledge;  however,  they  do  not  precisely  describe  why  some  rules
perform  better  than  others  on  different  tasks.  In  Figure  12,  an  exam-
ple  run  of  the  parallel  system  is  shown,  with  rule  90  on  the  left  and
rule  182  on  the  right.  This  visualization  gives  useful  insights  on  how
the rules interact.

Figure 12. Example  run  of  the  ReCA  system  with  rule  90  on  the  left  and
rule�182  on  the  right.  Information  is  allowed  to  flow  between  the  reservoirs.
The run is done with the parameters R  8, I  4 and C  5. The horizontal
gray  lines  represent  a  time  step,  in  which  the  time  transition  function  is
applied  to  every  bit.  Time  flows  downward.  The  visualization  is  produced
with the implemented system.
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Measuring Computational Complexity of a Cellular Automaton 

Reservoir
3.2

The  size  of  the  reservoir  is  crucial  for  the  success  of  the  system.  In
this �paper,  the  reservoir  size  is  measured  by  R * I *C.  As  seen  in  Sec-
tion  3.1,  the  size  of  the  reservoirs  will  remain  the  same  both  for  the
one-rule reservoirs and the two-rule reservoirs. This is crucial in order
to be able to directly compare their performances.

Results4.

The  parameters  for  the  five-bit  memory  task  used  can  be  seen  in
Table  1.  The  same  parameters  as  in  the  single-reservoir  system  are
used in the quasi-uniform CA reservoir system with a combination of
two rules. The tested combinations of rules are shown in Table 2. 

Training set size 32 

Testing set size 32 

Distractor period 200 

Number of runs 120 

Table 1. Five-bit task parameters.

CA rules 60, 90, 102, 105, 150, 153, 165, 180, 195 

I (iterations) 2, 4 

R (random mappings) 4, 8 

C (size multiple) 10 

Table 2. CA reservoir parameter combinations.

Results from the Single-Reservoir Computing System4.1

The  results  from  the  single-reservoir  ReCA  system  can  be  seen  in
Table  3.  The  results  in  this  paper  are  significantly  better  than  what
was  reported  in  [8].  We  can,  however,  see  a  similar  trend.  Rules  102
and  105  were  able  to  give  promising  results,  while  rule  180  was  not
very well suited for this task. Exceptions are rules 90 and 165, where
the results in Table 3 show very high accuracy. In [7] very promising
results from rule 90 are also achieved.

Results from the Parallel (Nonuniform) Reservoir
Computing System

4.2

Results can be seen in Table 4. It can be observed that rules that were
performing well in Table 3 seem to give good results when combined.
However, some combinations of rules, for example, 60 and 102, 153
and  195,  gave  worse  results  than  the  rules  by  themselves.  We  can
observe the same tendencies as in the single runs: higher R and I gener-
ally yield better results.
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Rule I  2, R  4 I  2, R  8 I  4, R  4 I  4, R  8
60 25.8% 53.3% 76.7% 95.0% 

90 100.0% 100.0% 97.5% 100.0%
102 30.8% 63.3% 71.7% 96.7% 

105 95.8% 99.2% 99.2% 100.0%
150 96.7% 100.0% 100.0% 100.0%
153 26.7% 55.0% 80.0% 95.0% 

165 100.0% 100.0% 100.0% 100.0%
180 9.2% 38.3% 0.8% 1.7% 

195 39.2% 61.7% 79.2% 95.8% 

Table 3. Single-reservoir  CA  on  the  five-bit  task.  Successful  runs  with
T  200.

Rule I  2, R  4 I  2, R  8 I  4, R  4 I  4, R  8
60 and 90 87.5% 100.0% 96.9% 100.0%
60 and 102 0.0% 0.0% 0.0% 0.0%
60 and 105 81.2% 100.0% 96.9% 100.0%
60 and 150 71.9% 100.0% 96.9% 100.0%
60 and 153 0.0% 0.0% 0.0% 0.0%
60 and 165 87.5% 93.8% 96.9% 96.9%
60 and 180 43.8% 53.1% 90.6% 84.4%
60 and 195 0.0% 0.0% 0.0% 0.0%
90 and 102 90.6% 100.0% 100.0% 96.9%
90 and 105 100.0% 100.0% 100.0% 100.0%
90 and 150 100.0% 100.0% 100.0% 100.0%
90 and 153 93.8% 96.9% 96.9% 100.0%
90 and 165 90.6% 100.0% 100.0% 100.0%
90 and 180 90.6% 100.0% 100.0% 100.0%
90 and 195 87.5% 96.9% 100.0% 100.0%
102 and 105 78.1% 100.0% 96.9% 100.0%
102 and 150 81.2% 100.0% 96.9% 100.0%
102 and 153 0.0% 0.0% 0.0% 3.1%
102 and 165 93.8% 100.0% 100.0% 100.0%
102 and 180 0.0% 40.6% 3.1% 6.2%
102 and 195 0.0% 0.0% 0.0% 3.1%
105 and 150 93.8% 100.0% 100.0% 100.0%
105 and 153 75.0% 93.8% 93.8% 100.0%
105 and 165 96.9% 100.0% 100.0% 100.0%
105 and 180 93.8% 100.0% 100.0% 100.0%
105 and 195 65.6% 93.8% 96.9% 100.0%
150 and 153 87.5% 100.0% 96.9% 100.0%
150 and 165 100.0% 100.0% 100.0% 100.0%
150 and 180 81.2% 100.0% 100.0% 100.0%
150 and 195 78.1% 96.9% 100.0% 100.0%
153 and 165 81.2% 100.0% 100.0% 100.0%

Table 4. (continues)
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Rule I  2, R  4 I  2, R  8 I  4, R  4 I  4, R  8
153 and 180 3.1% 46.9% 0.0% 0.0%
153 and 195 0.0% 0.0% 0.0% 0.0%
165 and 180 96.9% 96.9% 100.0% 100.0%
165 and 195 87.5% 100.0% 100.0% 100.0%
180 and 195 40.6% 87.5% 93.8% 96.9%

Table 4. Parallel CAs on the five-bit task. Successful runs with T  200.

Analysis5.

Single-Reservoir Computing System5.1

The complexity of the reservoir is a useful metric when comparing dif-
ferent  approaches.  If  we  examine  rule  90,  we  can  observe  that  it
achieves a 100% success rate at I  4, R  8 and C  10. The size of
the  reservoir  is  4 * 8 * 10  320  at  this  configuration.  Note  that  even
though  lower  values  of  R  and  I  also  give  100%,  at  R  4  and  I  4
the  success  is  97.5%,  and  again  100%  at  I  4  and  R  8.  A  100%
success  rate  on  the  same  task  was  reported  in  [7]  with  R  32  and
I  16.  The  C  parameter  was  set  to  1.  As  such,  the  size  of  the  reser-
voir is 32 * 16 * 1  512 (feedforward architecture).

Results  on  the  five-bit  task  using  the  recurrent  architecture  were
also  presented  in  [7].  A  100%  success  rate  was  achieved  with  I  32
and  R  45.  This  yields  a  reservoir  size  of  32 * 45  1440.  Those
results  were  intended  to  study  the  relationship  between  the  distractor
period  of  the  five-bit  task  and  the  R  number  of  random  mappings.
The I was kept fixed at 32 during this experiment. Even if the motiva-
tions  for  the  experiments  were  different,  the  comparison  of  results
gives  insight  that  the  reservoir  size  itself  may  not  be  the  only  factor
that determines the performance of the ReCA system. 

Parallel (Nonuniform) Reservoir Computing System5.2

Why  are  some  combinations  better  than  others?  As  observed  in  Sec-
tion  4,  rules  that  are  paired  with  other  rules  that  perform  well  on
their own also perform well together. The combination of rule 90 and
rule  165  is  observed  to  be  very  successful.  As  described  in  [38],  rule
165 is the complement of rule 90. If we observe the single-CA results
in Table 3, we can see that rules 90 and 165 perform very similarly.

Examining  one  of  the  worst-performing  rule  combinations  of  the
experiments, that is, rule 153 and rule 195, we get a useful insight, as
seen  in  Figure  13.  Here  it  is  possible  to  notice  that  the  interaction  of
rules  creates  a  “black”  region  in  the  middle  (between  the  rules),
thereby  effectively  reducing  the  size  of  the  reservoir.  As  described  in
[39], rules 153 and 192 are mirrored complements. 
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Rule  105  is  an  interesting  rule  to  be  combined  with  others.  As
described in [29], the rule does not have any complements or any mir-
rored complements. Nevertheless, as seen in Table 2, it performs well
in combination with most other rules. 

Figure 13. Example run of the ReCA system with rules 153 and 195. The run
is  done  with  the  parameters  R  8,  I  4  and  C  5.  The  horizontal  gray
lines  represent  a  time  step,  in  which  the  time  transition  function  is  applied
to  every  bit.  Time  flows  downward.  The  visualization  is  produced  with  the
implemented system.

Conclusion6.

A  framework  for  using  cellular  automata  (CAs)  in  reservoir  comput-
ing  has  been  implemented,  which  makes  use  of  uniform  CAs  and
quasi-uniform  CAs.  The  relationship  between  reservoir  size  and per-
formance of the system are presented. The implemented configuration
using  a  parallel  nonuniform  cellular  automaton  (CA)  reservoir  is
tested in this paper for the first time (to the best of the authors’ knowl-
edge).  Results  have  shown  that  some  CA  rules  work  better  in  combi-
nation  than  others.  Good  combinations  tend  to  have  some  relation—
for  example,  being  complementary.  Rules  that  are  mirrored
complements  do  not  work  well  together,  because  they  effectively
reduce  the  size  of  the  reservoir.  The  concept  is  still  very  novel,  and  a
lot of research is left to be done, regarding both the use of a nonuni-
form  CA  reservoir  and  reservoir  computing  using  cellular  automata
(ReCA) systems in general.

As  previously  discussed,  finding  the  best  combination  of  rules
is  not  trivial.  If  we  only  consider  the  usage  of  two  distinct  rules,
the  rule  space  grows  from  only  256  single-reservoir  options  to
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256 !  2 ! * 254 !  32640 different combinations. Matching two rules

that  perform  well  together  can  be  quite  a  challenge.  By  investigating
the characteristics of the rules, for example, with a lambda parameter
[14],  Lyapunov  exponent  [40]  or  other  metrics,  it  may  be  possible  to
pinpoint  promising  rules.  Ideally,  the  usage  of  more  than  two  differ-
ent  rules  could  prove  a  powerful  tool.  The  rule  space  would  then
grow even larger, and an exhaustive search would be infeasible. How-
ever, one possibility (that we are currently investigating) is to use evo-
lutionary  algorithms  to  search  for  suitable  rules.  Adding  more  and
more rules would bring the reservoir closer to a true nonuniform CA. 

In  [30]  a  wide  range  of  different  tasks  is  presented.  In  this  paper,
only  one  (five-bit  task)  is  used  as  a  benchmark.  By  combining  differ-
ent  rules’  computational  power,  a  nonuniform  CA  reservoir  could  be
designed that performs well on a variety of tasks. 
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